
1

My original background is Telecom Switching Software.
In my 14 years at Nortel, we put out 45 releases of the DMS-100 switching system
software.
I became an IT consultant in 1995
I started doing automated unit testing in 1996
I started doing XP in 2000
My book was published in 2007 after a 3.5 year gestation period.
Currently, I teach courses on best practices in test automation and agile
development and coach agile teams.

2

My original background is Telecom Switching Software.
In my 14 years at Nortel, we put out 45 releases of the DMS-100 switching system
software.
I became an IT consultant in 1995
I started doing automated unit testing in 1996
I started doing XP in 2000
My book was published in 2007 after a 3.5 year gestation period.
Currently, I teach courses on best practices in test automation and agile
development and coach agile teams.

This talk is about how to ensure you get the most bang for your Yuan (or Chaio?)
What I hope you’ll get out of this is some ideas about how to get the most out of
your tests and if necessary, how to sell the idea of automating tests to your
management.

I’ll start out by defining the ROI or Return on Investment of automated testing. I will
provide an overview of the various kinds of costs we need to be aware of and the
ways we benefit from the tests. Then I will focus in on some of the most tangible
ways we can affect the ROI. I’ll conclude with two examples of how to apply these
ideas, first to unit-level tests, and second, to business-level tests including system
and component tests.

This talk is about how to ensure you get the most bang for your Yuan (or Chaio?)
What I hope you’ll get out of this is some ideas about how to get the most out of
your tests and if necessary, how to sell the idea of automating tests to your
management.

I’ll start out by defining the ROI or Return on Investment of automated testing. I will
provide an overview of the various kinds of costs we need to be aware of and the
ways we benefit from the tests. Then I will focus in on some of the most tangible
ways we can affect the ROI. I’ll conclude with two examples of how to apply these
ideas, first to unit-level tests, and second, to business-level tests including system
and component tests.

3

The traditional waterfall or phased approach to testing involves developers tossing
the finished product “over the wall” to the independent test team. The testers then
create bug reports for each problem they find and toss those back over the wall to
the developers.

The traditional waterfall or phased approach to testing involves developers tossing
the finished product “over the wall” to the independent test team. The testers then
create bug reports for each problem they find and toss those back over the wall to
the developers.

4

This process would consume the last quarter of the typical product schedule despite
the fact that many of the bugs are never fixed. At some point, the product manager
would decide it was time to “Shoot the engineers and put the product into
production.”

This process would consume the last quarter of the typical product schedule despite
the fact that many of the bugs are never fixed. At some point, the product manager
would decide it was time to “Shoot the engineers and put the product into
production.”

5

Agile projects try to deliver working code to the product owner every few weeks or
more frequently. This avoids the “big bang integration” and “test phase” but it
creates a new problem: The software needs to be retested every few weeks or even
more often. This has motivated agile teams to invest heavily in test automation so
that the cost of rerunning the tests is greatly reduced. But are we getting enough
value to justify the investment in the tests?

Agile projects try to deliver working code to the product owner every few weeks or
more frequently. This avoids the “big bang integration” and “test phase” but it
creates a new problem: The software needs to be retested every few weeks or even
more often. This has motivated agile teams to invest heavily in test automation so
that the cost of rerunning the tests is greatly reduced. But are we getting enough
value to justify the investment in the tests?

6

The return on investment is the value received over the cost incurred. If the value
exceeds the cost, then we are ahead. If the value is less than the cost, then we
aren’t earning back our investment

The costs are relatively easy to enumerate. They include the cost of building the
tests, the cost of running the tests, the cost of inspecting the test results to decide
whether or not they passed, and the cost to fix bugs in the tests and to maintain the
tests when the software or environment changes.

The value may be a bit harder to quantify but let’s try anyway. Of course, we expect
them to save us considerable effort while testing but is this by itself enough to offset
the costs? We also get value from the focus and safety the tests provide, and these
improve our confidence. And the tests make our work more rewarding.

To get the best ROI, we need to minimize the costs and maximize the value. Let’s
look at how we can do this.

The return on investment is the value received over the cost incurred. If the value
exceeds the cost, then we are ahead. If the value is less than the cost, then we
aren’t earning back our investment

The costs are relatively easy to enumerate. They include the cost of building the
tests, the cost of running the tests, the cost of inspecting the test results to decide
whether or not they passed, and the cost to fix bugs in the tests and to maintain the
tests when the software or environment changes.

The value may be a bit harder to quantify but let’s try anyway. Of course, we expect
them to save us considerable effort while testing but is this by itself enough to offset
the costs? We also get value from the focus and safety the tests provide, and these
improve our confidence. And the tests make our work more rewarding.

To get the best ROI, we need to minimize the costs and maximize the value. Let’s
look at how we can do this.

7

The value may be a bit harder to quantify but let’s try anyway. Of course, we expect
them to save us considerable effort while testing but is this by itself enough to offset
the costs? We also get value from the focus and safety the tests provide, and these
improve our confidence. And the tests make our work more rewarding.

To get the best ROI, we need to minimize the costs and maximize the value. Let’s
look at how we can do this.

The value may be a bit harder to quantify but let’s try anyway. Of course, we expect
them to save us considerable effort while testing but is this by itself enough to offset
the costs? We also get value from the focus and safety the tests provide, and these
improve our confidence. And the tests make our work more rewarding.

To get the best ROI, we need to minimize the costs and maximize the value. Let’s
look at how we can do this.

8

We can minimize the cost of building the tests by reducing the amount of test code
we write. We do this by elevating the level of the language we use while writing the
tests to avoid unnecessary details. We avoid repetition between and within tests.
And the simpler we make the test code, the less likely we are to introduce bugs
while we write it and the less test debugging we’ll need.

Not only does this reduce the effort to write the tests, it also reduces the number of
places we need to change when something in our product changes. This will reduce
our maintenance costs when we change the functionality of our product.

I’ll show you some examples of how we can do this a bit later in this talk.

We can minimize the cost of building the tests by reducing the amount of test code
we write. We do this by elevating the level of the language we use while writing the
tests to avoid unnecessary details. We avoid repetition between and within tests.
And the simpler we make the test code, the less likely we are to introduce bugs
while we write it and the less test debugging we’ll need.

Not only does this reduce the effort to write the tests, it also reduces the number of
places we need to change when something in our product changes. This will reduce
our maintenance costs when we change the functionality of our product.

I’ll show you some examples of how we can do this a bit later in this talk.

9

We can minimize the cost of running our tests by ensuring everything is automated.
Tests should set up their own starting points and check their own results so that no
manual intervention is ever required. The tests should be invoked automatically,
triggered by the appropriate events:
•Every time we save and compile code in our IDE, the tests should run
automatically, without any effort involved.
•As we initiate a check-in operation, all the tests should run automatically, before the
check-in proceeds
•And the newly checked-in code should be built and tested automatically on our
build server. Here, we can run a more extensive suite of tests that takes longer or
requires resources not available on the developer desktop

•When our self-checking tests fail, we want to spend as little time looking at them as
possible. The failure messages should be clear and describe exactly what deviated
from the expected results. And we need to ensure our tests never fail when the code
works correctly; they need to control everything on which the code being tested
depends.

We can minimize the cost of running our tests by ensuring everything is automated.
Tests should set up their own starting points and check their own results so that no
manual intervention is ever required. The tests should be invoked automatically,
triggered by the appropriate events:
•Every time we save and compile code in our IDE, the tests should run
automatically, without any effort involved.
•As we initiate a check-in operation, all the tests should run automatically, before the
check-in proceeds
•And the newly checked-in code should be built and tested automatically on our
build server. Here, we can run a more extensive suite of tests that takes longer or
requires resources not available on the developer desktop

•When our self-checking tests fail, we want to spend as little time looking at them as
possible. The failure messages should be clear and describe exactly what deviated
from the expected results. And we need to ensure our tests never fail when the code
works correctly; they need to control everything on which the code being tested
depends.

10

Slide 10

GGM66 Order of notes and bullets don't line up. Either fancy animation or reorganize one or the other.
Gerard Meszaros, 10/19/2012

Now lets look at the value side of the ROI equation. These are the things we want to
maximize.
We’d like to hope that our tests save us a lot of effort testing and retesting our
software. But that’s not the only way we can leverage our tests to save effort.
When we test-drive our code, that is the tests are written before the product code
and run while coding, we can greatly reduce or even eliminate debugging. We’ll
have fewer bugs slipping through to the test team or the customer and that saves
manual test effort. We have fewer bugs to troubleshoot and prioritize and do root-
cause analysis on and fix and apologize for; that saves us effort.

Furthermore, if the the tests are written clearly, they describe what the code should
do in varous situations. This means we don’t have to read the code to reverse
engineer what it does; we can just read the tests. People new to the code can learn
it much more quickly.

Now lets look at the value side of the ROI equation. These are the things we want to
maximize.
We’d like to hope that our tests save us a lot of effort testing and retesting our
software. But that’s not the only way we can leverage our tests to save effort.
When we test-drive our code, that is the tests are written before the product code
and run while coding, we can greatly reduce or even eliminate debugging. We’ll
have fewer bugs slipping through to the test team or the customer and that saves
manual test effort. We have fewer bugs to troubleshoot and prioritize and do root-
cause analysis on and fix and apologize for; that saves us effort.

Furthermore, if the the tests are written clearly, they describe what the code should
do in varous situations. This means we don’t have to read the code to reverse
engineer what it does; we can just read the tests. People new to the code can learn
it much more quickly.

11

But cost savings aren’t the only form of value. When we test-drive our code, the
tests give us focus. Acceptance test driving our code helps us focus on the next
scenario we need to implement. Component and unit test driving helps us
understand what piece of logic we need to program next. If we only write code to
pass a failing test, we avoid writing any unnecessary code.

But cost savings aren’t the only form of value. When we test-drive our code, the
tests give us focus. Acceptance test driving our code helps us focus on the next
scenario we need to implement. Component and unit test driving helps us
understand what piece of logic we need to program next. If we only write code to
pass a failing test, we avoid writing any unnecessary code.

12

Of course, a big part of the value proposition is being able to run the suite of tests to
avoid regression bugs. With these tests in place we can work fearlessly knowing
that any mistakes we make will be caught by the tools. We won’t have to spend a lot
of effort double-checking everything we do.

And if we have tests that express our expectations of any suppliers’ code, we’ll be
notified immediately if there was any changes in behavior in a new version of their
software. We can even use tests to verify that our environment is set up the way
our tests expect thus avoiding tests failing when they should pass. The tests truly do
act as a safety net.

Of course, a big part of the value proposition is being able to run the suite of tests to
avoid regression bugs. With these tests in place we can work fearlessly knowing
that any mistakes we make will be caught by the tools. We won’t have to spend a lot
of effort double-checking everything we do.

And if we have tests that express our expectations of any suppliers’ code, we’ll be
notified immediately if there was any changes in behavior in a new version of their
software. We can even use tests to verify that our environment is set up the way
our tests expect thus avoiding tests failing when they should pass. The tests truly do
act as a safety net.

13

The safety provided by the tests allow us to be less paranoid and work with less
stress. This allows us to reduce the amount of effort we waste on “we better make
sure that …” typedealing with paranoid concerns and stress. And it allows us to
work in a more experimental fashion. Rather than analysing code to determine the
impact if we changed it, we can simply make the change, run the tests and find out
what changed. Because that’s what our tests are: a huge change detector.

The safety provided by the tests allow us to be less paranoid and work with less
stress. This allows us to reduce the amount of effort we waste on “we better make
sure that …” typedealing with paranoid concerns and stress. And it allows us to
work in a more experimental fashion. Rather than analysing code to determine the
impact if we changed it, we can simply make the change, run the tests and find out
what changed. Because that’s what our tests are: a huge change detector.

14

And that brings us to the least tangible but still very important benefit of having a
suite of automated tests:
The tests make our work more rewarding by making our progress highly visible both
to ourselves and our stakeholders. Every few minutes we get to see another unit
test pass. Every hour, we can mark a task as completed. Every day we’ll see new
story tests passing and every week we can mark several more stories as done. It’s
hard to calculate how much value this kind of regular positive feedback gives us but
it’s sure to show up in <ANIMATE> job satisfaction ratings and reduced staff
turnover.

And that brings us to the least tangible but still very important benefit of having a
suite of automated tests:
The tests make our work more rewarding by making our progress highly visible both
to ourselves and our stakeholders. Every few minutes we get to see another unit
test pass. Every hour, we can mark a task as completed. Every day we’ll see new
story tests passing and every week we can mark several more stories as done. It’s
hard to calculate how much value this kind of regular positive feedback gives us but
it’s sure to show up in <ANIMATE> job satisfaction ratings and reduced staff
turnover.

15

The key to unlocking all this value is to run your tests early and run them often.

Running them early means running them immediately after the code is written. And
by immediately, I don’t mean a few days or weeks, I mean within seconds. The only
practical way to achieve this is by writing the test first. Test-driving the code.

Running them often requires that the tests run quickly.

The key to unlocking all this value is to run your tests early and run them often.

Running them early means running them immediately after the code is written. And
by immediately, I don’t mean a few days or weeks, I mean within seconds. The only
practical way to achieve this is by writing the test first. Test-driving the code.

Running them often requires that the tests run quickly.

16

Who here has this problem: The tests are hard to write? So we delay writing the
tests (because it is hard and slows us down.) But this just ensures that the tests
cannot influence the design of the code because they don’t exist before the code.
And that ensures that the code jus tisn’t designed for testability which in turn makes
it hard to write the tests.

Now, anyone who has studied “Systems Thinking” will recognize this as a self-
amplifying phenonomumn. Or in plain language, a “Vicious Cycle”.

Who here has this problem: The tests are hard to write? So we delay writing the
tests (because it is hard and slows us down.) But this just ensures that the tests
cannot influence the design of the code because they don’t exist before the code.
And that ensures that the code jus tisn’t designed for testability which in turn makes
it hard to write the tests.

Now, anyone who has studied “Systems Thinking” will recognize this as a self-
amplifying phenonomumn. Or in plain language, a “Vicious Cycle”.

17

Even worse, the are other things affected by tests being hard to write and that is
that the tests are hard to maintain. So writing the tests late is a root cause for the
cost of test automation being too high. The only way to break out of this vicious
cycle is to attack the only one of these items we actually have direct control over:
When we write the tests.

So we have to find a way to avoid delaying writing the tests so that each of things it
causes are also reduced.

Even worse, the are other things affected by tests being hard to write and that is
that the tests are hard to maintain. So writing the tests late is a root cause for the
cost of test automation being too high. The only way to break out of this vicious
cycle is to attack the only one of these items we actually have direct control over:
When we write the tests.

So we have to find a way to avoid delaying writing the tests so that each of things it
causes are also reduced.

18

A large part of the value with which the tests provide us is due to the rapid feedback
they give us. It’s really important to keep that feedback loop as tight as possible. We
have to be careful not to allow the tests to take too long to run. Slow test encourage
people to work longer between test runs. That gives us more time to insert defects.
And when the tests finally do get run, we won’t remember what they did to cause
the defect because it was several hours ago. One team I worked with had a rule: if
the acceptance tests took more than 15 minutes to run, they would put tasks into
the backlog to get it back down under 10 minutes. They used all sorts of techniques
to speed up the tests including optimizing the test fixture setup, eliminating duplicate
test, buying faster hardware, etc. Other people I know set up their IDE to
automatically run the tests in the background after every save. They don’t even pay
any attention to the tests running until a failed test pops up a warning.

A large part of the value with which the tests provide us is due to the rapid feedback
they give us. It’s really important to keep that feedback loop as tight as possible. We
have to be careful not to allow the tests to take too long to run. Slow test encourage
people to work longer between test runs. That gives us more time to insert defects.
And when the tests finally do get run, we won’t remember what they did to cause
the defect because it was several hours ago. One team I worked with had a rule: if
the acceptance tests took more than 15 minutes to run, they would put tasks into
the backlog to get it back down under 10 minutes. They used all sorts of techniques
to speed up the tests including optimizing the test fixture setup, eliminating duplicate
test, buying faster hardware, etc. Other people I know set up their IDE to
automatically run the tests in the background after every save. They don’t even pay
any attention to the tests running until a failed test pops up a warning.

19

Some other ways to keep the tests running fast including defining a temporary
working set for the code your are working on now, predefined subsets for various
parts of the system or various stages of the checking process, and multi-modal
tests.
An example of a multi-modal test: On several projects, we had acceptance tests that
did a lot of reading and writing from a database. These tests took quite a long time
to run. We made it possible for the tests to replace the database with an in-memory
fake database and this sped up our tests by 2 orders of magnitude. Test that took
nearly an hour could be run in about a minute when the database was replaced by
the fake.

Some other ways to keep the tests running fast including defining a temporary
working set for the code your are working on now, predefined subsets for various
parts of the system or various stages of the checking process, and multi-modal
tests.
An example of a multi-modal test: On several projects, we had acceptance tests that
did a lot of reading and writing from a database. These tests took quite a long time
to run. We made it possible for the tests to replace the database with an in-memory
fake database and this sped up our tests by 2 orders of magnitude. Test that took
nearly an hour could be run in about a minute when the database was replaced by
the fake.

20

On my first eXtreme Programming project, we were writing unit tests for all our
code. It was taking longer and longer to implement each story. I asked everyone on
the project to track how much time they spent on writing product code vs writing
new tests vs. updating existing tests. The results were shocking! We were spending
up to 90% of our time maintaining existing tests. So I set out to find out why and
what we could do to reduce this. It turned out that the problem was in how we were
coding our tests. They were not coded in a maintainable style.

So, why is maintainability so important? Let’s take a quick look.

On my first eXtreme Programming project, we were writing unit tests for all our
code. It was taking longer and longer to implement each story. I asked everyone on
the project to track how much time they spent on writing product code vs writing
new tests vs. updating existing tests. The results were shocking! We were spending
up to 90% of our time maintaining existing tests. So I set out to find out why and
what we could do to reduce this. It turned out that the problem was in how we were
coding our tests. They were not coded in a maintainable style.

So, why is maintainability so important? Let’s take a quick look.

21

The area below the horizontal line is the amount of effort we spend on
developing the potentially shippable production code.
The area above the line is the effort spent developing the automated test
code. Early in the automation the effort is significantly higher because we
need to learn how to do the automation; we need to develop our reusable
test infrastructure. As we get experience, the incremental cost of automating
the tests is reduced and the savings increase. These savings come from a
variety of sources but a large part is the effort saved by avoiding the
debugging of code. (Ask your developers what percentage of time they
spend debugging; it is usually between 50 and 80 %!)

22

The area below the horizontal line is the amount of effort we spend on
developing the potentially shippable production code.
The area above the line is the effort spent developing the automated test
code. Early in the automation the effort is significantly higher because we
need to learn how to do the automation; we need to develop our reusable
test infrastructure. As we get experience, the incremental cost of automating
the tests is reduced and the savings increase. These savings come from a
variety of sources but a large part is the effort saved by avoiding the
debugging of code. (Ask your developers what percentage of time they
spend debugging; it is usually between 50 and 80 %!)

If we don’t pay enough attention to maintainability of the test code, the cost to write
new tests or maintain existing tests increases significantly.
If we don’t automate our tests until after we’ve debugged the code then our cost
savings drops . Either of these can make our overall cost higher than without test
automation. At this point we would have to justify the extra cost based on improved
quality; a much harder sell than a net increase in productivity!

23

If we don’t pay enough attention to maintainability of the test code, the cost to write
new tests or maintain existing tests increases significantly.
If we don’t automate our tests until after we’ve debugged the code then our cost
savings drops . Either of these can make our overall cost higher than without test
automation. At this point we would have to justify the extra cost based on improved
quality; a much harder sell than a net increase in productivity!

Earlier, I said that we want to minimize the cost of writing tests. Some ways to do
this include:
Avoiding writing any more tests than needed, avoiding overlap between tests at one
level vs another level (e.g. unit tests vs acceptance tests)
Avoiding unnecessary detail in tests

Earlier, I said that we want to minimize the cost of writing tests. Some ways to do
this include:
Avoiding writing any more tests than needed, avoiding overlap between tests at one
level vs another level (e.g. unit tests vs acceptance tests)
Avoiding unnecessary detail in tests

24

When we are reading tests to understand the code or because we need to update
the tests because the code has to be changed, they are a lot easier to understand if
we only verify a single test condition in each test. The Given, when, Then format
helps make this clear. We want to avoid using any code that we don’t want to test
because it can cause our tests to fail for unrelated reasons. We don’t want to have
to change the same code in several different tests so we factor out duplicate code
into utility methods. We structure our code and name our test methods and classes
to make the test conditions obvious.

When we are reading tests to understand the code or because we need to update
the tests because the code has to be changed, they are a lot easier to understand if
we only verify a single test condition in each test. The Given, when, Then format
helps make this clear. We want to avoid using any code that we don’t want to test
because it can cause our tests to fail for unrelated reasons. We don’t want to have
to change the same code in several different tests so we factor out duplicate code
into utility methods. We structure our code and name our test methods and classes
to make the test conditions obvious.

25

Here’s an example of what a test might look like if the writer isn’t focused on
maintainability. The test is long, verbose, and hard to understand. This test is also
hard to maintain; if we need to change it because we are changing the code it
verifies, changing it will take longer. Complex tests such as this make our software
less “soft”!

The test on the right focuses on the essence of the requirement. Imagine how
much less time it would take to write a test in this format than the format on the left!!
So how can you learn to write tests this simple? Let’s work throw an example of how
we can simplify complex tests we have already written.
(BTW, I travel around the world to train developers how to write tests such as the
one on the right.)

Here’s an example of what a test might look like if the writer isn’t focused on
maintainability. The test is long, verbose, and hard to understand. This test is also
hard to maintain; if we need to change it because we are changing the code it
verifies, changing it will take longer. Complex tests such as this make our software
less “soft”!

The test on the right focuses on the essence of the requirement. Imagine how
much less time it would take to write a test in this format than the format on the left!!
So how can you learn to write tests this simple? Let’s work throw an example of how
we can simplify complex tests we have already written.
(BTW, I travel around the world to train developers how to write tests such as the
one on the right.)

26

Here’s our requirement: We are testing the a method on the Invoice class but we
cannot create an invoice without a customer and a shipping and billing address. We
will be adding LineItems to the invoice and each LineItem has exactly one product.

27

Here’s our requirement: We are testing the a method on the Invoice class but we
cannot create an invoice without a customer and a shipping and billing address. We
will be adding LineItems to the invoice and each LineItem has exactly one product.

Here’s one test case for the method addItemQuantity() on the Invoice class. I
apologize for the small font size but this test is pretty typical of the tests I see many
developers writing. Can you even recognize the Given, When and Then parts of the
test? Can you summarize them for me?

28

Here’s one test case for the method addItemQuantity() on the Invoice class. I
apologize for the small font size but this test is pretty typical of the tests I see many
developers writing. Can you even recognize the Given, When and Then parts of the
test? Can you summarize them for me?

Let’s focus in on the part of the test that verifies the outcome was correct. The part
that specifies the “Then”. This is non-trivial! How do we start?

One piece of low-hanging fruit is the last assertion. What does assertTrue(… False)
mean? This is an example of an Obtuse Assertion. Let’s clean this up by …

29

Let’s focus in on the part of the test that verifies the outcome was correct. The part
that specifies the “Then”. This is non-trivial! How do we start?

One piece of low-hanging fruit is the last assertion. What does assertTrue(… False)
mean? This is an example of an Obtuse Assertion. Let’s clean this up by …

Replacing it with a better assertion. AssertTrue (False) always fails, so let’s just call
fail() instead.!

30

Replacing it with a better assertion. AssertTrue (False) always fails, so let’s just call
fail() instead.!

What is the significance of all this hard-code values. They make our test hard to
understand and can also lead to fragile tests.

31

What is the significance of all this hard-code values. They make our test hard to
understand and can also lead to fragile tests.

A better approach is to compare the actual results with an Expected Object that
contains the expected results like this. But this is a lot of code to say “assert these
two LineItems are equivalent”.

32

A better approach is to compare the actual results with an Expected Object that
contains the expected results like this. But this is a lot of code to say “assert these
two LineItems are equivalent”.

We can reduce the verbosity of this test by ..

33

Doing an Extract Method refactoring to create a Custom Assertion called
assertLineItemsEqual.

34

Doing an Extract Method refactoring to create a Custom Assertion called
assertLineItemsEqual.

That reduce the amount of code in the test significantly. Now what else is wrong
with this code?

Well, it contains conditional logic in the form of an IF statement. This is bad because
we can’t be sure which path is being executed; tests are easier to understand if they
are purely sequential. Luckily, we can express the same thing more clearly by …

35

That reduce the amount of code in the test significantly. Now what else is wrong
with this code?

Well, it contains conditional logic in the form of an IF statement. This is bad because
we can’t be sure which path is being executed; tests are easier to understand if they
are purely sequential. Luckily, we can express the same thing more clearly by …

Replacing the conditional logic with a Guard Assertion. Because a failed assertion
transfers control back to the test runner, we won’t execute the next statement if the
number of lineItems is wrong.

36

Replacing the conditional logic with a Guard Assertion. Because a failed assertion
transfers control back to the test runner, we won’t execute the next statement if the
number of lineItems is wrong.

So back to the whole test which is a bit more readable now.

37

Let’s look at this code at the end; what does it do?

38

Oh, it’s doing teardown of the test. The hint is the Finally statement which ensures
this code gets run whether the rest of the code runs clean or throws an exception.
But this teardown code could fail. Then what happens? That’s right, the rest of the
teardown code won’t run.

39

Oh, it’s doing teardown of the test. The hint is the Finally statement which ensures
this code gets run whether the rest of the code runs clean or throws an exception.
But this teardown code could fail. Then what happens? That’s right, the rest of the
teardown code won’t run.

To ensure that it does, we’d have to code it like this.

40

Another option is to move it into the tearDown method but we have the same
problem here.

41

Another option is to move it into the tearDown method but we have the same
problem here.

So we need to use nested Try/Finally’s here too.

42

A better alternative is to register each object we create and then use a well-
tested utility method to do the teardown for us.

43

A better alternative is to register each object we create and then use a well-
tested utility method to do the teardown for us.

This method simply iterates through the list of objects and tries deleting each
one. If delete() throws an exception, it catches it and continues with the next
object. This guarantees that all the objects will have delete() called on them.

44

This method simply iterates through the list of objects and tries deleting each
one. If delete() throws an exception, it catches it and continues with the next
object. This guarantees that all the objects will have delete() called on them.

So now that we’ve eliminated the need for custom teardown code, what else can we
do to clean up this test?

45

So now that we’ve eliminated the need for custom teardown code, what else can we
do to clean up this test?

46

47

48

49

50

51

52

53

54

55

So now we have our test down to just 6 lines of code. We can read out the test
condition very easily.
Given an empty invoice
When I call addItemQuantity
Then, the invoice will end up with exactly one line item on it with the item value
equal to the product price multipled by the quantity.

This is pretty clear but weshould always be looking for ways to improve the
readability of our tests.

56

So now we have our test down to just 6 lines of code. We can read out the test
condition very easily.
Given an empty invoice
When I call addItemQuantity
Then, the invoice will end up with exactly one line item on it with the item value
equal to the product price multipled by the quantity.

This is pretty clear but weshould always be looking for ways to improve the
readability of our tests.

We can replace the procedural comments Exercise and Verify with When and Then.

57

Here I just split the method name from the returns type to give myself a little room.
Here’s what I want to do:

58

Here I just split the method name from the returns type to give myself a little room.
Here’s what I want to do:

Rename the method to reflect the when and the expected outcome. When I call
AddItemQuanity with several quantity, the item’s value is expected to be the
quantity time the product’s price.

59

Rename the method to reflect the when and the expected outcome. When I call
AddItemQuanity with several quantity, the item’s value is expected to be the
quantity time the product’s price.

We can also make that clearer Then part of the test by renaming the assertion to
shouldBeExactlyOneLineItemOn the invoice and renaming the utility method to
make it clear we are constructing an expected object.

60

We can also make that clearer Then part of the test by renaming the assertion to
shouldBeExactlyOneLineItemOn the invoice and renaming the utility method to
make it clear we are constructing an expected object.

We can replace the procedural comments Exercise and Verify with When and Then.
It would be more accurate to call them “createIrrelevantSomething”.

61

We can replace the procedural comments Exercise and Verify with When and Then.
It would be more accurate to call them “createIrrelevantSomething”.

But it is even clearer if we simply call them givenSomething().

62

63

Slide 63

GGM68 Change to new naming conventions
Gerard Meszaros, 10/19/2012

64

Slide 64

GGM67 Redo using new naming conventions
Gerard Meszaros, 10/19/2012

65

66

67

It is important to specify each story at the right level.
Tests with very broad scope (such as the end-to-end process) should be specified
with a minimum of detail.
Tests that specify a great deal of detail should be kept very narrow in scope.
Specifying broad scope in high detail results in a lot of duplicated and
unmaintainable detail.
Specifying with too little detail for narrow scope results in too many specs that say
very little.
The goal is to make our examples and tests each to understand and easy to write.
This requires using the right language in each spec.

It is important to specify each story at the right level.
Tests with very broad scope (such as the end-to-end process) should be specified
with a minimum of detail.
Tests that specify a great deal of detail should be kept very narrow in scope.
Specifying broad scope in high detail results in a lot of duplicated and
unmaintainable detail.
Specifying with too little detail for narrow scope results in too many specs that say
very little.
The goal is to make our examples and tests each to understand and easy to write.
This requires using the right language in each spec.

68

Let’s look at how we can structure the tests for a banking application that notifies
the user of transactions against their accounts.
User can configure threshold amount for notification based on any/all of account,
transaction type or region, charge category
Notification can be sent via e-mail, voice-mail or SMS/IM
User can suspend notifications indefinitely or for a defined period of time.

When the bank processes a charge or credit transaction, it uses these rules to
decide whether and how to send the notification.

Let’s look at how we can structure the tests for a banking application that notifies
the user of transactions against their accounts.
User can configure threshold amount for notification based on any/all of account,
transaction type or region, charge category
Notification can be sent via e-mail, voice-mail or SMS/IM
User can suspend notifications indefinitely or for a defined period of time.

When the bank processes a charge or credit transaction, it uses these rules to
decide whether and how to send the notification.

69

Now that we understand how the various use cases (or transactions) relate to each
other (the overall workflow) we can design the user interface for Managing the
Notifications. We often want to design the UI to handle a whole range of user stories
to ensure consistency of the user experience even though we will typically
implement it story by story.
Once we’ve designed the UI required by the User Stories, we’ll want to do some
usability testing to find out whether users find it useful or cumbersome. Much
cheaper to find out now that after we’ve built and deployed the stories.

We can also implement automated tests for the UI although this is a contentious
topic; it’s rather cumbersome to automate but relatively easy to test manually.

Now that we understand how the various use cases (or transactions) relate to each
other (the overall workflow) we can design the user interface for Managing the
Notifications. We often want to design the UI to handle a whole range of user stories
to ensure consistency of the user experience even though we will typically
implement it story by story.
Once we’ve designed the UI required by the User Stories, we’ll want to do some
usability testing to find out whether users find it useful or cumbersome. Much
cheaper to find out now that after we’ve built and deployed the stories.

We can also implement automated tests for the UI although this is a contentious
topic; it’s rather cumbersome to automate but relatively easy to test manually.

70

Here’s a first crack at writing a test that specifes how our application should work.
First, a user signs in and configures a notification rule on one accounts. All
transactions of any type over $10,000 on their chequing account should result in an
e-mail to them. They can verify that the rule was accepted by reviewing the list of
accounts and the active notifications. All of this effort just to set up the Given for the
test conditions.

Next we need to create some transactions against these accounts.

Here’s a first crack at writing a test that specifes how our application should work.
First, a user signs in and configures a notification rule on one accounts. All
transactions of any type over $10,000 on their chequing account should result in an
e-mail to them. They can verify that the rule was accepted by reviewing the list of
accounts and the active notifications. All of this effort just to set up the Given for the
test conditions.

Next we need to create some transactions against these accounts.

71

So we process a bunch of transactions in various amounts above and below the
threshold for various accounts and transaction types. These constitute the When’s
of the test conditions. The final table lists the expected notifications; the Then’s of
the test conditions.

It’s getting a bit difficult to follow along because the cause & effect are not close to
each other. And this test only verifies one particular combination of notification rule.
We’ll need to create other test cases for each of various combinations of rules we
could have. That will result in a lot of repetition across the test cases. And these test
cases will take a long time to run if we hook them up to the user interface of our
application.

So we process a bunch of transactions in various amounts above and below the
threshold for various accounts and transaction types. These constitute the When’s
of the test conditions. The final table lists the expected notifications; the Then’s of
the test conditions.

It’s getting a bit difficult to follow along because the cause & effect are not close to
each other. And this test only verifies one particular combination of notification rule.
We’ll need to create other test cases for each of various combinations of rules we
could have. That will result in a lot of repetition across the test cases. And these test
cases will take a long time to run if we hook them up to the user interface of our
application.

72

The problem with trying to automate the tests after we’ve finished building the
system is that it is very difficult or even impossible to do effectively because the
system wasn’t designed with testability in mind. We are typically forced to test too
much code and via awkward interfaces such as the user interface. And it is very
difficult to control the behavior of all those other things our application logic is
expected use as input.

This is why test automation done by independent test groups is often an outright
failure. And why the most successful test automation is seen on eXtreme
Programming teams where the testing is part of the team’s job, not relegated to a
separate group.

The problem with trying to automate the tests after we’ve finished building the
system is that it is very difficult or even impossible to do effectively because the
system wasn’t designed with testability in mind. We are typically forced to test too
much code and via awkward interfaces such as the user interface. And it is very
difficult to control the behavior of all those other things our application logic is
expected use as input.

This is why test automation done by independent test groups is often an outright
failure. And why the most successful test automation is seen on eXtreme
Programming teams where the testing is part of the team’s job, not relegated to a
separate group.

73

When the team building the application is also responsible for testing it, they are
highly motivated to make test automation easy. ln fact, they will typically start the
design process by deciding what kinds of tests they want to be able to automate
and what affordances the application needs to provide the automated tests. When
this kind of thinking is applied at the Component and System levels of the test
automation pyramid, I call it test-driven architecture. That is, the architecture of the
application is shaped by the test requirements as much as by the functional
requirements. For example, to automate workflow tests of a business process, we
want to be able to bypass the user interface so that the tests can be expressed in
terms of business process actions, not UI actions. And we may need to be able to
control the behaviour of certain sub-components to ensure that they provide the
particular response our test case requires. We often fulfil this requirement by
providing a means to stub out specific components dynamically in our test
environment.

When the team building the application is also responsible for testing it, they are
highly motivated to make test automation easy. ln fact, they will typically start the
design process by deciding what kinds of tests they want to be able to automate
and what affordances the application needs to provide the automated tests. When
this kind of thinking is applied at the Component and System levels of the test
automation pyramid, I call it test-driven architecture. That is, the architecture of the
application is shaped by the test requirements as much as by the functional
requirements. For example, to automate workflow tests of a business process, we
want to be able to bypass the user interface so that the tests can be expressed in
terms of business process actions, not UI actions. And we may need to be able to
control the behaviour of certain sub-components to ensure that they provide the
particular response our test case requires. We often fulfil this requirement by
providing a means to stub out specific components dynamically in our test
environment.

74

It is important to specify each story at the right level.
Stories with very broad scope (such as the end-to-end process) should be specified
with a minimum of detail.
Stories that specify a great deal of detail should be kept very narrow in scope.
Specifying broad scope in high detail results in a lot of duplicated and
unmaintainable detail.
Specifying with too little detail for narrow scope results in too many specs that say
very little.
The goal is to make our examples and tests each to understand and easy to write.
This requires using the right language in each spec.

That test we just wrote falls into the bottom right quadrant; too much detail for the
broad scope it encompasses. So we need to reduce the level of detail.

It is important to specify each story at the right level.
Stories with very broad scope (such as the end-to-end process) should be specified
with a minimum of detail.
Stories that specify a great deal of detail should be kept very narrow in scope.
Specifying broad scope in high detail results in a lot of duplicated and
unmaintainable detail.
Specifying with too little detail for narrow scope results in too many specs that say
very little.
The goal is to make our examples and tests each to understand and easy to write.
This requires using the right language in each spec.

That test we just wrote falls into the bottom right quadrant; too much detail for the
broad scope it encompasses. So we need to reduce the level of detail.

75

The overall workflow should be defined at a very high level. Only the essential
details should be specified here because we’ll need to touch on many of the
transactions and providing too much detail would make these specs too hard to
understand. The details can be provided in other specs.

Can be defined before user interface is designed.
Should be defined before software is built
Can (and should) be automated bypassing the user interface
Should be run by developers as they build the software

Not the right way to test detailed functionality
Too high level

Is it right way to test notification algorithms?
Maybe too cumbersome

The overall workflow should be defined at a very high level. Only the essential
details should be specified here because we’ll need to touch on many of the
transactions and providing too much detail would make these specs too hard to
understand. The details can be provided in other specs.

Can be defined before user interface is designed.
Should be defined before software is built
Can (and should) be automated bypassing the user interface
Should be run by developers as they build the software

Not the right way to test detailed functionality
Too high level

Is it right way to test notification algorithms?
Maybe too cumbersome

76

Here’s another way to express the same test using the given-when-then terminology
in a text-based domain-specific language.
Here’s another way to express the same test using the given-when-then terminology
in a text-based domain-specific language.

77

How can we test the business rules around notification more effectively? Testing this
via the overall workflow would be very tedious and slow. It takes too many steps and
too much extraneous detail to do this effectively. The alternative is to reduce the
scope drastically to just the part of the system that implements the decision whether
to notify.

How can we test the business rules around notification more effectively? Testing this
via the overall workflow would be very tedious and slow. It takes too many steps and
too much extraneous detail to do this effectively. The alternative is to reduce the
scope drastically to just the part of the system that implements the decision whether
to notify.

78

Now that we have decide to isolate the Notification Logic, we can specify it’s
behaviour using component tests. Here we are using Fit Column fixtures to
configure the data (on the left side of the slide) and to invoke the Should We Notify
component. Each row in the table on the right is one test. The first 3 columns are
the inputs to the notification decision and the last column is the expected result.
Once again, we can easily read the test conditions directly from these tests. Given
these thresholds, when we call shouldWeNotify? With Account 100372 with Travel
charge for 999.99, the answer should be No.

This approach allows us to test algorithms and business rules without overhead of
use case or workflow tests.
Require access to component(s) that implement the business rules and that
encourages a more modular software design.

Now that we have decide to isolate the Notification Logic, we can specify it’s
behaviour using component tests. Here we are using Fit Column fixtures to
configure the data (on the left side of the slide) and to invoke the Should We Notify
component. Each row in the table on the right is one test. The first 3 columns are
the inputs to the notification decision and the last column is the expected result.
Once again, we can easily read the test conditions directly from these tests. Given
these thresholds, when we call shouldWeNotify? With Account 100372 with Travel
charge for 999.99, the answer should be No.

This approach allows us to test algorithms and business rules without overhead of
use case or workflow tests.
Require access to component(s) that implement the business rules and that
encourages a more modular software design.

79

This requires us to structure the system so that the notification logic is easily
accessed via an API thus allowing our tests to focus on what they want the Should
We Notify component to do, not how to interact with it via the Process Transaction
components.

We also want to make it easy to provide the rules to the component directly from the
test so we can bypass the Configuration component.

We can achieve all this by asking the questions [READ FROM THE SLIDE]. This
leads us to a testable architecture where the Should We Notify component is
passed the Notification Rules by it’s caller, something I call Data Injection.

This requires us to structure the system so that the notification logic is easily
accessed via an API thus allowing our tests to focus on what they want the Should
We Notify component to do, not how to interact with it via the Process Transaction
components.

We also want to make it easy to provide the rules to the component directly from the
test so we can bypass the Configuration component.

We can achieve all this by asking the questions [READ FROM THE SLIDE]. This
leads us to a testable architecture where the Should We Notify component is
passed the Notification Rules by it’s caller, something I call Data Injection.

80

It is important to specify each story at the right level.
Stories with very broad scope (such as the end-to-end process) should be specified
with a minimum of detail.
Stories that specify a great deal of detail should be kept very narrow in scope.
Specifying broad scope in high detail results in a lot of duplicated and
unmaintainable detail.
Specifying with too little detail for narrow scope results in too many specs that say
very little.
The goal is to make our examples and tests each to understand and easy to write.
This requires using the right language in each spec.

It is important to specify each story at the right level.
Stories with very broad scope (such as the end-to-end process) should be specified
with a minimum of detail.
Stories that specify a great deal of detail should be kept very narrow in scope.
Specifying broad scope in high detail results in a lot of duplicated and
unmaintainable detail.
Specifying with too little detail for narrow scope results in too many specs that say
very little.
The goal is to make our examples and tests each to understand and easy to write.
This requires using the right language in each spec.

81

The overall workflow specification helps us understand the big picture but we want
to make sure we understand how each transaction, such as configuring a
notification rule, actually works. We can write a specification for this using a walk-
through the UI as an inspiration. We want to ensure that the behavior of the system
behind the UI at each step is clearly understood. This spec helps us do that. Each
piece of data on the screen and each action accessible from it is represented in this
transaction spec. That way we can be sure that the code behind the screen is
implemented properly.

Note that there is a lot more detail shown here than in the workflow spec where it
only took a single line to describe the equivalent of what we are doing here.

The overall workflow specification helps us understand the big picture but we want
to make sure we understand how each transaction, such as configuring a
notification rule, actually works. We can write a specification for this using a walk-
through the UI as an inspiration. We want to ensure that the behavior of the system
behind the UI at each step is clearly understood. This spec helps us do that. Each
piece of data on the screen and each action accessible from it is represented in this
transaction spec. That way we can be sure that the code behind the screen is
implemented properly.

Note that there is a lot more detail shown here than in the workflow spec where it
only took a single line to describe the equivalent of what we are doing here.

82

To automate the use case tests, we expose the appropriate API on the configuration
interface. This is most likely the same interface used by the User Interface.
Depending on the nature of the test, we may choose to stub out the database or
include it within the scope of the system.

To automate the use case tests, we expose the appropriate API on the configuration
interface. This is most likely the same interface used by the User Interface.
Depending on the nature of the test, we may choose to stub out the database or
include it within the scope of the system.

83

Maximizing Value for effort spent requires us to reduce cost and increase value.

We can reduce cost and effort by
•avoiding unnecessary detail in tests and reducing the overlap between tests.
•running tests automatically and ensuring that tests are self-checking so we don’t
need to look at them every time they are run.
•We can reduce the Cost of Ownership of the product and it’s tests by focusing on
maintainability when writing the tests.

Maximizing Value for effort spent requires us to reduce cost and increase value.

We can reduce cost and effort by
•avoiding unnecessary detail in tests and reducing the overlap between tests.
•running tests automatically and ensuring that tests are self-checking so we don’t
need to look at them every time they are run.
•We can reduce the Cost of Ownership of the product and it’s tests by focusing on
maintainability when writing the tests.

84

To summarize the value provided by our automated tests:
•We write the tests first so that they guide us during development
•The tests act as a safety net during subsequent development.
•Driving development with Acceptance, Component and Unit tests reduces the
number of defects we put into the code thereby reducing the amount of debugging
we need to do and the number of founds that are found, have to be triaged and
managed until they are fixed.
•The Tests act as documentation of the functionality giving us confidence in our
knowledge of what the product does and how it works.
•Running the tests frequently gives us better confidence in the quality of our
product. And we can use the number of acceptance and component tests passing
as a measure of progress.
•The constantly visible process and the reduced stress of working with a safety net
of tests make work more enjoyable.

To summarize the value provided by our automated tests:
•We write the tests first so that they guide us during development
•The tests act as a safety net during subsequent development.
•Driving development with Acceptance, Component and Unit tests reduces the
number of defects we put into the code thereby reducing the amount of debugging
we need to do and the number of founds that are found, have to be triaged and
managed until they are fixed.
•The Tests act as documentation of the functionality giving us confidence in our
knowledge of what the product does and how it works.
•Running the tests frequently gives us better confidence in the quality of our
product. And we can use the number of acceptance and component tests passing
as a measure of progress.
•The constantly visible process and the reduced stress of working with a safety net
of tests make work more enjoyable.

85

86

87

