
The Importance of Culture
Building and Sustaining Effective Engineering

Organizations

Randy Shoup
@randyshoup

linkedin.com/in/randyshoup

Background

CTO at KIXEYE
•  Real-time strategy games for web and mobile

Director of Engineering for Google App Engine
•  World’s largest Platform-as-a-Service

Chief Engineer at eBay
•  Multiple generations of eBay’s real-time search

infrastructure

Building Blocks of Culture

Hiring and Retention

Ownership and Collaboration

Quality and Discipline

Learning and Experimentation

Building Blocks of Culture

Hiring and Retention

Ownership and Collaboration

Quality and Discipline

Learning and Experimentation

Hire and Retain the Best

Hire ‘A’ Players
•  In creative disciplines, top performers are 10x more

productive (!)

Confidence
•  A players bring A players
•  B players bring C players

Google Hiring

Goal: Only hire top talent
•  False negatives are OK; false positives are not

Hiring Process
•  Famously challenging interviews
•  Very detailed interviewer feedback
•  Hiring committee decides whether to hire
•  Separately assign new Googler to group

è Highly talented and engaged employees

Respect People

People are not interchangeable
•  Different skills, interests, capabilities
•  Create a Symphony, not a Factory

Most valuable and irreplaceable asset
•  Treat people with care and respect
•  If the company values its people, people will

provide value to the company

eBay “Train Seats”

eBay’s development process (circa 2006)
•  Design and estimate project

(“Train Seat” == 2 engineer-weeks)
•  Assign engineers from common pool to implement tasks
•  Designer does not implement; implementers do not design

è Dysfunctional engineering culture

•  (-) Engineers treated as interchangeable “cogs”
•  (-) No regard for skill, interest, experience
•  (-) No pride of ownership in task implementation
•  (-) No long-term ownership of codebase

Building Blocks of Culture

Hiring and Retention

Ownership and Collaboration

Quality and Discipline

Learning and Experimentation

Service Teams

•  Small, focused teams
•  Single service or set of related services
•  Minimal, well-defined “interface”
•  Vendor – Customer relationships

•  Clear “contract” between teams
•  Functionality: agreed-upon scope of responsibility
•  Service levels and performance

Google Services

•  All engineering groups organized into
“services”
•  Gmail, App Engine, Bigtable, etc.

•  Self-sufficient and autonomous
•  Layered on one another

è Very small teams achieve great things

Autonomy and Accountability

•  Give teams autonomy
•  Freedom to choose technology, methodology,

working environment
•  Responsibility for the results of those choices

•  Hold team accountable for *results*
•  Give a team a goal, not a solution
•  Let team own the best way to achieve the goal

KIXEYE Service Chassis

•  Goal: Produce a “chassis” for building scalable game
services

•  Minimal resources, minimal direction
•  3 people x 1 month
•  Consider building on open source projects

è Team exceeded expectations
•  Co-developed chassis, transport layer, service template,

build pipeline, red-black deployment, etc.
•  Heavy use of Netflix open source projects
•  15 minutes from no code to running service in AWS (!)
•  Plan to open-source several parts of this work

Google and DevOps

Ops Support is a privilege, not a right
•  Developers carry pager for first 6+ months
•  Service “graduates” to SRE after intensive review

of monitoring, reliability, resilience, etc.
•  SRE collaborates with service to move forward

Everyone’s incentives are aligned
•  Everyone is responsible for production
•  Everyone strongly motivated to have solid

instrumentation and monitoring

Collaboration

•  Act as one team across engineering, product,
operations, etc.

•  Solve problems instead of blaming and pointing
fingers

•  Leave politics to the politicians

•  Bureaucratic games are not as fun as real games
J

Google App Engine Co-Location

Multiple Organizations
•  Engineering
•  Product
•  Operations (“SRE”)
•  Developer Relations
•  Different reporting structures to different VPs

Virtual Team with Single Goal

•  All work to make Google App Engine successful
•  Coworkers are “Us”, not “Them”
•  When asked which teams we need to sit next to, it never

occurred to us that other organizations were not “our team”

Building Blocks of Culture

Hiring and Retention

Ownership and Collaboration

Quality and Discipline

Learning and Experimentation

Quality over Quantity

Whole user / player experience
•  Think holistically about the full end-to-end experience

of the user
•  The user experience is more than UX (!)
•  Also product functionality, performance, bugs, etc.

Less is more
•  Solve 100% of one problem rather than 50% of two
•  Users prefer one great feature instead of two partially-

completed features

Institutionalize Quality

Development Practices
•  Code reviews
•  Continuous Testing
•  Continuous Integration

Quality Automation

•  Automated testing frameworks
•  Canary releases to production

“Make it easy to do the right thing, and hard to do the
wrong thing”

Google Engineering Discipline

Solid Development Practices
•  Code reviews before submission
•  Automated tests for everything
•  Single logical source code repository

è Internal Open Source Model
•  Not “here is a bug report”
•  Instead “here is the bug; here is the code fix; here

is the test that verifies the fix”

Technical Tradeoffs
Make Tradeoffs Explicit
•  Every decision is a tradeoff: X

or Y or Z
•  When you choose features and

a date, you implicitly choose a
level of quality

è Be honest with yourself and

your team when you are
doing this (!)

Date	

Features	 Quality	

Technical Tradeoffs

Manage Technical Debt
•  Plan for how and when you will pay it off
•  Maintain sustainable and well-understood level of

debt

“Don’t have time to do it right” ?
•  WRONG – Don’t have time to do it twice (!)

Building Blocks of Culture

Hiring and Retention

Ownership and Collaboration

Quality and Discipline

Learning and Experimentation

Constant Learning

Any process, organization, or product can always be
improved

Mistakes are a learning opportunity
•  What did you do -> What did you *learn*
•  Take emotion and personalization out of it

Encourage iteration and velocity
•  “Failure is not falling down but refusing to get back

up” – Theodore Roosevelt

Google Blame-Free Post-Mortems

Post-mortem After Every Incident
•  Document exactly what happened
•  What went right
•  What went wrong

Open and Honest Discussion
•  What contributed to the incident?
•  What could we have done better?
è Engineers compete to take personal responsibility (!)

Google Blame-Free Post-Mortems

Action Items
•  How will we change process, technology,

documentation, etc.
•  How could we have automated the problems away?
•  How could we have diagnosed more quickly?
•  How could we have restored service more quickly?

Follow up (!)

Iteration and Experimentation

Engineer successes
•  Constant iteration
•  Launch is only the first step
•  Assume you will not get it perfect on the first try
•  A / B Testing needs to be a core competence

Many small experiments sum to big wins

eBay Machine-Learned Ranking

Ranking function for search results
•  Which item should appear 1st, 10th, 100th, 1000th
•  Before: Small number of hand-tuned factors
•  Goal: Thousands of factors

Experimentation Process
•  Predictive models: query->view, view->purchase, etc.
•  Hundreds of parallel A|B tests
•  Full year of steady, incremental improvements

è 2% increase in eBay revenue (~$120M)

Recap: Building Blocks of Culture

Hiring and Retention

Ownership and Collaboration

Quality and Discipline

Learning and Experimentation

Thank you!

Slide URL:
http://www.slideshare.net/RandyShoup/the-
importance-of-culture-building-and-
sustaining-effective-engineering-organizations

rshoup@kixeye.com
@randyshoup
linkedin.com/in/randyshoup

