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HBase Overview 



HBase in a nutshell 
▪ Apache open source project modeled after Google’s 
BigTable 
▪ a distributed, large-scale data store 
▪ built on top of Hadoop Distributed File System (HDFS) 
▪ efficient at random writes and reads 



HBase System Overview 
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Horizontal Scalability 
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HBase Use Cases @ Facebook 
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Facebook Insights 
Self-service 
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Realtime Hive Updates 
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… and more 
 



Flagship App: Facebook 
Messages 



Monthly data volume prior to launch 

15B x 1,024 bytes = 14TB 

120B x 100 bytes   = 11TB 



Facebook Messages NOW 

Emails 

Chats 

SMS 

Messages 
Quick Stats 
 
•  11B+ messages/day 

•  90B+ data accesses 
•  Peak: 1.5M ops/sec 
•  ~55%Rd, 45% Wr 

•  20PB+ of total data 
•  Grows 400TB/month  



Facebook Messages: Requirements 
▪ Very high write volume 
▪  Previously, chat was not persisted to disk 

▪ Ever-growing data sets (old data rarely gets accessed) 
▪ Elasticity & automatic failover 
▪ Strong consistency within a single data center 
▪ Large scans/map-reduce support for migrations & 
schema conversions 
▪ Bulk import data 



Messaging Data 
▪ Small/medium sized data in HBase  
▪  Message metadata & indices 
▪  Search index 
▪  Small message bodies 

▪ Attachments and large messages  in Haystack 
(Facebook’s photo store) 
▪  HBase currently not optimized for large objects (multiple megabytes 

and beyond), but could change in future. 



Snapshot Schema Overview 
▪  3 CFs: Actions, Snapshot, Keywords 

1.  Actions:  
▪  Log of user actions.  

2.  Snapshot:  

▪  Blob containing all user metadata (everything but the message itself) 

▪  Mailbox = Snapshot + Actions after Snapshot 

3.  Keywords  

▪  Started out as a Lucene Index.   
▪  Worried about whether HBase was doing proper prefix seeking.   

▪  Switched to keyword-based before launch. 



Messages Schema & Evolution 
▪  Trick: “Actions” (data) Column Family is the source of truth 
▪  Regenerate Snapshot + Keywords by replaying Actions in order 
▪  Custom, Low-Volume Backup Solution 
▪  Fast Iteration on Schema 
 



Messages Schema & Evolution 
▪  Metadata portion of schema underwent 3 changes: 
▪  Per-User Snapshots (early development; rollout up to 1M users) 
▪  Per-Thread Snapshots (up to full rollout – 1B+ accounts; 800M+ 

active) 
▪  Per-Message Shard Snapshots (after rollout) 



How we use MapReduce 
▪  Upgrading schema 
▪  Old version to new version 
▪  Deleting old version of schema 

▪  Deletion jobs 
▪  Messages  
▪  Search indexes 

▪  Other misc jobs 
▪  Find all users in a cell 
▪  For importing, exporting HBase tables 



Physical Multi-tenancy 
- Real-time Ads Insights 
- Operational Data Store 



1. Real-time Facebook Insights 
▪  Real-time analytics for social plugins on top of HBase 

▪  Publishers get real-time distribution/engagement metrics: 
▪  # of impressions, likes 
▪  analytics by domain/URL/demographics and time periods 

▪  Uses HBase capabilities: 
▪  Efficient counters (single-RPC increments) 
▪  TTL for purging old data 

▪  Needs massive write throughput & low latencies 
▪  Billions of URLs 
▪  Millions of counter increments/second 



Facebook Insights: Before 
Traditional ETL using Hadoop + Hive 
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Facebook Insights: After (on HBase) 
Realtime ETL using HBase 
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Real-time Ads Insights : Scaling 
▪  Lessons Learned 

1.  Don’t tackle more than you can handle 
2.  GC Tuning can hurt 
3.  Batch for efficient Writing 

▪  +5 is faster than 5*(+1) 
▪  MultiPut is faster than Put 

4.  Periodic Aggregation with MR vs Realtime 
▪  +1000 is MUCH faster than 1000*(+1) 
 



2. Operational Data Store 
▪ Collects variety of metrics from production servers 
▪  System level metrics (CPU, Memory, IO, Network)  
▪  Application level metrics (Web, DB, Caches)  

▪ Can easily graph historical data  
▪  e.g., CPU usage for machine over last 6 hours 

▪ Supports complex aggregation, transformations, etc. 
▪ Used by HBase itself! 
 

  



ODS (contd.) 
▪   Difficult to scale with MySQL 
▪  Currently 4-minute data. We need higher precision. 

▪  10s of millions of unique time-series 
▪  ~100B+ writes per day 

▪  Hot-shard problem requires manual resharding 
▪  HBase offers automatic/dynamic splitting of shards 

▪  Uses HBase’s TTL feature to purge old data automatically!  

▪  Reads are mostly for recent data 
▪  HBase’s storage model perfectly optimized for reading recent data 
 



ODS: Schema Design 
▪  Three different Column Families 
▪  Raw 
▪  Hour 
▪  Day 

▪  MR Jobs to handle rollups 



ODS: Compaction Tricks 

HFiles 
▪  Log-structured Merge Tree 
 

▪  Time-ordered Data Storage! 
▪  Better Spatial Locality 
▪  Compaction.ratio  1.4 è 0.25 
▪  Future: Use Coprocessor        day…      hour…   
min… 

▪  Server-side constraints 

HFiles 

flush 
 



ODS: Lesson Learned 
▪  Split-tier Architecture 

▪  Idea: Scale Cache & Storage 
Independently 

 
▪  Problems: 

1.  Network Architecture Insufficient 
2.  Memcache + App Logic More 

Effective 
3.  Traffic Between Nodes > User Traffic 

▪  Flush 
▪  Compaction (R+W) 
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ODS: HA 
▪  Problem: 

▪  Needed High Availability 

▪  Solution: 
▪  Dual-cluster Architecture 

▪  Same Location, Different Network 
▪  Best Effort for Puts 
▪  MR Jobs for Eventual Consistency 
▪  Biggest Negative: 6x replication 
▪  End-game: Master-Master Replication 

HBASE 

ODS 

HBASE 



Self-Service Tier 



▪ Optimistic Multi-tenancy 
▪  Allow users to create a table 
▪  Inform them about state of multi-tenancy 
▪  Expect users to “do the right thing” 

▪ Monitoring 
▪  JMX Metrics 
▪  RPC Monitor 
▪  Slow-query Logs 
▪  HLog/HFile Pretty Printer 

Self-Service Tier: What is it? 



▪ Except… 
▪  Users have a relative opinion about “not a lot of data” 
▪  Users don’t analyze their own data (250MB KVs) 
▪  Users don’t always name their tables well 
▪  Resource Analysis is non-trivial 

Self-Service Tier: Problems! 



▪ Physically Isolate Users 
▪  Thread:Server Mapping 

▪ Block Abusive Users 
▪ Promote Heavy Users 

Self-service: Lessons Learned 



Hashout 
Controlled Multi-tenancy 



▪ A generic Key-Value store 
▪ Multiple apps 
▪ Simple API 

▪ Need to declare app in code 

What is it? 

put(appid, key, value)

value = get(appid, key)




Architecture 

HBase 
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▪ Not a self service model 
▪ Each app is reviewed 
▪ Global and per-app metrics 

▪  Num gets, puts, latencies, errors 
▪  Added Client-side metrics 

▪ In case things went wrong 
▪ Per-app kill switch 
▪ Started with non-critical apps 

How we started 



▪ Miscellaneous improvements 
▪ Memcache for read intensive apps 
▪ Friendly names for apps 
▪ Alerts on exceptions 

▪ Capacity estimation is hard 
▪ Load on HBase (gets/puts/deletes) 
▪ Number of connections to Thrift 
▪ Too many requests from one app == 

 Silently Point the User to a Separate Tier 

What we observed 



Recent Work 



HBase Development @ Facebook 

Reliability/Correctness 

▪  Durable commit log in HDFS 

▪  Multi-CF ACID semantics 

▪  Many txn log recovery bug fixes 

▪  Pluggable HDFS block 
placement policy to reduce 
probability of data loss 

▪  Thrift gateway fixes 

Availability 
▪  Durable commit log in HDFS 

▪  Rolling upgrades 

▪  Online alter table 

▪  Interruptible compactions 

▪  Faster region opens 

 

 

 

Performance/Scaling 
▪  Bloom Filters 

▪  Compaction algo improvements 

▪  Multi-threaded compactions 

▪  HFile V2 

▪  Timerange hints/optimization 

▪  Lazy Seeks 

▪  Delete Bloom Filter 

▪  Improved handling of 
compressed HFiles 

▪  DataBlockEncoding 

▪  Locality on full/rolling cluster 
restarts 

▪  Per-region data placement 

▪  Compressed RPCs 

 

Manageability 
▪  HBase Health Checker (hbck) 

▪  Slow query logs 

▪  TaskMonitor (like v$session 
stats in Oracle) 

▪  Lots of Metrics (per-CF metrics, 
master metrics) 

 

 

Features 
▪  Index-Only queries 

▪  Hot Backups 

▪  C++ Client 

▪  Intra-row pagination support 

▪  HTableMultiplexer 

 

 

 

 

 



HBase Future Work 
It is still early days…! 

▪  Eliminate HDFS SPOF (Bookkeeper) 

▪  Features (secondary indices, query language) 

▪  Incremental Processing/Indexing Framework 

▪  HBase on Flash 

▪  Lot more performance/availability improvements 
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We are 1% finished 



Thanks! Questions? 
facebook.com/engineering 




