
Real-time node.js:
Instrumentation,
Visualization & Debugging

SVP, Engineering

bryan@joyent.com

Bryan Cantrill

@bcantrill

mailto:rod@joyent.com
mailto:rod@joyent.com

“Real-time web?”

• The term has enjoyed some popularity, but there is
clearly confusion about the definition of “real-time”

• A real-time system is one in which the correctness of the
system is relative to its timeliness

• A hard real-time system is one which the latency
constraints are rigid: violation constitutes total system
failure (e.g., an actuator on a physical device)

• A soft real-time system is one in which latency
constraints are more flexible: violation is undesirable but
non-fatal (e.g., a video game or MP3 player)

• Historically, the only real-time aspect of the web has
been in some of its static content (e.g. video, audio)

The rise of the real-time web

• The rise of mobile + HTML5 has given rise to a new
breed of web application: ones in which dynamic data
has real-time semantics

• These data-intensive real-time applications present new
semantics for web-facing applications

• Data-intensive real-time gives rise to a new paradigm:
CRUD, ACID, BASE, CAP — meet DIRT!

The challenge of DIRTy apps

• DIRTy applications tend to have the human in the loop

• Good news: deadlines are soft — microseconds only
matter when they add up to tens of milliseconds

• Bad news: because humans are in the loop, demand
for the system can be non-linear

• One must deal not only with the traditional challenge of
scalability, but also the challenge of a real-time system!

Building DIRTy apps

• Embedded real-time systems are sufficiently controlled
that latency bubbles can be architected away

• Web-facing systems are far too sloppy to expect this!

• Focus must shift from preventing latency bubbles to
preventing latency bubbles from cascading

• Operations that can induce latency (network, I/O, etc.)
must not be able to take the system out with them!

• Implies purely asynchronous and evented architectures,
which are notoriously difficult to implement...

Enter node.js

• node.js is a JavaScript-based framework for building
event-oriented servers:

 var http = require(‘http’);

 http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
 }).listen(8124, "127.0.0.1");

 console.log(‘Server running at http://127.0.0.1:8124!’);

http://127.0.0.1:8124
http://127.0.0.1:8124

node.js as building block

• node.js is a confluence of three ideas:

• JavaScriptʼs rich support for asynchrony (i.e. closures)
• High-performance JavaScript VMs (e.g. V8)
• The system abstractions that God intended (i.e. UNIX)

• Because everything is asynchronous, node.js is ideal for
delivering scale in the presence of long-latency events!

The primacy of latency

• As the correctness of the system is its timeliness, we
must be able to measure the system to verify it

• In a real-time system, it does not make sense to measure
operations per second!

• The only metric that matters is latency

• This is dangerous to distill to a single number; the
distribution of latency over time is essential

• This poses both instrumentation and visualization
challenges!

Instrumenting for latency

• Instrumenting for latency requires modifying the system
twice: as an operation starts and as it finishes

• During an operation, the system must track — on a per-
operation basis — the start time of the operation

• Upon operation completion, the resulting stored data
cannot be a scalar — the distribution is essential when
understanding latency

• Instrumentation must be systemic; must be able to
reach to the sources of latency deep within the system

• These constraints eliminate static instrumentation; we
need a better way to instrument the system

Enter DTrace

• Facility for dynamic instrumentation of production
systems originally developed circa 2003 for Solaris 10

• Open sourced (along with the rest of Solaris) in 2005;
subsequently ported to many other systems (MacOS X,
FreeBSD, NetBSD, QNX, Linux port in development)

• Support for arbitrary actions, arbitrary predicates, in
situ data aggregation, statically-defined instrumentation

• Designed for safe, ad hoc use in production: concise
answers to arbitrary questions

• Particularly well suited to real-time: the original design
center was the understanding of latency bubbles

DTrace + Node?

• DTrace instruments the system holistically, which is to
say, from the kernel, which poses a challenge for
interpreted environments

• User-level statically defined tracing (USDT) providers
describe semantically relevant points of instrumentation

• Some interpreted environments (e.g., Ruby, Python,
PHP, Erlang) have added USDT providers that
instrument the interpreter itself

• This approach is very fine-grained (e.g., every function
call) and doesnʼt work in JITʼd environments

• We decided to take a different tack for Node

DTrace for node.js

• Given the nature of the paths that we wanted to
instrument, we introduced a function into JavaScript that
Node can call to get into USDT-instrumented C++

• Introduces disabled probe effect: calling from JavaScript
into C++ costs even when probes are not enabled

• We use USDT is-enabled probes to minimize disabled
probe effect once in C++

• If (and only if) the probe is enabled, we prepare a
structure for the kernel that allows for translation into a
structure that is familiar to node programmers

Node USDT Provider

• Example one-liners:
 dtrace -n ‘node*:::http-server-request{
 printf(“%s of %s from %s\n”, args[0]->method,
 args[0]->url, args[1]->remoteAddress)}‘

 dtrace -n http-server-request’{@[args[1]->remoteAddress] = count()}‘

 dtrace -n gc-start’{self->ts = timestamp}’ \
 -n gc-done’/self->ts/{@ = quantize(timestamp - self->ts)}’

• A script to measure HTTP latency:
 http-server-request
 {
 self->ts[args[1]->fd] = timestamp;
 }

 http-server-response
 /self->ts[args[0]->fd]/
 {
 @[zonename] = quantize(timestamp - self->ts[args[0]->fd]);
 }

User-defined USDT probes in node.js

• Our USDT technique has been generalized by Chris
Andrews in his node-dtrace-provider npm module:

 https://github.com/chrisa/node-dtrace-provider

• Used by Joyentʼs Mark Cavage in his ldap.js to measure
and validate operation latency

• But how to visualize operation latency?

https://github.com/chrisa/node-dtrace-provider
https://github.com/chrisa/node-dtrace-provider

Visualizing latency

• Could visualize latency as a scalar (i.e., average):

• This hides outliers — and in a real-time system, it is the
outliers that you care about!

• Using percentiles helps to convey distribution — but
crucial detail remains hidden

Visualizing latency as a heatmap

• Latency is much better visualized as a heatmap, with
time on the x-axis, latency on the y-axis, and frequency
represented with color saturation:

• Many patterns are now visible (as in this example of
MySQL query latency), but critical data is still hidden

Visualizing latency as a 4D heatmap

• Can use hue to represent higher dimensionality: time on
the x-axis, latency on the y-axis, frequency via color
saturation, and hue representing the new dimension:

• In this example, the higher dimension is the MySQL
database table associated with the operation

Visualizing node.js latency

• Using the USDT probes as foundation, we developed a
cloud analytics facility that visualizes latency in real-time
via four dimensional heatmaps:

• Facility is available via Joyentʼs no.de service, Joyentʼs
public cloud, or Joyentʼs SmartDataCenter

Debugging latency

• Latency visualization is essential for understanding
where latency is being induced in a complicated system,
but how can we determine why?

• This requires associating an external event — an I/O
request, a network packet, a profiling interrupt — with
the code thatʼs inducing it

• For node.js — like other dynamic environments — this is
historically very difficult: the VM is opaque to the OS

• Using DTraceʼs helper mechanism, we have developed
a V8 ustack helper that allows OS-level events to be
correlated to the node.js-backtrace that induced them

• Available for node 0.6.7 on Joyentʼs SmartOS

Visualizing node.js CPU latency

• Using the node.js ustack helper and the DTrace profile
provider, we can determine the relative frequency of
stack backtraces in terms of CPU consumption

• Stacks can be visualized with flame graphs, a stack
visualization developed by Joyentʼs Brendan Gregg:

node.js in production

• node.js is particularly amenable for the DIRTy apps that
typify the real-time web

• The ability to understand latency must be considered
when deploying node.js-based systems into production!

• Understanding latency requires dynamic instrumentation
and novel visualization

• At Joyent, we have added DTrace-based dynamic
instrumentation for node.js to SmartOS, and novel
visualization into our cloud and software offerings

• Better production support — better observability, better
debuggability — remains an important area of node.js
development!

Beyond node.js

• node.js is adept at connecting components in the
system; it is unlikely to be the only component!

• As such, when using node.js to develop a DIRTy app,
you can expect to spend as much time (if not more!)
understanding the components as the app

• When selecting components — operating system, in-
memory data store, database, distributed data store —
observability must be a primary consideration!

• When building a team, look for full-stack engineers —
DIRTy apps pose a full-stack challenge!

Thank you!

• @ryah, @rmustacc and @dapsays for Node DTrace
USDT integration

• @dapsays, @rmustacc, @rob_ellis and @notmatt for
cloud analytics

• @chrisandrews for node-dtrace-provider and
@mcavage for putting it to such great use in ldap.js

• @dapsays for the V8 DTrace ustack helper

• @brendangregg for both the heatmap and flame graph
visualizations — and for his excellent DTrace book!

• More information: http://dtrace.org/blogs/dap,
http://dtrace.org/blogs/brendan and http://smartos.org

http://dtrace.org/blogs/dap
http://dtrace.org/blogs/dap
http://dtrace.org/blogs/brendan
http://dtrace.org/blogs/brendan
http://smartos.org
http://smartos.org

http://www.architectsummit.com/

http://www.qconbeijing.com/

