facebook

HBase Solutions at Facebook

Nicolas Spiegelberg

Software Engineer, Facebook

QCon Hangzhou,
October 28t 2012

C' G https://our.dev.facebook.com/intern/growth/countdown.php

Fburl ﬂ HBC 2012 Welcome || Registered HBase C D Facebook E Titan D Tutorials E TechNews E Personal D Rentals D Conferences m HBase JIRA Titan/HBase MLCourse

.« o -
o/
. v
Al ° ® .-
> > ° . -
- . .
s o
. o : . . °
- < : .
. ° : o
=+ . o
: ¢
- B “ B
. . .
: - -
. . »
. -
. . ¥ s
B P »
. [.
. B
. - © . -
& o
: o . e .
B
.
° o
B
B 5 ® 2
o 5
° - °
. « -
. ° .
o : o
¢ : . .
2 .
B
B . :
. 1
s
- : > < - %
: . ~ o
o e .
° o . B
= o
° .
B
-
. ~ o
5 N B
o
- ° ° : .
> w S ° N
> - . ° . . .
’ .
£l t . -
. .
. . ° e
> » . ® o > >
- ‘e
B * -
. v . . 2 - ® :
. s . . .
- © - . . .
o B b .
. .
o > 3 - .
¢
© 5 7 - . . ©
. - - °
. - B
- e

Outline

- HBase Overview
- Single Tenant: Messages
- Selection Criteria

- Multi-tenant Solutions
Physical
Self-service
Hashout
- Deployment Recommendations

- Recent Work

facebook

HBase Overview

HBase Iin a nutshell

- Apache open source project modeled after Google’s
BigTable

- a distributed, large-scale data store

- built on top of Hadoop Distributed File System (HDFS)
. efficient at random writes and reads

HSASE

HBase System Overview

Database Layer

Master Backup Master
Region Region Region .
Server S .
erver HBASE:Server
Storage Layer / Ndination Service
AvatarNamenode AvatarNamenode /K ZK
Peer Peer
Datanode Datanode Datanode Zookeeper

HDFS

Horizontal Scalability

Region @)

o EJffffEJfEJEEJEEJEEJEEJEEJEEJEEJE'Jff}fEJEEJEJEEEJEEJEEJEEJEEJ"Jf#ff#ff#ff#ff o

NN NN NN NN NN NN EENEENEENEENEEEEEEEEEEEE SN NN NS NN NSNS NSNS EEEEEEEEEEEEEEEY SN NN NN NN NSNS ENEEEEEEENEEEEEEEEEEEEEY

i.’

i.. I

sesmnnna”

——

—

——

ig. I

i.Q I E—

——

i.. I

i.. I

——

i.. __i

ga—
([
([

—

Automatic Failover

HBase client sarver frenm
VeSSl

Flriel pl1eyy

Write Path Overview

Region Server

Region #2

Region #1 r
ﬁolumnFamily #2 \

GolumnFamily #1 [Memstore J\

. \‘)
HFiles flush

_ ’ _/

Data in HFile is sorted; has block index for efficient
retrieval

Read Path Overview

Region Server

Region #2

Region #1 /
ﬁolumnFamily #2 \
éolumnFamily #1 \
[Memstore J

-

HFiles

~

\\

A

Get

\% y

HBase Use Cases @ Facebook

Messages

2010

Facebook Insights
Self-service
Hashout

2011

Operational Data Store
More Analytics/Hashout apps
Site Integrity

2012 2013

Social Graph Search Indexing
Realtime Hive Updates
Cross-system Tracing

... and more

facebook

Flagship App: Facebook
Messages

Monthly data volume prior to launch

15B x 1,024 bytes = 141B

"J 120B x 100 bytes = 11TB

Facebook Messages NOW
Quick Stats

Messages Chats

 11B+ messages/day
 90B+ data accesses
 Peak: 1.5M ops/sec
« ~55%Rd, 45% Wr

]

= ES SMS

« 20PB+ of total data
e Grows 400TB/month

il
=

Facebook Messages: Requirements

- Very high write volume
Previously, chat was not persisted to disk

- Ever-growing data sets (old data rarely gets accessed)
- Elasticity & automatic failover
- Strong consistency within a single data center

- Large scans/map-reduce support for migrations &
schema conversions

- Bulk import data

Messaging Data

- Small/medium sized data in HBase
Message metadata & indices
Search index
Small message bodies

- Attachments and large messages in Haystack
(Facebook’s photo store)

HBase currently not optimized for large objects (multiple megabytes
and beyond), but could change in future.

Snapshot Schema Overview

3 CFs: Actions, Snapshot, Keywords

Actions:

Log of user actions.

Snapshot:
Blob containing all user metadata (everything but the message itself)
Mailbox = Snapshot + Actions after Snapshot

Keywords

Started out as a Lucene Index.
Worried about whether HBase was doing proper prefix seeking.

Switched to keyword-based before launch.

Messages Schema & Evolution

- Trick: “Actions” (data) Column Family is the source of truth
Regenerate Snapshot + Keywords by replaying Actions in order
Custom, Low-Volume Backup Solution
Fast lteration on Schema

Messages Schema & Evolution

- Metadata portion of schema underwent 3 changes:
Per-User Snapshots (early development; rollout up to 1M users)

Per-Thread Snapshots (up to full rollout — 1B+ accounts; 800M+
active)

| —-_— [] - 4 -~aq [PER N

Pe r-l\/IeS< | Allison, Vanessa, Keeley 3:10am

E | can't either. | have a launch part
Nicolas Spiegelberg

Guogqiang Jerry Chen Mon ‘ hey. are we going to do a 1:1 today?
So | don't think it's useful for hba
Serkan Piantino

i
'ﬁg Not today. On aircraft carrier (.

Ryan Menezes Mon
2 the revision | added this: svn+.. Nicolas Spiegelberg
mission accomplished!
_i! Vanessa, Joshua, Allison Sun
lﬂ Hmm that seems kind of intense..
: ! Nicolas Spiegelberg
Joshua Redstone Sun Are we still having our 1:1 today? I'm in the office, just making

or maybe we should at least ask s sure you're still free in MPK.

(@){ Serkan Piantino
., Serkan Piantino %' vep

maybe

-~

i{ Serkan Piantino

~®%' im ready when you are
Karina Vitamins Y 4

Hehe (&) sounds good just call me
maybe

Vanessa Briggs Thu
No particular color... | did black a

How we use MapReduce

- Upgrading schema
Old version to new version
Deleting old version of schema

- Deletion jobs
Messages
Search indexes

- Other misc jobs
Find all users in a cell
For importing, exporting HBase tables

facebook

Physical Multi-tenancy

- Real-time Ads Insights
- Operational Data Store

1. Real-time Facebook Insights

- Real-time analytics for social plugins on top of HBase
- Publishers get real-time distribution/engagement metrics:
of impressions, likes
analytics by domain/URL/demographics and time periods
- Uses HBase capabilities:
Efficient counters (single-RPC increments)
TTL for purging old data
- Needs massive write throughput & low latencies
Billions of URLs
Millions of counter increments/second

Facebook Insights: Before
Traditional ETL using Hadoop + Hive

_ Scribe MapReduce SQL
Web Tier HDFS Hive MySQL

Update time: 15 minute — 24 hours

Facebook Insights: After (on HBase)

Realtime ETL using HBase

_ Scribe PTail HBase API
Web Tier HDFS PUMA HBase

Update time: 10 — 30 seconds!

Real-time Ads Insights : Scaling

- Lessons Learned
Don’t tackle more than you can handle
GC Tuning can hurt
Batch for efficient Writing
+5 is faster than 5*(+1)
MultiPut is faster than Put
Periodic Aggregation with MR vs Realtime
+1000 is MUCH faster than 1000*(+1)

2. Operational Data Store

- Collects variety of metrics from production servers
System level metrics (CPU, Memory, 10, Network)
Application level metrics (Web, DB, Caches)

- Can easily graph historical data
e.g., CPU usage for machine over last 6 hours

- Supports complex aggregation, transformations, etc.
- Used by HBase itself!

ODS (contd.)

- Difficult to scale with My
Currently 4-minute data. We need higher precision.
10s of millions of unique time-series
~100B+ writes per day
Hot-shard problem requires manual resharding
HBase offers automatic/dynamic splitting of shards

- Uses HBase's TTL feature to purge old data automatically!

- Reads are mostly for recent data
HBase’s storage model perfectly optimized for reading recent data

ODS: Schema Design

- Three different Column Families
Raw
Hour
Day

- MR Jobs to handle rollups

ODS: Compaction Tricks

Log-structured Merge Tree

Time-ordered Data Storage!
Better Spatial Locality
Compaction.ratio 1.4 = 0.25

Future: Use Coprocessor
min...

Server-side constraints

e \
HFiles

_ A

/./
flush

e \
HFiles

_ . ./

day... hour...

ODS: Lesson Learned

- Split-tier Architecture

- Idea: Scale Cache & Storage HBASE
Independently 5

[ODS

- Problems:
. Network Architecture Insufficient

> Memcache + App Logic More
Effective

. Traffic Between Nodes > User Traffic

. Flush
. Compaction (R+W)

ODS: HA

- Problem: [ODS J
- Needed High Availability
. Solution: /\
- Dual-cluster Architecture
. Same Location, Different Network - HBASE. .. R HBASE .. 5

. Best Effort for Puts
. MR Jobs for Eventual Consistency

- Biggest Negative: 6x replication

- End-game: Master-Master Replication

facebook

Self-Service Tier

Self-Service Tier;: What is it?

Optimistic Multi-tenancy
Allow users to create a table

Inform them about state of multi-tenancy
Expect users to “do the right thing”

Monitoring
JMX Metrics
RPC Monitor
Slow-query Logs
HLog/HFile Pretty Printer

Self-Service Tier: Problems!

Except...
Users have a relative opinion about “not a lot of data”
Users don’t analyze their own data (250MB KVs)
Users don’t always name their tables well
Resource Analysis is non-trivial

Self-service: Lessons Learned

Physically Isolate Users
Thread:Server Mapping

Block Abusive Users
Promote Heavy Users

facebook

Hashout

Controlled Multi-tenancy

What is it?

A generic Key-Value store
Multiple apps
Simple API

put(appid, key, value)
value = get(appid, key)

Need to declare app In code

Architecture

put(appid, key, value) get(appid, key)00

Read from

HBase Read from
HBase ¢ cache
Coumn=" viemeache

How we started

Not a self service model
Each app is reviewed

Global and per-app metrics

Num gets, puts, latencies, errors
Added Client-side metrics

In case things went wrong
Per-app kill switch
Started with non-critical apps

What we observed

Miscellaneous improvements
Memcache for read intensive apps
Friendly names for apps
Alerts on exceptions

Capacity estimation is hard
Load on HBase (gets/puts/deletes)
Number of connections to Thrift
Too many requests from one app ==

Silently Point the User to a Separate Tier

facebook

Recent Work

HBase Development @ Facebook

Reliability/Correctness
- Durable commit log in HDFS

- Multi-CF ACID semantics

- Pluggable HDFS block
placement policy to reduce
probability of data loss

- Many txn log recovery bug fixes

Availability

- Durable commit log in HDFS
- Rolling upgrades

- Online alter table

- Interruptible compactions

- Faster region opens

. Thrif ;

Features

- Index-Only queries

- Hot Backups

- C++ Client

- Intra-row pagination support
- HTableMultiplexer

Manageability
- HBase Health Checker (hbck)
- Slow query logs

. TaskMonitor gike vPsession
stats in Oracle)

- Lots of Metrics (per-CF metrics,
master metrics)

Performance/Scaling

- Bloom Filters

- Compaction algo improvements
- Multi-threaded compactions

- HFile V2

- Timerange hints/optimization

- Lazy Seeks

- Delete Bloom Filter

Compressed HEnes®"

- DataBlockEncoding

. Localitg/ on full/rolling cluster

restart

- Per-region data placement
- Compressed RPCs

HBase Future Work

It is still early days...!

- Eliminate HDFS SPOF (Bookkeeper)

- Features (secondary indices, query language)
- Incremental Processing/Indexing Framework

- HBase on Flash

- Lot more performance/availability improvements

Acknowledgements

- Data Infrastructure Team
- Open source community

- And lots of people across Facebook

We are 1% finished

Thanks! Questions?
facebook.com/engineering

