vSphere - the Best Platform for Big Data

Bo Dong

Product Line Manager, VMware

dbo@vmware.com

Agenda

- Hadoop Market Landscape
- Hadoop Journey
- Virtualize Hadoop Values
- Summary
- Q & A

Data is exploding & Hadoop is driving growth

Unstructured data driving growth

Hadoop adoption is ramping

Source: Forrester Survey of 60 CIOs, September 2011

- Unstructured data explosion and Hadoop capabilities causing CIOs to reconsider Enterprise data strategy
 - Gartner predicts +800% data growth over next 5 years
 - Hadoop's ability to process raw data at cost presents intriguing value prop for CIOs

Today's Big Data System:

Agenda

- Hadoop Market Landscape
- Hadoop Journey
- Virtualize Hadoop Values
- Summary
- Q & A

Hadoop Journey in Enterprises

Integrated

Standalone

Stage 3: Big Data Production

- ✓ Serve many departments
- ✓ Often part of mission critical workflow
- ✓ Integrated with other big data services like MPP DB, NoSQL,

Stage 2: Hadoop Production

- ✓ Serve a few departments
 - ✓ A few more use cases
- ✓ Core Hadoop + components
- ✓ Typically in tens and hundreds of nodes

Stage1: Piloting

- ✓ Often start with line of business
- ✓ Try 1 or 2 use cases to explore the value of Hadoop
 - ✓ Typically under 20 nodes

Scale

20

300

vmware

node

Stage 1: Piloting

Stage1: Piloting

- ✓ Often start with line of business
- ✓ Try 1 or 2 use cases to explore the value of Hadoop
 - ✓ Typically under 20 nodes
 - ✓ Led by either data team or infrastructure team

Requirements:

- ✓ Make it quick
 - ✓ I don't want to wait for weeks or months
 - ✓ Get me a Hadoop cluster quick
- ✓ Make it easy
 - ✓ Make it easy for me to access the data
 - Make it easy for me to try different algorithms and data sets

Stage 2: Hadoop Production

Stage 2: Hadoop Production

- ✓ Serve a few departments
- ✓ A few use cases
- √Core Hadoop + some non-core components
- ✓ Dedicated Hadoop administrator

Requirements:

- √ High availability
 - ✓ We are in production and need SLA
 - ✓ High availability of the entire Hadoop Stack

✓ Agility

- ✓ We are getting new Hadoop use requests all the time, make it easy for me to scale the cluster
- ✓ We need to configure and reconfigure the clusters
 often
- ✓ Differentiated level of services
 - ✓ We have production Hadoop jobs, need to ensure high
 priority
 - ✓ We also have people trying "ad hoc" Hadoop jobs, need to satisfy their request too

Stage 3: Big Data Production

Stage 3: Big Data Production

- ✓ Serve many departments
- ✓ Often part of mission critical workflow
- ✓ Offer other big data services like MPP DB, NoSQL, more non-core components

Requirements:

- ✓ Multi-tenancy
 - ✓ We have many tenants on the cluster now, and need ensure resource isolation, configuration isolation between different tenants

✓ Elasticity

- ✓ With more and more users and jobs on the system, we need to make sure the Hadoop cluster is elastic and adjust to changing demands
- ✓ Integrated big data production
 - ✓ It's not just about Hadoop anymore, Hadoop is now critical part of overall big data analytics workflow

Agenda

- Hadoop Market Landscape
- Hadoop Journey
- Virtualize Hadoop Values
- Summary
- Q & A

VMWare brings Agility, Efficiency, and Elasticity to Big Data

Agility

- Deploy, configure and monitor Hadoop clusters on the fly
- Dynamic reconfiguring of Hadoop to meet changing business demands
- One click HA set up

Efficiency

- Consolidate Hadoop to achieve higher utilization
- Pool resources to allow for increased performance and priority job processing

Elasticity

- Enable full elasticity through separation of Data and Compute
- Scale In/Out Hadoop with Resource Constrain

VMWare brings Agility, Efficiency, and Elasticity to Big Data

Agility

- Deploy, configure and monitor Hadoop clusters on the fly
- Dynamic reconfiguring of Hadoop to meet changing business demands
- One click HA set up

Efficiency

- Consolidate Hadoop to achieve higher utilization
- Pool resources to allow for increased performance and priority job processing

Elasticity

- Enable full elasticity through separation of Data and Compute
- Scale In/Out Hadoop with Resource Constrain

Agility: Automation of Hadoop cluster management

Deploy

Customize
Incorporate
best practices

Manage

Tune configuration

Resize

Elastic scaling

Run

Execute jobs

Access HDFS

1/1000 human efforts.

You don't need to be

a Hadoop expert.

Rapid Deployment of a Hadoop/HBase Cluster with Serengeti

Step 1: Deploy Serengeti virtual appliance on vSphere.

Step 2: A few clicks to stand up Hadoop Cluster.

Customizing your Hadoop/HBase cluster with Serengeti

```
"distro": "apache", <
                                          Choice of distros
"groups":[
 { "name": "master",
  "roles":[
                                            Storage configuration
    "hadoop namenode",
    "hadoop_jobtracker"],

    Choice of shared storage or Local disk

"storage": {
    "type": "SHARED",
    "sizeGB": 20},
  "instance type":MEDIUM,
                                           Resource configuration
  "instance num":1,
  "ha":true},
                                             High availability option
 {"name":"worker",
  "roles":[
    "hadoop_datanode",
    "hadoop_tasktracker"
                                             # of nodes
  "instance_type":SMALL,
  "instance_num":5,
  "ha":false
```

One click to scale out your cluster with Serengeti

Configure/reconfigure Hadoop with ease by Serengeti

Modify Hadoop cluster configuration from Serengeti

- Use the "configuration" section of the json spec file
- Specify Hadoop attributes in core-site.xml, hdfs-site.xml, mapred-site.xml, hadoop-env.sh, log4j.properties

- Apply new Hadoop configuration using the edited spec file
 - > cluster config --name myHadoop --specFile /home/serengeti/myHadoop.json

Proactive monitoring and tuning with VCOPs

- Proactively monitoring through VCOPs
- Gain comprehensive visibility
- Eliminate manual processes with intelligent automation
- Proactively manage operations

High availability for the Hadoop stack

- Increase availability of whole Hadoop stack
- Battle tested solution
- Use vMotion to eliminate planned downtime
- Use vSphere HA to decrease unplanned downtime with automatic fail over
- Use vSphere FT to provide zero downtime zero data lost protection

Support all popular Hadoop distributions and tools

- Flexibility to choose and try out major distributions
- Support for multiple projects
- Open architecture to welcome industry participation
- Contributing Hadoop Virtualization Extensions (HVE) to open source community

Virtualization is much more agile than physical

	Dedicated Physical Clusters	Virtual Clusters
Cluster Construction	Server procurementData Center considerationsAll kinds of manual steps	Centralized IT managementNo case by case considerationFully end to end automation
Cluster Operation	•Need immediate reaction when failure happens	Higher tolerance to failure with large distributed resource poolAutomatic fail over
Capacity Planning	•Plan for future, requires unutilized capacity	•Plan for now, get only used capacity.
Enlarge Capacity	Requires server procurement and setup when compute or storage capacity is not enough	Carve from large sharing pool, apply and get

VMWare brings Agility, Efficiency, and Elasticity to Big Data

Agility

- Deploy, configure and monitor Hadoop clusters on the fly
- Dynamic reconfiguring of Hadoop to meet changing business demands
- One click HA set up

Efficiency

- Consolidate Hadoop to achieve higher utilization
- Pool resources to allow for increased performance and priority job processing

Elasticity

- Enable full elasticity through separation of Data and Compute
- Scale In/Out Hadoop with Resource Constrain

Customer Example: Enterprise Adoption of Hadoop

Consolidate Big Data clusters into a unified virtual infrastructure

Multiple Big Data clusters co-exist in hosts

- Share hardware resource to gain high utilization
- Data co-exist avoids cross network movements
- Single infrastructure to maintain

vSphere ensures strong isolation between clusters.

Resource isolation.

Lower CAPEX with sharing compute resource with consolidation

- Without virtualization, CAPEX is calculated by the sum of the maximum workload of each cluster.
- Virtualized
 - Clusters share a big pool of resource
 - CAPEX is calculated by maximum of overall workload
 - 2~4 to 1 consolidation rate

Lower CAPEX with sharing of common data

Without Virtualization, multiple copies of common data in separate Hadoop clusters

Virtualized

- Single HDFS to serve multiple MR clusters without losing data locality
- Single copy of common data results in less storage required and lower hardware requirement
- 3 to 2 consolidation rate

Utilize all your resources to solve the priority problem

50%+ resources are sitting idle while high priority job is burning up its cluster.

Utilize all resources from pool on demand.

There're ways to consolidate, but virtualization is the best

	Physical	Virtual
Resource Sharing	Yes, Users share a common Hadoop cluster	Yes, Users share common physical servers in different Hadoop clusters
Data Sharing	Yes, Users share a common Hadoop cluster	Yes, Different compute clusters share a common HDFS cluster
Performance Isolation	Weak, by slot number	Strong, by CPU, RAM, Disk IO
Failure Isolation	No, Bad job fails entire cluster	Strong, Failure impact only one cluster
Configuration Isolation	No, Same configuration, same distro, same version	Yes, Free to use different distro, version, configuration
Security Isolation	Weak, Enforced by Hadoop authentication and authorization	Strong, Cluster level isolation.
Scalability	Single master node capacity will become a bottle neck	As many Namenode and Jobtracker as needed

vmware

VMWare brings Agility, Efficiency, and Elasticity to Big Data

Agility

- Deploy, configure and monitor Hadoop clusters on the fly
- Dynamic reconfiguring of Hadoop to meet changing business demands

Efficiency

- Consolidate Hadoop to achieve higher utilization
- Pool resources to allow for increased performance and priority job processing

Elasticity

- Enable full elasticity through separation of Data and Compute
- Scale In/Out Hadoop with Resource Constrain

Business requires elasticity but Hadoop don't Work That way

Business requires elasticity

- It's never easy to predict future workload. How to change quickly?
- Every workload shows peak and valley. How to avoid waste in off-peak time?
- You always want to use everything for urgent jobs. How to boost up?

Hadoop is not as elastic as expected

- You can add more servers to scale out, but data don't allow you to scale in.
- Scale in/out requires careful configuration
- Scale in/out requires huge data movement

Virtualization eliminates the elastic boundary of Hadoop

Hadoop in VM

- * VM lifecycle determined by Datanode
- * Limited elasticity

Separate Storage

- * Separate compute from data
- * Remove elastic constrain
- by Datanode
- * Elastic compute
- * Raise utilization

Separate Compute Clusters

- * Separate virtual compute
- * Compute cluster per tenant
- * Stronger VM-grade security and resource isolation

Locality of data-compute separation in virtualization

Combined mode

Split Mode

1 Combined Compute/Datanode VM per Host

1 Datanode VM, 1 Compute node VM per Host

Workload: Teragen, Terasort, Teravalidate

HW Configuration: 8 cores, 96GB RAM, 16 disks per host x 2 nodes

Performance analysis of separation

Minimum performance impact with separation of compute and data

Scale in/out Hadoop dynamically

- Deploy separate compute clusters for different tenants sharing HDFS.
- Commission/decommission task trackers according to priority and available resources

Control resource consumption to satisfy SLA

>cluster limit --name <clustername> --activeComputeNodeNum <#>

Automatic and adaptive elastic

- Control with knowledge of both physical and virtual
- Control instantly and gracefully

Integrated Hadoop and Webapps – (Hadoop + Other Workloads)

Integrated Big Data Production – (Hadoop + other big data)

Agenda

- Hadoop Market Landscape
- Hadoop Journey
- Virtualize Hadoop Values
- Summary
- Q & A

VMWare brings Agility, Efficiency, and Elasticity to Big Data

Agility

- Deploy, configure and monitor Hadoop clusters on the fly
- Dynamic reconfiguring of Hadoop to meet changing business demands
- One click HA set up

Efficiency

- Consolidate Hadoop to achieve higher utilization
- Pool resources to allow for increased performance and priority job processing

Elasticity

- Enable full elasticity through separation of Data and Compute
- Scale In/Out Hadoop with Resource Constrain

Serengeti Resources

- Download and try Serengeti
 - projectserengeti.org

VMware Hadoop site

vmware.com/hadoop

- Hadoop performance on vSphere
 - vmware.com/files/pdf/VMW-Hadoop-Performance-vSphere5.pdf
- Hadoop High Availability solution
 - vmware.com/files/pdf/Apache-Hadoop-VMware-HA-solution.pdf