)8 E M)

Taobao.com

Kris Mok, Software Engineer, Taobao
@rednaxelafx

X / "

JVM @ Taobao

Agenda

Customization

Tuning
JVM @ Taobao
Open Source

Training

INTRODUCTION

iﬁﬁi‘;
Java Strengths g‘

* (Good abstraction

* Good performance

* Good tooling (IDE, profiler, etc.)

« Easy to recruit good programmers

o

Java Weaknesses

 Tension between “abstraction leak” and
performance

— Abstraction and performance don’t always
come together

* More control/info over GC and object
overhead wanted sometimes

mgn g‘
Taobao.com

Our Team

* Domain-Specific Computing Team
— performance- and efficency-oriented
— specific solutions to specific problems

— do the low-level plumbing to leverage new
technologies

— we’re hiring!

T oo ooy S

Our Team (cont.) "

» Current Focus
— JVM-level customization/tuning
» based on HotSpot Express 20 from OpenJDK

— Dedicated compression card integration with
Hadoop

http://hg.openjdk.java.net/hsx/hsx20/master
http://openjdk.java.net/

JVM CUSTOMIZATION
@ TAOBAO

Themes

* Performance
* Monitoring/Diagnostics
o Stability

Tradeoftts ?‘

* Would like to make as little impact on
existing Java application code as possible

« But if the performance/efficiency gains are
significant enough, we’re willing to make
extensions to the VM/core libs

JVM Customization

GC Invisible Heap (GCIH)

JNI Wrapper improvement
New instructions
PrintGCReason / CMS bug fix
ArrayAllocationWarningSize
Change VM argument defaults
etc.

Case 1: iIn-memory cacli€

» Certain data is computed offline and then
fed to online systems in a read-only,
“cache” fashion

in-memory cache "

» Fastest way to access them is to
— put them in-process, in-memory,
— access as normal Java objects,
— no serialization/JNI involved per access

- =

in-memory cache "

 Large, static, long-live data in the GC heap
— may lead to long GC pauses at full GC,
— or long overall concurrent GC cycle

* What if we take them out of the GC heap?
— but without having to serialize them?

GC Inivisible Heap

* “GC Invisible Heap” (GCIH)

— an extension to HotSpot VM

— an in-process, in-memory heap space
— not managed by the GC

— stores normal Java objects

» Currently works with ParNew+CMS

GCIH intertace ?‘

* ‘'moveIn(Object root)”

— given the root of an object graph, move the
whole graph out of GC heap and into GCIH

* “moveOut()”

— GCIH space reset to a clean state
— abandon all data in current GCIH space

— (earlier version) move the object graph back
into GC heap

GCIH interface (cont.!g‘

* Current restrictions
— data in GCIH should be read-only
— objects in GCIH may not be used as monitors
— no outgoing references allowed

* Restrictions may be relaxed in the future

GCIH interface

 To update data
— moveOut - update - moveln

Sﬂilﬂ ‘
Taobao.com

-XX:PermSize ..
-XX:MaxPermSize Orlglnal

-Xms/ -Xmx

<.

-Xmn

Perm Young Old| Cache Data

GC Managed Heap

-XX:PermSize

-XX:MaxPermSize USiIlg GCIH
-Xms/ -Xmx .
-XX:GCIHS1ze
-Xmn S <
Perm Young 0ld Cache Data
GC Managed Heap . GCIH f

A a

ctual performance

* Reduces stop-the-world full GC pause
time
* Reduces concurrent-mark and concurrent-

sweep time

— but the two stop-the-world phases of CMS
aren’t necessarily significantly faster

D (=

Taobao.com

Total time of CMS GC phases

2.0000

concurrent-mark
1.8000 concurrent-

1.6000

1.4000
o 1.2000
&
~1.0000
)

'.g 0.8000
0.6000
0.4000
0.2000

0.0000

initial-mark

1

preclean

remark

3

4

reset

M Original

0.0072

1.7943

0.0373

0.0118

1.5717

0.0263

® w/GCIH

0.0043

0.5400

0.0159

0.0035

0.6266

0.0240

L =

Alternatives

GCIH

X extension to the JVM
\ in-process, in-memory
\/ not under GC control

\/ direct access of Java
objects

\/ no JNI overhead on
access

\/ object graph is in better
locality

BigMemory

- 4/ runs on standard JVM
\ in-process, in-memory
\/ not under GC control

X serialize/deserialize
Java objects

X JNI overhead on
access

X N/A

http://www.terracotta.org/products/bigmemory

’?ﬁﬁﬁ
GCIH future g‘

» still in early stage of development now

* may try to make the API surface more like
RTSJ

http://www.rtsj.org/

BWEM

Taobao.com

Experimental: object data sharing

P

» Sharing of GCIH between JVMs on the
same box

* Real-world application:

— A kind special Map/Reduce jobs uses a big
piece of precomputed cache data

— Multiple homogenous jobs run on the same
machine, using the same cache data

— can save memory to run more jobs on a
machine, when CPU isn’t the bottleneck

P 1S

Taobao.com (/A

Before sharing

JVM1 JVM2 VM3 JVMn

Sharable Sharable Sharable Sharable
Objs Obijs Objs Obijs

Other
Obijs

P 1S

Taobao.com (/A

After sharing

JVM1 JVM2 VM3 JVMn

Sharable

Objs Objs

Objs

1
|
Sharable :
|
I
I

1
I
Sharable :
I
|
I

|
|
|
Objs : Objs
|
|

Other
Obijs

Case 2: JNI overheac

 UJNI carries a lot overhead at invocation
boundaries

* JNI invocations involves calling JNI native
wrappers in the VM

’;‘Eﬁﬁ
JNI wrapper g‘

* Wrappers are in hand-written assembler
* But not necessarily always well-tuned

» Look for opportunities to optimize for
common cases

| m=ml

Wrapper example

Ox00002aaaab19be92: cmpl $0x0,0x30(%rl5) // check the suspend flag
0x00002aaaabl9be9a: je Ox2aaaabl9bec6

Ox00002aaaab19bead: mov %rax, -0x8(%rbp)

0x00002aaaabl9beas: mov %rl5,%rdi

Ox00002aaaabl9bea7: mov %rsp,%rl2

Ox00002aaaabl9beaa: sub $0x0,%rsp

Ox00002aaaabl9beae: and $oxfffHfffffffffffo,%rsp
OXx00002aaaab19beb2: mov $0x2b7d73bcbda0, %r10

Ox00002aaaabl9bebc: rex.WB callg *%rle

Ox00002aaaabl9bebf: mov %rl2,%rsp

Ox00002aaaabl9bec?2: mov -0x8(%rbp),%rax

0x00002aaaab19bech6: movl $0x8,0x238(%rl5) //change thread state to

thread in java
... //continue

Wrapper example (con’ g‘

 The common case

— Threads are more unlikely to be suspended
when running through this wrapper

» Optimize for the common case

— move the logic that handles suspended state
out-of-line

Ox00002aaaabl9be3a:
Ox00002aaaabl19be4?2:
Ox00002aaaab19be48:

thread in java

... J//continue

0x00002aaaab19bf52:
0x000023aaab19bf56:
0x00002aaaab19bf59:
0x00002aaaabl19bf5c:
0x00002aaaab19bf60:
0x000023aaabl9bf64:
0x00002aaaabl9bf6e:
0x00002aaaabl19bf71:
0x00002aaaabl19bf74:
0x00002aaaab19bf78:

BEM

Taobao.com

Modified wrapper example

cmpl $0x0,0x30(%rl5) // check the suspend flag
jne Ox2aaaab19bf52
movl $0x8,0x238(%r15) //change thread state to

mov %rax, -0x8(%rbp)

mov %rl5,%rdi

mov %rsp,%rl2

sub $0x0,%rsp

and $oxffffHfffHfffffo,%rsp
mov $0x2ae3772aae70,%r10
rex.WB callg *%rle

mov %rl2,%rsp

mov -0x8(%rbp),%rax

jmpq ©x2aaaabl9be48

Performance

¢ 5%-10% improvement of raw JNI
Invocation performance on various
microarchitectures

Case 3: new 1nstructiol

« SSE 4.2 brings new instructions
—e.g. CRC32c

 We're using Westmere now
» Should take advantage of SSE 4.2

iﬂ.ﬁ;”;
CRC32 / CRC32C g‘

« CRC32

— well known, commonly used checksum
— used in HDFS
— JDK’s impl uses zlib, through JNI

« CRC32c
— an variant of CRC32
— hardware support by SSE 4.2

’3,;3";
Intrinsify CRC32¢ g‘

* Add new intrinsic methods to directly
support CRC32c instruction in HotSpot VM

« Hardware accelerated
 To be used in modified HDFS

 Completely avoids JNI overhead
— HADOQOP-7446 still carries JNI overhead

https://issues.apache.org/jira/browse/HADOOP-7446
https://issues.apache.org/jira/browse/HADOOP-7446
https://issues.apache.org/jira/browse/HADOOP-7446

Other intrinsics

* May intrinsify other operation in the future
— AES-NI
— Others interested?

Case 4: frequent CMS

* An app experienced back-to-back CMS
GC cycles after running for a few days

* The Java heaps were far from full
 What's going on?

iﬂﬁ;"?.
The GC Log g‘

2011-06-30T19:40:03.487+0800: 26.958: [GC 26.958: [ParNew:
1747712K->40832K(1922432K), ©.0887510 secs] 1747712K-
>40832K(4019584K), ©.0888740 secs] [Times: user=0.19
Sys=0.00, real=0.09 secs]

2011-06-30T19:41:20.301+0800: 103.771: [GC 103.771: [ParNew:
1788544K->109881K(1922432K), 0.0910540 secs] 1788544K-
>109881K(4019584K), 0.0911960 secs] [Times: user=0.24
Ssys=0.07, real=0.09 secs]

2011-06-30T719:42:04.940+0800: 148.410: [GC [1 CMS-initial-
mark: OK(2097152K)] 998393K(4019584K), ©.4745760 secs]
[Times: user=0.47 sys=0.00, real=0.46 secs]
2011-06-30T19:42:05.416+0800: 148.886: [CMS-concurrent-mark-
start]

BEM

Taobao.com

GC log visualized

GC Histogram Tool (GChisto)

Help
(Trace Management r GC Pause Stats r GC Pause Distribution r GC Timeline
(File : gc.201108021026.Jog || File: gc.20110704.1og |
Name Active File : gc.20110704.log (ms)

Young GC v]
Full GC vl

Initial Mark vl 2000
Remark v]

1,750

1,500

- 1.250

E
E

= 1,000

750

500

250

. wm&wm
50,000 100,000 150,000 200,000 250,000 300,000 350,000
Elapsed Time (sec)
|| YYoung GC W Full GG 1 Initial Mark Remark|

The tool used here is GCHisto from Tony Printezis

http://java.net/projects/gchisto

g‘
Taobao.com

Need more info

e -XX:+PrintGCReason to the rescue

— added this new flag to the VM
— print the direct cause of a GC cycle

iﬁﬁi‘;
The GC Log g‘

2011-06-30T19:40:03.487+0800: 26.958: [GC 26.958: [ParNew:
1747712K->40832K(1922432K), ©.0887510 secs] 1747712K-
>40832K(4019584K), ©.0888740 secs] [Times: user=0.19
Sys=0.00, real=0.09 secs]

2011-06-30T19:41:20.301+0800: 103.771: [GC 103.771: [ParNew:
1788544K->109881K(1922432K), 0.0910540 secs] 1788544K-
>109881K(4019584K), 0.0911960 secs] [Times: user=0.24
Ssys=0.07, real=0.09 secs]

CMS Perm: collect because of occupancy 0.920845 / 0.920000
CMS perm gen initiated

2011-06-30T719:42:04.940+0800: 148.410: [GC [1 CMS-initial-
mark: OK(2097152K)] 998393K(4019584K), 0.4745760 secs]
[Times: user=0.47 sys=0.00, real=0.46 secs]
2011-06-30T19:42:05.416+0800: 148.886: [CMS-concurrent-mark-
start]

* Relevant VM arguments
— -XX:PermSize=96m -XX:MaxPermSize=256m

- =)

* The problem was caused by bad
interaction between CMS GC triggering
and PermGen expansion

— Thanks, Ramki!

| mEm

* The (partial) fix

// Support for concurrent collection policy decisions.
bool CompactibleFreelListSpace: :should concurrent _collect() const {
// In the future we might want to add in frgamentation stats --
// including erosion of the "mountain" into this decision as well.
l ladaptive freelists() && 13 e tionWouldFail():

return false;

}

After the change

BEM

Taobao.com

GC Histogram Tool (GChisto)

Help

(Trace Management r GC Pause Stats r GC Pause Distribution r GC Timeline

 File:0c.201108021026J0g | File: gc.20110704.00g |

Name

3

Young GC

Full GC

Initial Mark

Remark

RIR&]EX] 5

Time (ms)

2750

2,500

2,250

2,000

1,750

1.500

1.250

1.000

750

50,000

File : gc.201108021026.1og (ms)

100,000 150,000 200,000 250,000
Elapsed Time (sec)

|lYoungGC B Full GC [Initial Mark Remark

300,000

350,000

Case 5: huge objects g‘

* An app bug allocated a huge object,
causing unexpected OOM

« Where did it come from?

@ilﬂ

aobao.com

huge objects and arrayt

* Most Java objects are small

* Huge objects usually happen to be arrays

A lot of collection objects use arrays as
backing storage
— ArraylLists, HashMaps, etc.

* Tracking huge array allocation can help
locate huge allocation problems

P

product(intx, ArrayAllocationWarningSize, 512*M, \
"array allocation with size larger than" \
"this (bytes) will be given a warning" \
"into the GC log") \

Demo

import java.util.ArraylList;

public class Demo {
private static void foo() {
new ArraylList<Object>(128 * 1024 * 1024);

}

public static void main(String[] args) {
foo();

}
}

Demo

$ java Demo
==WARNNING== allocating large array:
thread 1d[0x0000000059374800], thread name[main],
array_size[536870928 bytes], array_length[134217728 elememts]
at java.util.Arraylist.<init>(ArraylList.java:112)
at Demo.foo(Demo.java:5)
at Demo.main(Demo.java:9)

Case 6: bad optimizationsS:

* Some loop optimization bugs were found
before launch of Oracle JDK 7

 Actually, they exist in recent JDK 6, too
— some of the fixes weren't in until JDK6u29

— can’t wait until an official update with the fixes
— roll our own workaround

http://robilad.livejournal.com/87097.html
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7044738
http://www.oracle.com/technetwork/java/javase/6u29-relnotes-507960.html

Workarounds

« Explicitly set -XX:-UseLoopPredicate
when using recent JDK 6

e Or..

Workarounds (cont.) "

« Change the defaults of the opt flags to turn
them off

product(bool, UselLoopPredicate, true false, \
"Generate a predicate to select fast/slow loop versions™) \

A Case Study

JVM TUNING
@ TAOBAO

JVM Tuning g‘

* Most JVM tuning efforts are spent on
memory related issues

— we do too
— lots of reading material available

* Let's look at something else
— use JVM internal knowledge to guide tuning

Case: Velocity template
compilation

* An internal project seeks to compile
Velocity templates into Java bytecodes

http://velocity.apache.org/

P

Compilation process

 Parse *.vm source into AST
— reuse original parser and AST from Velocity

* Traverse the AST and generate Java
source code as target
— works like macro expansion

» Use Java Compiler API to generate
bytecodes

msm g‘
Taobao.com

Example

Velocity template source

Check $dev.Name out!

Ny

generated Java source

_writer.write("Check ");
_writer.write(
_context.get(_context.get("dev"),
"Name", Integer.valueOf(26795951)));
_writer.write(" out!");

4500

4000

execution time (ms/10K times)
o = & S a 3 &
s 8 8 8 8 8 8

o

Performance: interpreted vs. compileC

P 1S

Taobao.com (/A

—o—compiled

-B-interpreted

4

5

6 7 8 9 10 11 12 13
template complexity

14 15 16

Problem

* |In the compiled version
— 1 “complexity” = 800 bytes of bytecode

— S0, 11 “complexities” > 8000 bytes of bytecode
Compiled templates Iarger\

W " J I
Thd%\';‘elc]i%(i%{')% %Le{ll-;c}\-o Limit, 8600,
"don't compile methods larger than”
"this if +DontCompileHugeMethods")

product(bool, DontCompileHugeMethods, true, \
"don't compile methods > HugeMethodLimit") \

~ = =

Case Study Summary

http://rdc.taobao.com/team/jm/archives/552

4500

4000

w
U1
o
o

w
o
(=]
o

N
(S
o
o

N
o
o
o

1500

1000

500

execution time (ms/10K times)

-XX:-DontCompileHugeMet

D (=

Taobao.com

/// '.‘interpreted

1 2 3 4 5 6 7 8 9 10 11
template complexity

12

13 14 15 16

JVM OPEN SOURCE
@ TAOBAO

0 ¥

pen Source

 Participate in OpendDK

— Already submitted 4 patches into the HotSpot
VM and its Serviceability Agent

— Active on OpenJDK mailing-lists
* Sign the OCA
— Work in progress, almost there
— Submit more patches after OCA is accepted

» Future open sourcing of custom
modifications

http://openjdk.java.net/contribute/

o =P

Open Source (cont.)

* The submitted patches

— 7050685: jsdbproc6b4.sh has a typo in the
package name

— 7058036: FieldsAllocationStyle=2 does not work
in 32-bit VM

— 7060619: C1 should respect inline and dontinline
directives from CompilerOracle

— 7072527: CMS: JMM GC counters overcount in
some Cases
* Due to restrictions in contribution process,
more significant patches cannot be submitted
until our OCA is accepted

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7050685
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7058036
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7060619
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7072527

JVM TRAINING
@ TAOBAO

JVM Training g‘

* Regular internal courses on
—JVM Internals
— JVM tuning
— JVM troubleshooting

* Discussion group for people interested in
JVM internals

QUESTIONS?

)8 E M)

Taobao.com

Kris Mok, Software Engineer, Taobao
@rednaxelafx

X / "

