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Background

CTO at KIXEYE
•  Real-time strategy games for web and mobile


Director of Engineering for Google App Engine
•  World’s largest Platform-as-a-Service


Chief Engineer at eBay
•  Multiple generations of eBay’s real-time search 

infrastructure
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Hire and Retain the Best

Hire ‘A’ Players
•  In creative disciplines, top performers are 10x more 

productive (!) 

Confidence
•  A players bring A players
•  B players bring C players



Google Hiring

Goal:  Only hire top talent
•  False negatives are OK; false positives are not

Hiring Process
•  Famously challenging interviews
•  Very detailed interviewer feedback
•  Hiring committee decides whether to hire
•  Separately assign new Googler to group

è Highly talented and engaged employees



Respect People

People are not interchangeable
•  Different skills, interests, capabilities
•  Create a Symphony, not a Factory


Most valuable and irreplaceable asset
•  Treat people with care and respect
•  If the company values its people, people will 

provide value to the company



eBay “Train Seats”

eBay’s development process (circa 2006)
•  Design and estimate project

(“Train Seat” == 2 engineer-weeks)
•  Assign engineers from common pool to implement tasks
•  Designer does not implement; implementers do not design


è Dysfunctional engineering culture

•  (-) Engineers treated as interchangeable “cogs”
•  (-) No regard for skill, interest, experience
•  (-) No pride of ownership in task implementation
•  (-) No long-term ownership of codebase
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Service Teams

•  Small, focused teams 
•  Single service or set of related services
•  Minimal, well-defined “interface”
•  Vendor – Customer relationships

•  Clear “contract” between teams
•  Functionality:  agreed-upon scope of responsibility
•  Service levels and performance



Google Services

•  All engineering groups organized into 
“services”
•  Gmail, App Engine, Bigtable, etc.

•  Self-sufficient and autonomous
•  Layered on one another

è Very small teams achieve great things



Autonomy and Accountability

•  Give teams autonomy
•  Freedom to choose technology, methodology, 

working environment
•  Responsibility for the results of those choices

•  Hold team accountable for *results*
•  Give a team a goal, not a solution
•  Let team own the best way to achieve the goal





KIXEYE Service Chassis

•  Goal:  Produce a “chassis” for building scalable game 
services

•  Minimal resources, minimal direction
•  3 people x 1 month
•  Consider building on open source projects

è Team exceeded expectations
•  Co-developed chassis, transport layer, service template, 

build pipeline, red-black deployment, etc.
•  Heavy use of Netflix open source projects
•  15 minutes from no code to running service in AWS (!)
•  Plan to open-source several parts of this work



Google and DevOps

Ops Support is a privilege, not a right
•  Developers carry pager for first 6+ months
•  Service “graduates” to SRE after intensive review 

of monitoring, reliability, resilience, etc.
•  SRE collaborates with service to move forward

Everyone’s incentives are aligned
•  Everyone is responsible for production
•  Everyone strongly motivated to have solid 

instrumentation and monitoring







Collaboration

•  Act as one team across engineering, product, 
operations, etc.

•  Solve problems instead of blaming and pointing 
fingers

•  Leave politics to the politicians

•  Bureaucratic games are not as fun as real games 
J



Google App Engine Co-Location

Multiple Organizations
•  Engineering
•  Product
•  Operations (“SRE”)
•  Developer Relations
•  Different reporting structures to different VPs


Virtual Team with Single Goal

•  All work to make Google App Engine successful
•  Coworkers are “Us”, not “Them”
•  When asked which teams we need to sit next to, it never 

occurred to us that other organizations were not “our team”
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Quality over Quantity

Whole user / player experience
•  Think holistically about the full end-to-end experience 

of the user
•  The user experience is more than UX (!)
•  Also product functionality, performance, bugs, etc.


Less is more
•  Solve 100% of one problem rather than 50% of two
•  Users prefer one great feature instead of two partially-

completed features



Institutionalize Quality

Development Practices
•  Code reviews
•  Continuous Testing
•  Continuous Integration


Quality Automation

•  Automated testing frameworks
•  Canary releases to production

“Make it easy to do the right thing, and hard to do the 
wrong thing”



Google Engineering Discipline

Solid Development Practices
•  Code reviews before submission
•  Automated tests for everything
•  Single logical source code repository


è Internal Open Source Model
•  Not “here is a bug report”
•  Instead “here is the bug; here is the code fix; here 

is the test that verifies the fix” 



Technical Tradeoffs
Make Tradeoffs Explicit 
•  Every decision is a tradeoff:  X 

or Y or Z
•  When you choose features and 

a date, you implicitly choose a 
level of quality


è Be honest with yourself and 

your team when you are 
doing this (!)

Date	  

Features	  Quality	  



Technical Tradeoffs

Manage Technical Debt
•  Plan for how and when you will pay it off
•  Maintain sustainable and well-understood level of 

debt

“Don’t have time to do it right” ?
•  WRONG – Don’t have time to do it twice (!)
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Constant Learning

Any process, organization, or product can always be 
improved


Mistakes are a learning opportunity
•  What did you do -> What did you *learn*
•  Take emotion and personalization out of it


Encourage iteration and velocity
•  “Failure is not falling down but refusing to get back 

up” – Theodore Roosevelt



Google Blame-Free Post-Mortems

Post-mortem After Every Incident
•  Document exactly what happened
•  What went right
•  What went wrong


Open and Honest Discussion
•  What contributed to the incident?
•  What could we have done better?
è Engineers compete to take personal responsibility (!)



Google Blame-Free Post-Mortems

Action Items
•  How will we change process, technology, 

documentation, etc.
•  How could we have automated the problems away?
•  How could we have diagnosed more quickly?
•  How could we have restored service more quickly?

Follow up (!)



Iteration and Experimentation

*Engineer* successes
•  Constant iteration
•  Launch is only the first step
•  Assume you will not get it perfect on the first try
•  A / B Testing needs to be a core competence


Many small experiments sum to big wins




eBay Machine-Learned Ranking

Ranking function for search results
•  Which item should appear 1st, 10th, 100th, 1000th
•  Before:  Small number of hand-tuned factors
•  Goal:   Thousands of factors


Experimentation Process
•  Predictive models:  query->view, view->purchase, etc.
•  Hundreds of parallel A|B tests
•  Full year of steady, incremental improvements


è 2% increase in eBay revenue (~$120M)
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Thank you!
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