
Worse Is Better,

for Better or for Worse

@KevlinHenney

In 1990 I proposed a theory, called

Worse Is Better, of why software would

be more likely to succeed if it was

developed with minimal invention.

It is far better to have an underfeatured

product that is rock solid, fast, and

small than one that covers what an

expert would consider the complete

requirements.

 Simplicity: The design is simple in

implementation. The interface should be

simple, but anything adequate will do.

 Completeness: The design covers only

necessary situations. Completeness can be

sacrificed in favor of any other quality.

 Correctness: The design is correct in all

observable aspects.

 Consistency: The design is consistent as far

as it goes. Consistency is less of a problem

because you always choose the smallest

scope for the first implementation.

Implementation characteristics are foremost:

 The implementation should be fast.

 It should be small.

 It should interoperate with the programs

and tools that the expected users are

already using.

 It should be bug-free, and if that requires

implementing fewer features, do it.

 It should use parsimonious abstractions as

long as they don’t get in the way.

#!/usr/bin/perl
-- PerlInterpreter
PerlInterpreter must be the first line of the file.

Copyright (c) 1995, Cunningham & Cunningham, Inc.

This program has been generated by the HyperPerl
generator. The source hypertext can be found
at http://c2.com/cgi/wikibase. This program belongs
to Cunningham & Cunningham, Inc., is to be used
only by agreement with the owner, and then only
with the understanding that the owner cannot be
responsible for any behaviour of the program or
any damages that it may cause.
-- InitialComments

InitialComments
print "Content-type: text/html\n\n";
$DBM = "/usr/ward/$ScriptName";
dbmopen(%db, $DBM , 0666) || &AbortScript("can't open $DBM");
$CookedInput{browse} && &HandleBrowse;
$CookedInput{edit} && &HandleEdit;
$CookedInput{copy} && &HandleEdit;
$CookedInput{links} && &HandleLinks;
$CookedInput{search} && &HandleSearch;
dbmclose (%db);
if ($ENV{REQUEST_METHOD} eq POST) {
$CookedInput{post} && &HandlePost;
}
&DumpBinding(*CookedInput);
&DumpBinding(*old);
&DumpBinding(*ENV);
-- WikiInHyperPerl

I always have it in the back of my head that
I want to make a slightly better C.

But getting everything to fit, top to bottom,
syntax, semantics, tooling, etc., might not
be possible or even worth the effort.

As it stands today, C is unreasonably
effective, and I don't see that changing any
time soon.

Damien Katz
http://damienkatz.net/2013/01/the_unreasonable_effectiveness_of_c.html

OOP to me means only messaging,

local retention and protection and

hiding of state-process, and extreme

late-binding of all things.

It can be done in Smalltalk and in

LISP. There are possibly other systems

in which this is possible, but I'm not

aware of them.

Alan Kay

In a purist view of object-oriented
methodology, dynamic dispatch is the only
mechanism for taking advantage of attributes
that have been forgotten by subsumption.

This position is often taken on abstraction
grounds: no knowledge should be obtainable
about objects except by invoking their
methods.

In the purist approach, subsumption provides
a simple and effective mechanism for hiding
private attributes.

William Cook, "On Understanding Data Abstraction, Revisited"

William Cook, "On Understanding Data Abstraction, Revisited"

One of the most pure object-
oriented programming models
yet defined is the Component
Object Model (COM).

It enforces all of these
principles rigorously.

William Cook
"On Understanding Data Abstraction, Revisited"

William Cook, "On Understanding Data Abstraction, Revisited"

newStack =
 (let items = ref()

{
isEmpty = #items = 0,

depth = #items,

push = x items := xˆitemsy y 0...#items,

top = items0

})

var newStack = function() {

 var items = []

 return {

 isEmpty: function() {

 return items.length === 0

 },

 depth: function() {

 return items.length

 },

 push: function(newTop) {

 items = items.unshift(newTop)

 },

 top: function() {

 return items[0]

 }

 }

}

Any application that can be

written in JavaScript, will

eventually be written in

JavaScript.

Atwood's Law

There have always been fairly severe

size constraints on the Unix operating

system and its software. Given the

partially antagonistic desires for

reasonable efficiency and expressive

power, the size constraint has

encouraged not only economy but a

certain elegance of design.

Dennis Ritchie and Ken Thompson
"The UNIX Time-Sharing System", CACM

This is the Unix philosophy: Write

programs that do one thing and do

it well. Write programs to work

together. Write programs to handle

text streams, because that is a

universal interface.

Doug McIlroy

The hard part isn’t writing little

programs that do one thing well.

The hard part is combining little

programs to solve bigger

problems. In McIlroy’s summary,

the hard part is his second

sentence: Write programs to work

together.

John D Cook
http://www.johndcook.com/blog/2010/06/30/where-the-unix-philosophy-breaks-down/

Software applications do things

they’re not good at for the same

reason companies do things

they’re not good at: to avoid

transaction costs.

John D Cook
http://www.johndcook.com/blog/2010/06/30/where-the-unix-philosophy-breaks-down/

Architecture is the decisions that

you wish you could get right early

in a project, but that you are not

necessarily more likely to get them

right than any other.

Ralph Johnson

Properly gaining control

of the design process

tends to feel like one is

losing control of the
design process.

The classic essay on
"worse is better" is
either misunderstood
or wrong.

Jim Waldo

Decide for yourselves.

Richard P Gabriel

