
HBase Solutions at Facebook

Nicolas Spiegelberg
Software Engineer, Facebook

QCon Hangzhou,
October 28th, 2012

Outline
▪  HBase Overview
▪  Single Tenant: Messages
▪  Selection Criteria
▪  Multi-tenant Solutions
▪  Physical
▪  Self-service
▪  Hashout

▪  Deployment Recommendations
▪  Recent Work

HBase Overview

HBase in a nutshell
▪ Apache open source project modeled after Google’s
BigTable
▪ a distributed, large-scale data store
▪ built on top of Hadoop Distributed File System (HDFS)
▪ efficient at random writes and reads

HBase System Overview

Master

Region
Server

Region
Server

Backup Master

Region
Server

. . .

AvatarNamenode

Datanode Datanode

AvatarNamenode

Datanode

. . .

HDFS

 ZK
Peer

ZK
Peer

Zookeeper . . .

Database Layer

Storage Layer Coordination Service

HBASE

Horizontal Scalability

Region

.

on click bottom one of first two on
the left move over to be added to
the third box

two clicks one by one

Automatic Failover
 HBase client

Find new
server from
HMaster

. . . .
Region #2

Write Path Overview

Region #1

Region Server

. . . .

ColumnFamily #2

ColumnFamily #1 Memstore

HFiles flush

Data in HFile is sorted; has block index for efficient
retrieval

. . . .
Region #2

Read Path Overview

Region #1

Region Server

. . . .

ColumnFamily #2

ColumnFamily #1

HFiles

Memstore

Get

HBase Use Cases @ Facebook

Messages

Facebook Insights
Self-service
Hashout

Operational Data Store
More Analytics/Hashout apps
Site Integrity

2010 2011 2012 2013

Social Graph Search Indexing
Realtime Hive Updates
Cross-system Tracing
… and more

Flagship App: Facebook
Messages

Monthly data volume prior to launch

15B x 1,024 bytes = 14TB

120B x 100 bytes = 11TB

Facebook Messages NOW

Emails

Chats

SMS

Messages
Quick Stats

•  11B+ messages/day

•  90B+ data accesses
•  Peak: 1.5M ops/sec
•  ~55%Rd, 45% Wr

•  20PB+ of total data
•  Grows 400TB/month

Facebook Messages: Requirements
▪ Very high write volume
▪  Previously, chat was not persisted to disk

▪ Ever-growing data sets (old data rarely gets accessed)
▪ Elasticity & automatic failover
▪ Strong consistency within a single data center
▪ Large scans/map-reduce support for migrations &
schema conversions
▪ Bulk import data

Messaging Data
▪ Small/medium sized data in HBase
▪  Message metadata & indices
▪  Search index
▪  Small message bodies

▪ Attachments and large messages in Haystack
(Facebook’s photo store)
▪  HBase currently not optimized for large objects (multiple megabytes

and beyond), but could change in future.

Snapshot Schema Overview
▪  3 CFs: Actions, Snapshot, Keywords

1.  Actions:
▪  Log of user actions.

2.  Snapshot:

▪  Blob containing all user metadata (everything but the message itself)

▪  Mailbox = Snapshot + Actions after Snapshot

3.  Keywords

▪  Started out as a Lucene Index.
▪  Worried about whether HBase was doing proper prefix seeking.

▪  Switched to keyword-based before launch.

Messages Schema & Evolution
▪  Trick: “Actions” (data) Column Family is the source of truth
▪  Regenerate Snapshot + Keywords by replaying Actions in order
▪  Custom, Low-Volume Backup Solution
▪  Fast Iteration on Schema

Messages Schema & Evolution
▪  Metadata portion of schema underwent 3 changes:
▪  Per-User Snapshots (early development; rollout up to 1M users)
▪  Per-Thread Snapshots (up to full rollout – 1B+ accounts; 800M+

active)
▪  Per-Message Shard Snapshots (after rollout)

How we use MapReduce
▪  Upgrading schema
▪  Old version to new version
▪  Deleting old version of schema

▪  Deletion jobs
▪  Messages
▪  Search indexes

▪  Other misc jobs
▪  Find all users in a cell
▪  For importing, exporting HBase tables

Physical Multi-tenancy
- Real-time Ads Insights
- Operational Data Store

1. Real-time Facebook Insights
▪  Real-time analytics for social plugins on top of HBase

▪  Publishers get real-time distribution/engagement metrics:
▪  # of impressions, likes
▪  analytics by domain/URL/demographics and time periods

▪  Uses HBase capabilities:
▪  Efficient counters (single-RPC increments)
▪  TTL for purging old data

▪  Needs massive write throughput & low latencies
▪  Billions of URLs
▪  Millions of counter increments/second

Facebook Insights: Before
Traditional ETL using Hadoop + Hive

Web Tier

HDFS

MySQL

Hive

Scribe MapReduce SQL

Update time: 15 minute – 24 hours

Facebook Insights: After (on HBase)
Realtime ETL using HBase

Web Tier

HDFS

HBase

PUMA

Scribe PTail

Update time: 10 – 30 seconds!

HBase API

Real-time Ads Insights : Scaling
▪  Lessons Learned

1.  Don’t tackle more than you can handle
2.  GC Tuning can hurt
3.  Batch for efficient Writing

▪  +5 is faster than 5*(+1)
▪  MultiPut is faster than Put

4.  Periodic Aggregation with MR vs Realtime
▪  +1000 is MUCH faster than 1000*(+1)

2. Operational Data Store
▪ Collects variety of metrics from production servers
▪  System level metrics (CPU, Memory, IO, Network)
▪  Application level metrics (Web, DB, Caches)

▪ Can easily graph historical data
▪  e.g., CPU usage for machine over last 6 hours

▪ Supports complex aggregation, transformations, etc.
▪ Used by HBase itself!

ODS (contd.)
▪  Difficult to scale with MySQL
▪  Currently 4-minute data. We need higher precision.

▪  10s of millions of unique time-series
▪  ~100B+ writes per day

▪  Hot-shard problem requires manual resharding
▪  HBase offers automatic/dynamic splitting of shards

▪  Uses HBase’s TTL feature to purge old data automatically!

▪  Reads are mostly for recent data
▪  HBase’s storage model perfectly optimized for reading recent data

ODS: Schema Design
▪  Three different Column Families
▪  Raw
▪  Hour
▪  Day

▪  MR Jobs to handle rollups

ODS: Compaction Tricks

HFiles
▪  Log-structured Merge Tree

▪  Time-ordered Data Storage!
▪  Better Spatial Locality
▪  Compaction.ratio 1.4 è 0.25
▪  Future: Use Coprocessor day… hour…
min…

▪  Server-side constraints

HFiles

flush

ODS: Lesson Learned
▪  Split-tier Architecture

▪  Idea: Scale Cache & Storage
Independently

▪  Problems:

1.  Network Architecture Insufficient
2.  Memcache + App Logic More

Effective
3.  Traffic Between Nodes > User Traffic

▪  Flush
▪  Compaction (R+W)

HBASE
HDFS

ODS

ODS: HA
▪  Problem:

▪  Needed High Availability

▪  Solution:
▪  Dual-cluster Architecture

▪  Same Location, Different Network
▪  Best Effort for Puts
▪  MR Jobs for Eventual Consistency
▪  Biggest Negative: 6x replication
▪  End-game: Master-Master Replication

HBASE

ODS

HBASE

Self-Service Tier

▪ Optimistic Multi-tenancy
▪  Allow users to create a table
▪  Inform them about state of multi-tenancy
▪  Expect users to “do the right thing”

▪ Monitoring
▪  JMX Metrics
▪  RPC Monitor
▪  Slow-query Logs
▪  HLog/HFile Pretty Printer

Self-Service Tier: What is it?

▪ Except…
▪  Users have a relative opinion about “not a lot of data”
▪  Users don’t analyze their own data (250MB KVs)
▪  Users don’t always name their tables well
▪  Resource Analysis is non-trivial

Self-Service Tier: Problems!

▪ Physically Isolate Users
▪  Thread:Server Mapping

▪ Block Abusive Users
▪ Promote Heavy Users

Self-service: Lessons Learned

Hashout
Controlled Multi-tenancy

▪ A generic Key-Value store
▪ Multiple apps
▪ Simple API

▪ Need to declare app in code

What is it?

put(appid, key, value)

value = get(appid, key)

Architecture

HBase

put(appid, key, value)

Row key = md5:appid:key

HBase

Column = “”

cluster, table, cf = getConf(appid)

Memcache

get(appid, key)00

cluster, table, cf = getConf(appid)

Read from
cache

Read from
HBase

▪ Not a self service model
▪ Each app is reviewed
▪ Global and per-app metrics

▪  Num gets, puts, latencies, errors
▪  Added Client-side metrics

▪ In case things went wrong
▪ Per-app kill switch
▪ Started with non-critical apps

How we started

▪ Miscellaneous improvements
▪ Memcache for read intensive apps
▪ Friendly names for apps
▪ Alerts on exceptions

▪ Capacity estimation is hard
▪ Load on HBase (gets/puts/deletes)
▪ Number of connections to Thrift
▪ Too many requests from one app ==

 Silently Point the User to a Separate Tier

What we observed

Recent Work

HBase Development @ Facebook

Reliability/Correctness

▪  Durable commit log in HDFS

▪  Multi-CF ACID semantics

▪  Many txn log recovery bug fixes

▪  Pluggable HDFS block
placement policy to reduce
probability of data loss

▪  Thrift gateway fixes

Availability
▪  Durable commit log in HDFS

▪  Rolling upgrades

▪  Online alter table

▪  Interruptible compactions

▪  Faster region opens

Performance/Scaling
▪  Bloom Filters

▪  Compaction algo improvements

▪  Multi-threaded compactions

▪  HFile V2

▪  Timerange hints/optimization

▪  Lazy Seeks

▪  Delete Bloom Filter

▪  Improved handling of
compressed HFiles

▪  DataBlockEncoding

▪  Locality on full/rolling cluster
restarts

▪  Per-region data placement

▪  Compressed RPCs

Manageability
▪  HBase Health Checker (hbck)

▪  Slow query logs

▪  TaskMonitor (like v$session
stats in Oracle)

▪  Lots of Metrics (per-CF metrics,
master metrics)

Features
▪  Index-Only queries

▪  Hot Backups

▪  C++ Client

▪  Intra-row pagination support

▪  HTableMultiplexer

HBase Future Work
It is still early days…!

▪  Eliminate HDFS SPOF (Bookkeeper)

▪  Features (secondary indices, query language)

▪  Incremental Processing/Indexing Framework

▪  HBase on Flash

▪  Lot more performance/availability improvements

Acknowledgements
▪  Data Infrastructure Team

▪  Open source community

▪  And lots of people across Facebook

We are 1% finished

Thanks! Questions?
facebook.com/engineering

