
Kris Mok, Software Engineer, Taobao
@rednaxelafx
莫枢 /“撒迦”

JVM @ Taobao

Agenda

JVM @ Taobao

Training

Customization

Tuning

Open Source

INTRODUCTION

Java Strengths

• Good abstraction

• Good performance

• Good tooling (IDE, profiler, etc.)

• Easy to recruit good programmers

Java Weaknesses

• Tension between “abstraction leak” and

performance

– Abstraction and performance don’t always

come together

• More control/info over GC and object

overhead wanted sometimes

Our Team

• Domain-Specific Computing Team

– performance- and efficency-oriented

– specific solutions to specific problems

– do the low-level plumbing to leverage new

technologies

– we’re hiring!

Our Team (cont.)

• Current Focus

– JVM-level customization/tuning

• based on HotSpot Express 20 from OpenJDK

– Dedicated compression card integration with

Hadoop

http://hg.openjdk.java.net/hsx/hsx20/master
http://openjdk.java.net/

JVM CUSTOMIZATION
@ TAOBAO

Themes

• Performance

• Monitoring/Diagnostics

• Stability

Tradeoffs

• Would like to make as little impact on

existing Java application code as possible

• But if the performance/efficiency gains are

significant enough, we’re willing to make

extensions to the VM/core libs

JVM Customizations

• GC Invisible Heap (GCIH)

• JNI Wrapper improvement

• New instructions

• PrintGCReason / CMS bug fix

• ArrayAllocationWarningSize

• Change VM argument defaults

• etc.

Case 1: in-memory cache

• Certain data is computed offline and then

fed to online systems in a read-only,

“cache” fashion

in-memory cache

• Fastest way to access them is to

– put them in-process, in-memory,

– access as normal Java objects,

– no serialization/JNI involved per access

in-memory cache

• Large, static, long-live data in the GC heap

– may lead to long GC pauses at full GC,

– or long overall concurrent GC cycle

• What if we take them out of the GC heap?

– but without having to serialize them?

GC Inivisible Heap

• “GC Invisible Heap” (GCIH)

– an extension to HotSpot VM

– an in-process, in-memory heap space

– not managed by the GC

– stores normal Java objects

• Currently works with ParNew+CMS

GCIH interface

• “moveIn(Object root)”

– given the root of an object graph, move the

whole graph out of GC heap and into GCIH

• “moveOut()”

– GCIH space reset to a clean state

– abandon all data in current GCIH space

– (earlier version) move the object graph back

into GC heap

GCIH interface (cont.)

• Current restrictions

– data in GCIH should be read-only

– objects in GCIH may not be used as monitors

– no outgoing references allowed

• Restrictions may be relaxed in the future

GCIH interface (cont.)

• To update data

– moveOut – update - moveIn

Young Old Cache Data

-Xmn

-Xms/-Xmx

Young Old Cache Data

-Xmn

-Xms/-Xmx
-XX:GCIHSize

Original

Using GCIH

Perm

-XX:PermSize
-XX:MaxPermSize

Perm

-XX:PermSize
-XX:MaxPermSize

GC Managed Heap

GCIH GC Managed Heap

Actual performance

• Reduces stop-the-world full GC pause

time

• Reduces concurrent-mark and concurrent-

sweep time

– but the two stop-the-world phases of CMS

aren’t necessarily significantly faster

1 2 3 4 5 6

Original 0.0072 1.7943 0.0373 0.0118 1.5717 0.0263

w/GCIH 0.0043 0.5400 0.0159 0.0035 0.6266 0.0240

initial-mark

concurrent-mark

preclean remark

concurrent-
sweep

reset
0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1.4000

1.6000

1.8000

2.0000

ti
m

e
 (

s
e

c
)

Total time of CMS GC phases

Alternatives

GCIH

• × extension to the JVM

• √ in-process, in-memory

• √ not under GC control

• √ direct access of Java

objects

• √ no JNI overhead on

access

• √ object graph is in better

locality

BigMemory

• √ runs on standard JVM

• √ in-process, in-memory

• √ not under GC control

• × serialize/deserialize

Java objects

• × JNI overhead on

access

• × N/A

http://www.terracotta.org/products/bigmemory

GCIH future

• still in early stage of development now

• may try to make the API surface more like

RTSJ

http://www.rtsj.org/

Experimental: object data sharing

• Sharing of GCIH between JVMs on the

same box

• Real-world application:

– A kind special Map/Reduce jobs uses a big

piece of precomputed cache data

– Multiple homogenous jobs run on the same

machine, using the same cache data

– can save memory to run more jobs on a

machine, when CPU isn’t the bottleneck

Before sharing

JVM1

Sharable
Objs

Other
Objs

JVM2

Sharable
Objs

Other
Objs

JVM3

Sharable
Objs

Other
Objs

… JVMn

Sharable
Objs

Other
Objs

After sharing

JVM1

Sharable
Objs

Other
Objs

JVM2

Sharable
Objs

Other
Objs

JVM3

Sharable
Objs

Other
Objs

… JVMn

Sharable
Objs

Other
Objs

Sharable
Objs

Case 2: JNI overhead

• JNI carries a lot overhead at invocation

boundaries

• JNI invocations involves calling JNI native

wrappers in the VM

JNI wrapper

• Wrappers are in hand-written assembler

• But not necessarily always well-tuned

• Look for opportunities to optimize for

common cases

Wrapper example

...
0x00002aaaab19be92: cmpl $0x0,0x30(%r15) // check the suspend flag
0x00002aaaab19be9a: je 0x2aaaab19bec6
0x00002aaaab19bea0: mov %rax,-0x8(%rbp)
0x00002aaaab19bea4: mov %r15,%rdi
0x00002aaaab19bea7: mov %rsp,%r12
0x00002aaaab19beaa: sub $0x0,%rsp
0x00002aaaab19beae: and $0xfffffffffffffff0,%rsp
0x00002aaaab19beb2: mov $0x2b7d73bcbda0,%r10
0x00002aaaab19bebc: rex.WB callq *%r10
0x00002aaaab19bebf: mov %r12,%rsp
0x00002aaaab19bec2: mov -0x8(%rbp),%rax
0x00002aaaab19bec6: movl $0x8,0x238(%r15) //change thread state to
thread in java
... //continue

Wrapper example (cont.)

• The common case

– Threads are more unlikely to be suspended

when running through this wrapper

• Optimize for the common case

– move the logic that handles suspended state

out-of-line

Modified wrapper example
...
0x00002aaaab19be3a: cmpl $0x0,0x30(%r15) // check the suspend flag
0x00002aaaab19be42: jne 0x2aaaab19bf52
0x00002aaaab19be48: movl $0x8,0x238(%r15) //change thread state to
thread in java

... //continue

0x00002aaaab19bf52: mov %rax,-0x8(%rbp)
0x00002aaaab19bf56: mov %r15,%rdi
0x00002aaaab19bf59: mov %rsp,%r12
0x00002aaaab19bf5c: sub $0x0,%rsp
0x00002aaaab19bf60: and $0xfffffffffffffff0,%rsp
0x00002aaaab19bf64: mov $0x2ae3772aae70,%r10
0x00002aaaab19bf6e: rex.WB callq *%r10
0x00002aaaab19bf71: mov %r12,%rsp
0x00002aaaab19bf74: mov -0x8(%rbp),%rax
0x00002aaaab19bf78: jmpq 0x2aaaab19be48
...

Performance

• 5%-10% improvement of raw JNI

invocation performance on various

microarchitectures

Case 3: new instructions

• SSE 4.2 brings new instructions

– e.g. CRC32c

• We’re using Westmere now

• Should take advantage of SSE 4.2

CRC32 / CRC32C

• CRC32

– well known, commonly used checksum

– used in HDFS

– JDK’s impl uses zlib, through JNI

• CRC32c

– an variant of CRC32

– hardware support by SSE 4.2

Intrinsify CRC32c

• Add new intrinsic methods to directly

support CRC32c instruction in HotSpot VM

• Hardware accelerated

• To be used in modified HDFS

• Completely avoids JNI overhead

– HADOOP-7446 still carries JNI overhead

https://issues.apache.org/jira/browse/HADOOP-7446
https://issues.apache.org/jira/browse/HADOOP-7446
https://issues.apache.org/jira/browse/HADOOP-7446

Other intrinsics

• May intrinsify other operation in the future

– AES-NI

– Others interested?

Case 4: frequent CMS GC

• An app experienced back-to-back CMS

GC cycles after running for a few days

• The Java heaps were far from full

• What’s going on?

The GC Log
2011-06-30T19:40:03.487+0800: 26.958: [GC 26.958: [ParNew:
1747712K->40832K(1922432K), 0.0887510 secs] 1747712K-
>40832K(4019584K), 0.0888740 secs] [Times: user=0.19
sys=0.00, real=0.09 secs]
2011-06-30T19:41:20.301+0800: 103.771: [GC 103.771: [ParNew:
1788544K->109881K(1922432K), 0.0910540 secs] 1788544K-
>109881K(4019584K), 0.0911960 secs] [Times: user=0.24
sys=0.07, real=0.09 secs]
2011-06-30T19:42:04.940+0800: 148.410: [GC [1 CMS-initial-
mark: 0K(2097152K)] 998393K(4019584K), 0.4745760 secs]
[Times: user=0.47 sys=0.00, real=0.46 secs]
2011-06-30T19:42:05.416+0800: 148.886: [CMS-concurrent-mark-
start]

GC log visualized

The tool used here is GCHisto from Tony Printezis

http://java.net/projects/gchisto

Need more info

• -XX:+PrintGCReason to the rescue

– added this new flag to the VM

– print the direct cause of a GC cycle

The GC Log
2011-06-30T19:40:03.487+0800: 26.958: [GC 26.958: [ParNew:
1747712K->40832K(1922432K), 0.0887510 secs] 1747712K-
>40832K(4019584K), 0.0888740 secs] [Times: user=0.19
sys=0.00, real=0.09 secs]
2011-06-30T19:41:20.301+0800: 103.771: [GC 103.771: [ParNew:
1788544K->109881K(1922432K), 0.0910540 secs] 1788544K-
>109881K(4019584K), 0.0911960 secs] [Times: user=0.24
sys=0.07, real=0.09 secs]
 CMS Perm: collect because of occupancy 0.920845 / 0.920000
CMS perm gen initiated
2011-06-30T19:42:04.940+0800: 148.410: [GC [1 CMS-initial-
mark: 0K(2097152K)] 998393K(4019584K), 0.4745760 secs]
[Times: user=0.47 sys=0.00, real=0.46 secs]
2011-06-30T19:42:05.416+0800: 148.886: [CMS-concurrent-mark-
start]

• Relevant VM arguments

– -XX:PermSize=96m -XX:MaxPermSize=256m

• The problem was caused by bad

interaction between CMS GC triggering

and PermGen expansion

– Thanks, Ramki!

• The (partial) fix

// Support for concurrent collection policy decisions.
bool CompactibleFreeListSpace::should_concurrent_collect() const {
 // In the future we might want to add in frgamentation stats --
 // including erosion of the "mountain" into this decision as well.
 return !adaptive_freelists() && linearAllocationWouldFail();
 return false;
}

After the change

Case 5: huge objects

• An app bug allocated a huge object,

causing unexpected OOM

• Where did it come from?

huge objects and arrays

• Most Java objects are small

• Huge objects usually happen to be arrays

• A lot of collection objects use arrays as

backing storage

– ArrayLists, HashMaps, etc.

• Tracking huge array allocation can help

locate huge allocation problems

product(intx, ArrayAllocationWarningSize, 512*M, \
 "array allocation with size larger than" \
 "this (bytes) will be given a warning" \
 "into the GC log") \

Demo

import java.util.ArrayList;

public class Demo {
 private static void foo() {
 new ArrayList<Object>(128 * 1024 * 1024);
 }

 public static void main(String[] args) {
 foo();
 }
}

Demo

$ java Demo
==WARNNING== allocating large array:
thread_id[0x0000000059374800], thread_name[main],
array_size[536870928 bytes], array_length[134217728 elememts]
 at java.util.ArrayList.<init>(ArrayList.java:112)
 at Demo.foo(Demo.java:5)
 at Demo.main(Demo.java:9)

Case 6: bad optimizations?

• Some loop optimization bugs were found

before launch of Oracle JDK 7

• Actually, they exist in recent JDK 6, too

– some of the fixes weren’t in until JDK6u29

– can’t wait until an official update with the fixes

– roll our own workaround

http://robilad.livejournal.com/87097.html
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7044738
http://www.oracle.com/technetwork/java/javase/6u29-relnotes-507960.html

Workarounds

• Explicitly set -XX:-UseLoopPredicate

when using recent JDK 6

• Or …

Workarounds (cont.)

• Change the defaults of the opt flags to turn

them off

product(bool, UseLoopPredicate, true false, \
 "Generate a predicate to select fast/slow loop versions") \

JVM TUNING
@ TAOBAO

A Case Study

JVM Tuning

• Most JVM tuning efforts are spent on

memory related issues

– we do too

– lots of reading material available

• Let’s look at something else

– use JVM internal knowledge to guide tuning

Case: Velocity template
compilation

• An internal project seeks to compile

Velocity templates into Java bytecodes

http://velocity.apache.org/

Compilation process

• Parse *.vm source into AST

– reuse original parser and AST from Velocity

• Traverse the AST and generate Java

source code as target

– works like macro expansion

• Use Java Compiler API to generate

bytecodes

Example

Velocity template source

generated Java source

Check $dev.Name out!

_writer.write("Check ");
_writer.write(
 _context.get(_context.get("dev"),
 "Name", Integer.valueOf(26795951)));
_writer.write(" out!");

Performance: interpreted vs. compiled

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

e
x

e
c

u
ti

o
n

 t
im

e
 (

m
s

/1
0

K
 t

im
e

s
)

template complexity

compiled

interpreted

Problem

• In the compiled version

– 1 “complexity” ≈ 800 bytes of bytecode

– So 11 “complexities” > 8000 bytes of bytecode

Case Study Summary

develop(intx, HugeMethodLimit, 8000, \
 "don't compile methods larger than" \
 "this if +DontCompileHugeMethods") \
product(bool, DontCompileHugeMethods, true, \
 "don't compile methods > HugeMethodLimit") \

Compiled templates larger
than “11” are not JIT’d!

http://rdc.taobao.com/team/jm/archives/552

-XX:-DontCompileHugeMethods

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

e
x

e
c

u
ti

o
n

 t
im

e
 (

m
s

/1
0

K
 t

im
e

s
)

template complexity

compiled

interpreted

JVM OPEN SOURCE
@ TAOBAO

Open Source

• Participate in OpenJDK

– Already submitted 4 patches into the HotSpot
VM and its Serviceability Agent

– Active on OpenJDK mailing-lists

• Sign the OCA

– Work in progress, almost there

– Submit more patches after OCA is accepted

• Future open sourcing of custom
modifications

http://openjdk.java.net/contribute/

Open Source (cont.)

• The submitted patches
– 7050685: jsdbproc64.sh has a typo in the

package name

– 7058036: FieldsAllocationStyle=2 does not work
in 32-bit VM

– 7060619: C1 should respect inline and dontinline
directives from CompilerOracle

– 7072527: CMS: JMM GC counters overcount in
some cases

• Due to restrictions in contribution process,
more significant patches cannot be submitted
until our OCA is accepted

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7050685
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7058036
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7060619
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7072527

JVM TRAINING
@ TAOBAO

JVM Training

• Regular internal courses on

– JVM internals

– JVM tuning

– JVM troubleshooting

• Discussion group for people interested in

JVM internals

QUESTIONS?

Kris Mok, Software Engineer, Taobao
@rednaxelafx
莫枢 /“撒迦”

