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About Eugene...
• 15+ years building HA, mission-critical 

systems!

• State-of-the-art engineering for some of 
the biggest and brightest worldwide!

• Open source evangelist and author

• Not a web guy...!

• Adviser to several VC funds in the US, 
Asia, and Europe!

• Now providing business and technology 
development advise to mobile and 
enhanced reality companies worldwide



Very Important

Please Ask Questions!!
(don’t be shy...)



Mobile HA and Cloud
• Bootstrapping a mobile startup almost 

always includes a cloud component!

• Cloud services and servers (Saas and 
PaaS)!

• Main reason? Battery life!!

• Processing and net I/O == battery 
drain



Mobile HA and Cloud

• Cloud services are Always On!

• Until they aren’t!

• App should always appear to be live 
for the user!

• All services must be self-healing



Mobile HA and Cloud
• HA in mobile != HA for desk or web 

apps!

• Assume the device is a cache!

• The service provider is The Law



Mobile HA and Cloud



Which Cloud Provider?

• SaaS - interfacing with ready-made 
services; Salesforce.com!

• PaaS - Google App Engine, CloudHub!

• IaaS - Amazon Web Services, MS Azure



Which Cloud Provider?

• Your architecture will be a mix of 
mobile, web app, services, and database!

• Decisions:  run your own data center, 
IaaS, or Paas?!

• No brainer answer:  AWS EC2!

• Keep an eye on that bill!

Now in Beijing! 
!
!



A Word About AWS

• Don’t treat EC2 as a substitute to a data 
center or dedicated colocated servers!

• Leverage spot and reserved instances!

• Otherwise your costs will balloon like 
mad!



AWS Gives You Everything
• At a price - be judicious



Pricing Horror Story
• Successful app - no capacity planning!

• Daily bill?  $70,000 USD/day

• Used all AWS stack services!

• Lots of servers, all regular instances



Avoid Pricing Surprises
• Leverage spot and reserved instances!

• Spot = cheap if available when needed!

• Reserved = prepaid, much lower $!

• Use Linux/open source wherever possible!

• Understand the implications of using standard 
database, caching, etc. vs. using AWS’s Elastic 
Cache, Dynamo, RDS, etc.!

• AWS best?  ELB, SSL termination



Typical Application Architecture

• iOS or Android!

• App server!

• Message broker!

• Database!

• Caching

RoR, PHP, CherryPy - hip

Whassat??

MySQL, mongoDB, Dynamo, 
RDS

Later....

iOS is the cool! Bad



Success!

• You built a popular app!

• You think/know you can scale because 
it’s all “on the cloud”!

• Nope!  You’ll have to rework a lot of 
stuff -- better plan ahead



Scalable Application Architecture

• iOS or Android!

• App server!

• Message broker!

• Database!

• Caching

Mule Integration, Spring - robust

ActiveMQ, RabbitMQ

Neo4J, MySQL cluster, 
mongoDB - NO Dynamo

Memcached, Redis

iOS - better monetization



Managing Your Cloud
• Find the meanest, leanest, toughest, 

smartest macho hombre DevOps guy you 
can hire!

• Chef, Puppet, Bcfg2!

• Leverage Route 53!

• Don’t forget monitoring!

• Zabbix > Nagios > AWS monitoring!

• New Relic > AWS monitoring

Plan deployment via 
configuration - avoid AMI-
based deployments!  Hard 
and expensive to manage



App Interface

• Your mobile app talks to the servers via 
an API!

• Your servers talk to one another over 
the same API!

• Build around services, no tight 
coupling!



App Interface
• Data exchange?  JSON!

• JASON-LA or other specilizations OKi!

• Don’t be too granular!

• Treat data as resources!

• RESTful!

• Just because you use HTTP it doesn’t 
mean it’s RESTful



App Interface
• All APIs must be stateless!

• The mobile app or the server keep 
state, but no session management!

• Round robin load balancing!

• Cache, cache, cache, and cache!

• Even if your DB supports all colors of 
“smart caching” - it won’t scale

raml.org



Database
• Define your data model well in advance 

and plan for massive growth!

• All your operations must be designed 
and implemented for eventual 
consistency!

• Think of full replication!

• Use a DAO of some sort - don’t talk to it 
directly



Database
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Caching

• Nobody’s ever been fired for using 
Memcached!

• Redis if the app needs access to 
collections, counters, and other complex 
data structures!

• Roll your own servers - more 
management, but finer-grained control



Architecture - Future?
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Each data center will have a cluster of two or more physical systems.

Each system will virtually host two or more applications/
environments deployed as described in the previous diagram.

The system is designed for horizontal scalability (more traffic, more 
virtual or physical servers.

The system has inherent fail-over built in. 

App and service requests
may come from the open Internet

Use physical
load balancers;
can be Linux systems
or dedicated F5
balancers - separate from
cluseter



Almost Done

Are there any questions?



 

Mobile + HA + Cloud

Thanks for Coming!

Download this presentation from:!
http://ciurana.eu/qcon2014/PEK/mobileHA
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