

Mobile + HA + Cloud

Eugene Ciurana!
!
pr3d4t0r - irc.freenode.net!
##java, ##security, #awk, #python, #bitcoin!
irc.oftc.net: #tor, #tor-dev, #tails!
!
qcon2014@cime.net

About Eugene...
• 15+ years building HA, mission-critical

systems!

• State-of-the-art engineering for some of
the biggest and brightest worldwide!

• Open source evangelist and author

• Not a web guy...!

• Adviser to several VC funds in the US,
Asia, and Europe!

• Now providing business and technology
development advise to mobile and
enhanced reality companies worldwide

Very Important

Please Ask Questions!!
(don’t be shy...)

Mobile HA and Cloud
• Bootstrapping a mobile startup almost

always includes a cloud component!

• Cloud services and servers (Saas and
PaaS)!

• Main reason? Battery life!!

• Processing and net I/O == battery
drain

Mobile HA and Cloud

• Cloud services are Always On!

• Until they aren’t!

• App should always appear to be live
for the user!

• All services must be self-healing

Mobile HA and Cloud
• HA in mobile != HA for desk or web

apps!

• Assume the device is a cache!

• The service provider is The Law

Mobile HA and Cloud

Which Cloud Provider?

• SaaS - interfacing with ready-made
services; Salesforce.com!

• PaaS - Google App Engine, CloudHub!

• IaaS - Amazon Web Services, MS Azure

Which Cloud Provider?

• Your architecture will be a mix of
mobile, web app, services, and database!

• Decisions: run your own data center,
IaaS, or Paas?!

• No brainer answer: AWS EC2!

• Keep an eye on that bill!

Now in Beijing!
!
!

A Word About AWS

• Don’t treat EC2 as a substitute to a data
center or dedicated colocated servers!

• Leverage spot and reserved instances!

• Otherwise your costs will balloon like
mad!

AWS Gives You Everything
• At a price - be judicious

Pricing Horror Story
• Successful app - no capacity planning!

• Daily bill? $70,000 USD/day

• Used all AWS stack services!

• Lots of servers, all regular instances

Avoid Pricing Surprises
• Leverage spot and reserved instances!

• Spot = cheap if available when needed!

• Reserved = prepaid, much lower $!

• Use Linux/open source wherever possible!

• Understand the implications of using standard
database, caching, etc. vs. using AWS’s Elastic
Cache, Dynamo, RDS, etc.!

• AWS best? ELB, SSL termination

Typical Application Architecture

• iOS or Android!

• App server!

• Message broker!

• Database!

• Caching

RoR, PHP, CherryPy - hip

Whassat??

MySQL, mongoDB, Dynamo,
RDS

Later....

iOS is the cool! Bad

Success!

• You built a popular app!

• You think/know you can scale because
it’s all “on the cloud”!

• Nope! You’ll have to rework a lot of
stuff -- better plan ahead

Scalable Application Architecture

• iOS or Android!

• App server!

• Message broker!

• Database!

• Caching

Mule Integration, Spring - robust

ActiveMQ, RabbitMQ

Neo4J, MySQL cluster,
mongoDB - NO Dynamo

Memcached, Redis

iOS - better monetization

Managing Your Cloud
• Find the meanest, leanest, toughest,

smartest macho hombre DevOps guy you
can hire!

• Chef, Puppet, Bcfg2!

• Leverage Route 53!

• Don’t forget monitoring!

• Zabbix > Nagios > AWS monitoring!

• New Relic > AWS monitoring

Plan deployment via
configuration - avoid AMI-
based deployments! Hard
and expensive to manage

App Interface

• Your mobile app talks to the servers via
an API!

• Your servers talk to one another over
the same API!

• Build around services, no tight
coupling!

App Interface
• Data exchange? JSON!

• JASON-LA or other specilizations OKi!

• Don’t be too granular!

• Treat data as resources!

• RESTful!

• Just because you use HTTP it doesn’t
mean it’s RESTful

App Interface
• All APIs must be stateless!

• The mobile app or the server keep
state, but no session management!

• Round robin load balancing!

• Cache, cache, cache, and cache!

• Even if your DB supports all colors of
“smart caching” - it won’t scale

raml.org

Database
• Define your data model well in advance

and plan for massive growth!

• All your operations must be designed
and implemented for eventual
consistency!

• Think of full replication!

• Use a DAO of some sort - don’t talk to it
directly

Database

Brewer’s	

CAP	

Theorem	

!

Pick any
two!

Pick Any Two

C A

P

Consistency Availability

Partition tolerance

Relational
Key-Value

Column-Oriented
Document-Oriented

Graph

RDBMs (Oracle, MySQL), Aster Data, Green Plum, Vertica

Dyn
am

o,
Vo

lde
mort

, T
ok

yo
 C

ab
ine

t, K
AI

, C
as

sa
nd

ra,

Sim
ple

DB,
 C

ou
ch

DB,
 R

iak
, T

ita
n

mongoDB, Terrastore, Datastore, Hypertable, Hbase,

Redis, Berkeley DB, MemcacheDB, Neo4J

Caching

• Nobody’s ever been fired for using
Memcached!

• Redis if the app needs access to
collections, counters, and other complex
data structures!

• Roll your own servers - more
management, but finer-grained control

Architecture - Future?

Disk
Disk

SAN

Virtual Host (Intel, AMD) Virtual Host (Intel, AMD)

App Balancer

Services
Balancer

Internet

Web Services
Active

Application
Active

MQ
Master

Distributed
Cache

Web Services
Active

Application
Active

MQ
Slave

Distributed
Cache

Each data center will have a cluster of two or more physical systems.

Each system will virtually host two or more applications/
environments deployed as described in the previous diagram.

The system is designed for horizontal scalability (more traffic, more
virtual or physical servers.

The system has inherent fail-over built in.

App and service requests
may come from the open Internet

Use physical
load balancers;
can be Linux systems
or dedicated F5
balancers - separate from
cluseter

Almost Done

Are there any questions?

Mobile + HA + Cloud

Thanks for Coming!

Download this presentation from:!
http://ciurana.eu/qcon2014/PEK/mobileHA

Eugene Ciurana!
!
pr3d4t0r - irc.freenode.net!
##java, ##security, #awk, #python, #bitcoin!
irc.oftc.net: #tor, #tor-dev, #tails!
!
qcon2014@cime.net

