Getting Full Value from Automated
Testing

Gerard Meszaros
infoQ2012hz@gerardm.com

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 I Coprnght 2012 Gerard Meszaros

My Background

*Software developer

*Development manager
Embedded XUNIT TEST e

*Project Manager -
J 9 Telecom PATTERNS

*Software architect
«O0A/0O0D Mentor

*Test Automation Consultant

*Author

*Lean/Agile Coach/Consultant/Trainer Gerard Meszaros
infoq2012hz@gerardm.com

Getting Full Value from Automated Testing Infol} Hangehou 2012 2 Coprnght 2012 Gerard Meszaros

My original background is Telecom Switching Software.

In my 14 years at Nortel, we put out 45 releases of the DMS-100 switching system
software.

| became an IT consultant in 1995

| started doing automated unit testing in 1996

| started doing XP in 2000

My book was published in 2007 after a 3.5 year gestation period.

Currently, | teach courses on best practices in test automation and agile
development and coach agile teams.

Agenda

Why We Automate

Costs of Automated Testing

Benefits of Automated Testing

The Keys to Maximizing ROI

Example: Unit Testing

Example: System & Component Testing

L]

Getting Full Value from Automated Testing Infol) Hangzhoo 2012 3 Copyright 2012 Gerard Meszaros

This talk is about how to ensure you get the most bang for your Yuan (or Chaio?)
What | hope you’ll get out of this is some ideas about how to get the most out of
your tests and if necessary, how to sell the idea of automating tests to your
management.

I'll start out by defining the ROI or Return on Investment of automated testing. | will
provide an overview of the various kinds of costs we need to be aware of and the
ways we benefit from the tests. Then | will focus in on some of the most tangible
ways we can affect the ROI. I'll conclude with two examples of how to apply these
ideas, first to unit-level tests, and second, to business-level tests including system
and component tests.

Why Are We Automating Tests?

—= d
aRequir‘amen% g Ee.tql.limarman*rsB
Verification &

Development Acceptance

Getting Full Value from Automated Testing Infol} Hangehou 2012 + Coprnght 2012 Gerard Meszaros

The traditional waterfall or phased approach to testing involves developers tossing
the finished product “over the wall” to the independent test team. The testers then
create bug reports for each problem they find and toss those back over the wall to
the developers.

Why Are We Automating Tests?

Development Product Owner Users

This is crap! Herels all
the things that need

to be fixed before we
can go into production.

fter many
months of

[functionality > We're out of timel
L Let's "shoot the
ug reports | engineers” and go into
[Bug fixes > production.
<Buq reports |
' Bug fixes >

[Release to users

5 Coprright 2012 Gerard Meszaros

Getting Full Value from Automated Testing Infol} Hangehou 2012

This process would consume the last quarter of the typical product schedule despite
the fact that many of the bugs are never fixed. At some point, the product manager
would decide it was time to “Shoot the engineers and put the product into
production.”

Why Are We Automating Tests?

Development Product Owner Users

[functionality

»

<Fea1'ur'e requests

[Functionality

4

<:Fea1'ur'e requests

| Functionality

>

<Fea'rure requests

|

[Functionality

>

<Fecn‘ure requests

| Functionality

Getting Full Value from Automated Testing Infol} Hangehou 2012

4

OK, we have enough
functionality to go into
production.

J
This first batch is
great. Here's some
more stuff we need.

J

[Release to users >

roduction with R2.

/

| Release to users >

We have enough more
functionality to go|into

i Coprnght 2012 Gerard Meszaros

Agile projects try to deliver working code to the product owner every few weeks or
more frequently. This avoids the “big bang integration” and “test phase” but it
creates a new problem: The software needs to be retested every few weeks or even
more often. This has motivated agile teams to invest heavily in test automation so
that the cost of rerunning the tests is greatly reduced. But are we getting enough

value to justify the investment in the tests?

Test Automation Balance Sheet
ROI = Value / Cost

Cost
Build tests
Debug tests
Run tests
Inspect test results
Debug & Fix tests
Maintain tests

Getting Full Value from Automated Testing Infol) Hangzhoo 2012 7 Copyright 2012 Gerard Meszaros

The return on investment is the value received over the cost incurred. If the value
exceeds the cost, then we are ahead. If the value is less than the cost, then we
aren’t earning back our investment

The costs are relatively easy to enumerate. They include the cost of building the
tests, the cost of running the tests, the cost of inspecting the test results to decide
whether or not they passed, and the cost to fix bugs in the tests and to maintain the
tests when the software or environment changes.

The value may be a bit harder to quantify but let’s try anyway. Of course, we expect
them to save us considerable effort while testing but is this by itself enough to offset
the costs? We also get value from the focus and safety the tests provide, and these
improve our confidence. And the tests make our work more rewarding.

To get the best ROI, we need to minimize the costs and maximize the value. Let's
look at how we can do this.

Test Automation Balance Sheet
ROI = Value / Cost

Cost Value
* Build tests - Saved Effort
* Debug tests * Focus
* Run tests - Safety

Inspect test results » Confidence
Debug & Fix tests Reward
Maintain tests

Getting Full Value from Automated Testing Infol) Hangzhoo 2012 & Copyright 2012 Gerard Meszaros

The value may be a bit harder to quantify but let’s try anyway. Of course, we expect
them to save us considerable effort while testing but is this by itself enough to offset
the costs? We also get value from the focus and safety the tests provide, and these
improve our confidence. And the tests make our work more rewarding.

To get the best ROI, we need to minimize the costs and maximize the value. Let's
look at how we can do this.

Reducing Costs — Build & Maintain Tests

» Build tests

—Reduce test code (DRY, Intent revealing, etc.)

— Testable product code — reduces effort of interaction
* Debug and fix tests

— Simpler test code reduces likelihood of bugs

— Less test “code” means fewer bugs.
* Maintain tests

— Encapsulate unnecessary details to minimize impact of
changes

— Avoid test code duplication to minimize effort when
changes required

Getting Full Value from Automated Testing Infol) Hangzhoo 2012 o Copyright 2012 Gerard Meszaros

We can minimize the cost of building the tests by reducing the amount of test code
we write. We do this by elevating the level of the language we use while writing the
tests to avoid unnecessary details. We avoid repetition between and within tests.
And the simpler we make the test code, the less likely we are to introduce bugs
while we write it and the less test debugging we’ll need.

Not only does this reduce the effort to write the tests, it also reduces the number of
places we need to change when something in our product changes. This will reduce
our maintenance costs when we change the functionality of our product.

I'll show you some examples of how we can do this a bit later in this talk.

Reducing Costs — Running Tests

* Run tests

— Minimize/eliminate manual steps
» All test setup done within test code

— Automated test triggering
» as part of code save in IDE (e.g. <ctrl><S> runs tests)
» as part of pre check-in processing (e.g. IDE rules)
» As part of post check-in automated build (e.g. Cl Server)

* Inspect test results
— Self-Checking tests eliminate inspection of passing tests

— Clear failure messages reduce effort to inspect failing
tests

— Robust repeatable tests to avoid inspection of false
failures

Getting Full Value from Automated Testing Infol) Hangehou 2012 1 Coprright 2012 Gerard Meszaros

We can minimize the cost of running our tests by ensuring everything is automated.
Tests should set up their own starting points and check their own results so that no
manual intervention is ever required. The tests should be invoked automatically,
triggered by the appropriate events:

*Every time we save and compile code in our IDE, the tests should run
automatically, without any effort involved.

*As we initiate a check-in operation, all the tests should run automatically, before the
check-in proceeds

*And the newly checked-in code should be built and tested automatically on our
build server. Here, we can run a more extensive suite of tests that takes longer or
requires resources not available on the developer desktop

*When our self-checking tests fail, we want to spend as little time looking at them as
possible. The failure messages should be clear and describe exactly what deviated
from the expected results. And we need to ensure our tests never fail when the code
works correctly; they need to control everything on which the code being tested
depends.

10

Slide 10

GGMG66 Order of notes and bullets don't line up. Either fancy animation or reorganize one or the other.
Gerard Meszaros, 10/19/2012

Increasing Value - Saved Effort

* Reduce/Eliminate debugging
— By test-driving the code

* Reduce “escaped” defects
— Fewer fix&retest cycles
— Less wasted manual testing effort
— Less bug triage & troubleshooting
—Less bug reviewing, root cause analysis
—Less managing irate customers and managers

* Less reverse engineering of code
— Use Tests as Documentation

Getting Full Value from Automated Testing Infol) Hangehou 2012 I Coprright 2012 Gerard Meszaros

Now lets look at the value side of the ROI equation. These are the things we want to
maximize.

We'd like to hope that our tests save us a lot of effort testing and retesting our
software. But that's not the only way we can leverage our tests to save effort.

When we test-drive our code, that is the tests are written before the product code
and run while coding, we can greatly reduce or even eliminate debugging. We’'ll
have fewer bugs slipping through to the test team or the customer and that saves
manual test effort. We have fewer bugs to troubleshoot and prioritize and do root-
cause analysis on and fix and apologize for; that saves us effort.

Furthermore, if the the tests are written clearly, they describe what the code should
do in varous situations. This means we don’t have to read the code to reverse
engineer what it does; we can just read the tests. People new to the code can learn
it much more quickly.

11

Value - Focus

Know what to do next

ATDD - Next functional test to focus on (micro
story)
(C)TDD - Next design step

(U)TDD — Next programming step

Getting Full Value from Automated Testing Infol) Hangehou 2012 12 Coprright 2012 Gerard Meszaros

But cost savings aren’t the only form of value. When we test-drive our code, the
tests give us focus. Acceptance test driving our code helps us focus on the next
scenario we need to implement. Component and unit test driving helps us
understand what piece of logic we need to program next. If we only write code to
pass a failing test, we avoid writing any unnecessary code.

12

Value — Safety

» Mistake-proofing
—Knowing that mistakes will be caught by tools/tests
—E.g. Accidental changes to behavior

» Change Detection

— Detect changes in dependencies that may cause your
product to work differently

» E.g. New version of supplier’s JA

—In test environments that may
results

» E.g. Database contains

LL contains bugs

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 I3 Copvnght 2012 Gerard Meszaros

Of course, a big part of the value proposition is being able to run the suite of tests to
avoid regression bugs. With these tests in place we can work fearlessly knowing
that any mistakes we make will be caught by the tools. We won’t have to spend a lot
of effort double-checking everything we do.

And if we have tests that express our expectations of any suppliers’ code, we’ll be
notified immediately if there was any changes in behavior in a new version of their
software. We can even use tests to verify that our environment is set up the way
our tests expect thus avoiding tests failing when they should pass. The tests truly do
act as a safety net.

13

Value - Confidence

Less paranoia (about impact of changes)
Less Stress (worrying about negative impact)
Less effort wasted on dealing with stress &

paranoia

—We better make sure that doesn't

Allows a different way of working:

— Instead of reading lots of code to try to figure<Out what
would happen if you changed the code, || |

—just change the code and see WW

y v
| #

Getting Full Value from Automated Testing Infol} Hangehou 2012

The safety provided by the tests allow us to be less paranoid and work with less
stress. This allows us to reduce the amount of effort we waste on “we better make
sure that ...” typedealing with paranoid concerns and stress. And it allows us to
work in a more experimental fashion. Rather than analysing code to determine the
impact if we changed it, we can simply make the change, run the tests and find out
what changed. Because that’s what our tests are: a huge change detector.

Every Hour

— All tests for current task finishe:

Every Day

—New Story Tests passing

Every Week

Seeing regular progress

Every few minutes
—New unit test passed 7

Value - Reward

— Completed /Accepted user story

Increased Job Satisfaction
Reduced Staff Turnover

Getting Full Value from Automated Testing Infol) Hangzhoo 2012 15 Copyright 2012 Gerard Meszaros

And that brings us to the least tangible but still very important benefit of having a

suite of automated tests:

The tests make our work more rewarding by making our progress highly visible both
to ourselves and our stakeholders. Every few minutes we get to see another unit
test pass. Every hour, we can mark a task as completed. Every day we’ll see new
story tests passing and every week we can mark several more stories as done. It's
hard to calculate how much value this kind of regular positive feedback gives us but
it's sure to show up in <ANIMATE> job satisfaction ratings and reduced staff

turnover.

15

The Key to Unlocking the Value

* Run tests early
* Run tests often

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 1 Coprnght 2012 Gerard Meszaros

The key to unlocking all this value is to run your tests early and run them often.

Running them early means running them immediately after the code is written. And
by immediately, | don’t mean a few days or weeks, | mean within seconds. The only
practical way to achieve this is by writing the test first. Test-driving the code.

Running them often requires that the tests run quickly.

16

The Key to Unlocking the Value

Tests are

/ ”(hard to write

The code isn’t

: We delay
design for o
testabilit G iae
et bt ,w,._..,y tests

The tests don’t
- influence the design
of the code

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 7 Coprnght 2012 Gerard Meszaros

Who here has this problem: The tests are hard to write? So we delay writing the
tests (because it is hard and slows us down.) But this just ensures that the tests
cannot influence the design of the code because they don’t exist before the code.
And that ensures that the code jus tisn’t designed for testability which in turn makes
it hard to write the tests.

Now, anyone who has studied “Systems Thinking” will recognize this as a self-
amplifying phenonomumn. Or in plain language, a “Vicious Cycle”.

17

Breaking out of The Vi

The tests are

hard to
maintain
B Tests are e
/ hard to write
The cpde isn’t We delay
design for o
testability iiting ite
Bttt it oS 8 tests
The tests don't
- influence the design
of the code

Getting Full Value from Automated Testing Infol) Hangehou 2012 I3 Coprright 2012 Gerard Meszaros

Even worse, the are other things affected by tests being hard to write and that is
that the tests are hard to maintain. So writing the tests late is a root cause for the
cost of test automation being too high. The only way to break out of this vicious
cycle is to attack the only one of these items we actually have direct control over:
When we write the tests.

So we have to find a way to avoid delaying writing the tests so that each of things it
causes are also reduced.

18

Rapid Feedback

* Developer tests should run in seconds or
minutes

— Slow tests encourage delayed running ->
— More defects accumulate ->
—Can’t remember what you did to introduce them

Getting Full Value from Automated Testing Infol) Hangehou 2012 1 Coprright 2012 Gerard Meszaros

A large part of the value with which the tests provide us is due to the rapid feedback
they give us. It's really important to keep that feedback loop as tight as possible. We
have to be careful not to allow the tests to take too long to run. Slow test encourage
people to work longer between test runs. That gives us more time to insert defects.
And when the tests finally do get run, we won’t remember what they did to cause
the defect because it was several hours ago. One team | worked with had a rule: if
the acceptance tests took more than 15 minutes to run, they would put tasks into
the backlog to get it back down under 10 minutes. They used all sorts of techniques
to speed up the tests including optimizing the test fixture setup, eliminating duplicate
test, buying faster hardware, etc. Other people | know set up their IDE to
automatically run the tests in the background after every save. They don’t even pay
any attention to the tests running until a failed test pops up a warning.

19

How to Keep Tests Fast?

« Working sets
— A subset of tests specific to code you are working on

* Predefined Subsets

— A subset of tests for a specific purpose:
» All_WebServer_Tests
» All_Component_Tests
» All_Fast_Tests

* Multi-modal tests

— Same test can be run against different configurations
» With real database -> Takes hours
» With in-memory database -> takes minutes

—Requires a way to configure SUT from the test runner

Getting Full Value from Automated Testing Infol) Hangzhoo 2012 20 Copyright 2012 Gerard Meszaros

Some other ways to keep the tests running fast including defining a temporary
working set for the code your are working on now, predefined subsets for various
parts of the system or various stages of the checking process, and multi-modal
tests.

An example of a multi-modal test: On several projects, we had acceptance tests that
did a lot of reading and writing from a database. These tests took quite a long time
to run. We made it possible for the tests to replace the database with an in-memory
fake database and this sped up our tests by 2 orders of magnitude. Test that took
nearly an hour could be run in about a minute when the database was replaced by
the fake.

Economics of Maintainability

« Early eXtreme Programming projects often
bogged down by tests

Story: Add To the report (cont'd)

Time Spent on:

New tests: 1 hour

New code: 1 hour

Fixing old tests: 5 hours!!!

Getting Full Value from Automated Testing Infol) Hangzhoo 2012 21 Copyright 2012 Gerard Meszaros

On my first eXtreme Programming project, we were writing unit tests for all our
code. It was taking longer and longer to implement each story. | asked everyone on
the project to track how much time they spent on writing product code vs writing
new tests vs. updating existing tests. The results were shocking! We were spending
up to 90% of our time maintaining existing tests. So | set out to find out why and
what we could do to reduce this. It turned out that the problem was in how we were
coding our tests. They were not coded in a maintainable style.

So, why is maintainability so important? Let’s take a quick look.

21

Economics of Maintainability

Test Automation is a lot easier to sell on
* Costreduction than

« Software Quality Improvement or

Initial Test Automation

* Quality of Life Improvement + Ongoing Maintenance
Test 5
Automation - /
Effort /
Increased
effort >
Development | # (Hump) Ongoing
Effor“r Initial v e.ffor‘l'
effort
/ved effort
Y _____._._-!
After Automation time ——»

Getting Full Value from Automated Testing Infol) Hangzhoo 2012 Copyright 2012 Gerard Meszaros

The area below the horizontal line is the amount of effort we spend on
developing the potentially shippable production code.

The area above the line is the effort spent developing the automated test
code. Early in the automation the effort is significantly higher because we
need to learn how to do the automation; we need to develop our reusable
test infrastructure. As we get experience, the incremental cost of automating
the tests is reduced and the savings increase. These savings come from a
variety of sources but a large part is the effort saved by avoiding the
debugging of code. (Ask your developers what percentage of time they
spend debugging; it is usually between 50 and 80 %!)

22

b

If we don’t pay enough attention to maintainability of the test code, the cost to write
new tests or maintain existing tests increases significantly.

If we don’t automate our tests until after we've debugged the code then our cost
savings drops . Either of these can make our overall cost higher than without test
automation. At this point we would have to justify the extra cost based on improved
quality; a much harder sell than a net increase in productivity!

Test Automation is a lot easier to sell on

Economics of Maintainability

Cost reduction than

Software Quality Improvement or

Quality of Life Improvement

Test

Automation

Effort

Development

Unsustainable Automation

Effort

ef

Initial Test Automation

+ Ongoing Maintenance
)

I

Initial
efflort

(Hump)

) 4

v

Ongoing
effort

saved effort (

time ——»

Getting Full Value from Automated Testing Infol} Hangehou 2012

Coprnght 2012 Gerard Meszaros

23

Minimizing Cost of Writing Tests

» Avoiding duplication between tests
—Don’t write more tests than necessary
» E.g. too many unit tests for same code
— Avoid testing same logic at different levels of tests
» E.g. Unit & Acceptance
—Don’t include unnecessary detail in tests
» Define a DSL using keywords or utility methods

» “If it's not important to have it in the test,
it's important not to have it in the test”

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 24 Coprnght 2012 Gerard Meszaros

Earlier, | said that we want to minimize the cost of writing tests. Some ways to do
this include:

Avoiding writing any more tests than needed, avoiding overlap between tests at one
level vs another level (e.g. unit tests vs acceptance tests)

Avoiding unnecessary detail in tests

24

Minimizing Cost of Maintaining Tests
» Verify one test condition per test

—Given, When, Then
Avoid calling any code you don’t want to test

Avoiding duplication between tests
—Just like production code: DRY

Make the test conditions obvious to the reader
—Given ... When Then

Both in the test method name and
In the test code itself

Getting Full Value from Automated Testing Infol) Hangzhoo 2012 25 Copyright 2012 Gerard Meszaros

When we are reading tests to understand the code or because we need to update
the tests because the code has to be changed, they are a lot easier to understand if
we only verify a single test condition in each test. The Given, when, Then format
helps make this clear. We want to avoid using any code that we don’t want to test
because it can cause our tests to fail for unrelated reasons. We don’t want to have
to change the same code in several different tests so we factor out duplicate code
into utility methods. We structure our code and name our test methods and classes
to make the test conditions obvious.

25

public void testhddltemfuantity several@uantity () throws Exception {
try @

££:§§:£ﬁ;mxm JMQJntaJnable Test Code

SW", "Calgary", "Alberta", "T2ZN 2V2"
Canada Y
shippingh = new .kddrcss(1333 1st
8t SW "Calgary"”, "Alberta", "TZN 2V2"
Canada Y

Customer customer = new Customer (99, "John",
"Doe", new BigDecimal ("30"), - =
billingAddress, shlpp:.ngmd.ress:; Publlc vo:-d

Product duct = Product (88, "s Widget", q
iy (10 pgm oy nsememaget”, testAddItemQuantity severalQuant

Invoice invoice = new Invoice(customer) ; () {
// Exercise SUT
TSIET . ;doutar?uantity (product, QUANTITY): QUANTITY = 5 ;
; 'erify Outcome
List lineltems = inveoice.getlineItems(): = 1 .
uiae 1wl s = R ow ook product = givenAnyProduct () ;
LineItem actualLineltem = : : — a .
T by invoice = givenAnEmptyInvoice |
assertBquals (invoice, =
actuallineltem.getInvoice () // Exercise SUT
ol LinaTve. gutBrodust) invoice.addItemQuantity(
assertEquals (quantity,
actuallineItem.getQuantity (}); Pxoduct r QUANTITY) ;
assertBquals(new BigDecimal ("30"), 2
actuallineItem.getPercentDiscount () ; // Verlfy Outcome
assertEquals(new BigDecimal ("19.9%"), ¢
aatialLineTtas. gotlnd tPrice ()} expectedItem = newLineItem(
ssertEquals (new BigDe 1("69,96"), . .
e ctualLinaTtem. gatExtendsdbrics () ; invoice, product, QUANTITY,
} else { B *
assertTrue ("Invoice should have exactly one PrOduCt o gEtPrlce ()
: line item", false); QUANTITY) ¥
MOl {0 i el asser tE_:xactlyOneL:.neI tem (
deletaCbject (invoice) ; involce, expectedItem } ’
deletetbject (product) ;
deletedbject (customer) ; }

deletetbject (billinghddress) ;
deleteCbject (shippinghddress) ;

: Gietting Full Value from Auiomated Testing Info} Hangzhou 2012 26 Coprnght 2012 Gerard Meszaros

Here’s an example of what a test might look like if the writer isn’t focused on
maintainability. The test is long, verbose, and hard to understand. This test is also
hard to maintain; if we need to change it because we are changing the code it
verifies, changing it will take longer. Complex tests such as this make our software
less “soft”!

The test on the right focuses on the essence of the requirement. Imagine how
much less time it would take to write a test in this format than the format on the left!!
So how can you learn to write tests this simple? Let’'s work throw an example of how
we can simplify complex tests we have already written.

(BTW, I travel around the world to train developers how to write tests such as the
one on the right.)

26

Example

* Test additemQuantity and removeLineltem
methods of Invoice

invoicedCustomer invoices
|
Customer shippin shippin
FirstName PPN Address 2ping Invoice
LastName illi billin
Discount bl”mg 9
LineItem
1 Quantity
Product UnitPrice
ExtendedPrice
PercentDiscount

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 27 Coprnght 2012 Gerard Meszaros

Here’s our requirement: We are testing the a method on the Invoice class but we
cannot create an invoice without a customer and a shipping and billing address. We
will be adding Lineltems to the invoice and each Lineltem has exactly one product.

27

The Whole Test

public veid testhAddItem{umantity several{uantity ()} throws Ezcepticn [
tey |
// Setup Fixture
final int QUANTITY = 5;

Address billinghAddress = new Address("1222 1st 5 ", "Calgary", "Alberta',K "“T2ZN
2v2", "canada");

Address shippingAddress = new Address("1333 1lst St SW", "Calgary", "Alberta", "T2N
2v2", "Canada'");

Customer customer = new Customer (99, "John", "Doe", new BigDecimal ("30"),

billingAddress, shippingAddress):

Product product = new Product (88, "SomeWidget", new BigDecimal ('

Inveoice inveoice = new Invoice (customer) ; h

// Exercise SUT W en we CO”
invoice.addItemQuantity (product, QUANTITY) ; =

// Verify outcome addItemQuantity
List lineltems = invoice.getLineItems();

if (lineltems.size() == 1) {

Lineltem actuallineltem = (Lineltem)lineltems.get(0);
assertEquals (invoice, actuallineltem.getInveoice()): .
a tEquals (product, actuallineltem.getProduct()); Then- ???

assertEquals (quantity, actuallineltem.getQuantity()):

assertEquals (new BigDecimal ("30"), actuallineltem.getPercentDiscount(J];
assertEquals (new BigDecimal ("15.99") , actuallineltem. getUnitPrice()}) s
assertEquals (new BigDecimal (“69.96"), actuallineltem.getExtendedPrice()):
else |

assertTrue (“Invoice should have exactly one line item", false);

} finally {
deleteObject (expectedLineltaem) ;
deleteObject (invoice) ; e le)
deleteObject (product) ; WTF‘ S

-

deleteCbject (customer) ;
deleteObject (billingAddress) ;

deleteCbject (shippingAddress) ; 2
Giggting Full Value from Auiomated Testing Info} Hangzhon 2012 b Coprnght 2012 Gerard Meszaros

Here’s one test case for the method additemQuantity() on the Invoice class. |
apologize for the small font size but this test is pretty typical of the tests | see many
developers writing. Can you even recognize the Given, When and Then parts of the
test? Can you summarize them for me?

28

Verifying the Outcome

List lineltems = invoice.getLineltems() ;

if (lineItems.size() == 1) {
LineItem actuallineltem = (LineItem)lineltems.get(0);
assertEquals (invoice, actuallineltem.getInvoice()})
assertEquals (product, actuallinelItem.getProduct()) ;
assertEquals (quantity, actuallineltem.getQuantity()) ;

assertEquals (new BigDecimal ("30"),
actuallineItem.getPercentDiscount()) ;

assertEquals (new BigDecimal ("19.99"),
actuallineltem.getUnitPrice()) ;

assertEquals (new BigDecimal (“69.96"),
actuallineItem.getExtendedPrice()) ;

} else {
assertTrue (“Invoice should have exactly one line item",

false) ;
} Obtuse Assertion

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 29 Coprnght 2012 Gerard Meszaros

Let's focus in on the part of the test that verifies the outcome was correct. The part
that specifies the “Then”. This is non-trivial! How do we start?

One piece of low-hanging fruit is the last assertion. What does assertTrue(... False)
mean? This is an example of an Obtuse Assertion. Let’s clean this up by ...

29

. Refactoring
Use Better Assertion

List lineltems = invoice.getLineltems() ;

if (lineItems.size() == 1) {
LineItem actuallineltem = (LineItem)lineltems.get(0);
assertEquals (invoice, actuallineltem.getInvoice()})
assertEquals (product, actuallinelItem.getProduct()) ;
assertEquals (quantity, actuallineltem.getQuantity()) ;

assertEquals (new BigDecimal ("30"),
actuallineItem.getPercentDiscount()) ;

assertEquals (new BigDecimal ("19.99"),
actuallineltem.getUnitPrice()) ;

assertEquals (new BigDecimal (“69.96"),
actuallineItem.getExtendedPrice()) ;

} else {
fail ("invoice should have exactly one line item") ;
}}

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 30 Coprnght 2012 Gerard Meszaros

Replacing it with a better assertion. AssertTrue (False) always fails, so let’s just call
fail() instead.!

30

. Refactoring
Use Better Assertion

List lineltems = invoice.getLineltems() ;

if (lineItems.size() == 1) {
LineItem actuallLineItem = (Lineltem)linelItems.get(0);
assertEquals (invoice, actuallineltem.getInvoice()})
assertEquals (product, actuallLineItem.getProduct());
assertEquals (quantity, actuallineltem.getQuantity()) ;

assertEquals (new BigDecimal ("30"),
actuallineItem.getPercentDiscount()) ;
assertEquals (new BigDecimal ("19.99"),
actuallineltem.getUnitPrice()) ;

Hard-Wired

assertEquals (new BigDecimal (“69.96"), Test Data

actuallineItem.getExtendedPrice()) ;
} else {
fail ("invoice should have exactly one line item");

1}

Fragile Tests

Getting Full Value from Automated Testing Infol} Hangehou 2012 3l Coprnght 2012 Gerard Meszaros

What is the significance of all this hard-code values. They make our test hard to
understand and can also lead to fragile tests.

31

Pattern

Expected Object

List lineltems = invoice.getLineltems() ;
if (lineltems.size() == 1) ({
LineItem actuallineltem = (LineItem)lineltems.get(0);

Lineltem expectedLineltem =
newLineltem(invoice, product, QUANTITY) ;

assertEquals (expectedLineltem.getInvoice () ,
actuallLineltem.getInvoice());

assertEquals (expectedLineltem.getProduct (),
actuallineltem.getProduct()) ;

assertEquals (expectedLineltem.getQuantity () ,
actuallineltem.getQuantity()) ;

assertEquals (expectedLineltem.getPercentDiscount (),
actuallineltem.getPercentDiscount()) ;

assertEquals (expectedLineltem.getUnitPrice() ,
actualLineItem.getUnitPrice()) ;

assertEquals (expectedLineltem.getExtendedPrice() ,
actuallineltem.getExtendedPrice()) ;

} else {
Gietting Full \"'ﬂﬁ'ﬂi\?‘ﬁi%ll‘):l:&?mﬁl}‘ﬁ?(% H%}}&L}!kd have exaqtly one llne i C |J_\|l|_:;|l}2|F|3 Gerard Meszaros

A better approach is to compare the actual results with an Expected Object that
contains the expected results like this. But this is a lot of code to say “assert these
two Lineltems are equivalent”.

32

Pattern

Expected Object

List lineltems = invoice.getLineltems() ;

if (lineltems.size() == 1) {
LineItem actuallineltem = (LineItem)lineltems.get(0);
LineItem expectedLineltem = newlineltem(invoice,

product, QUANTITY, product.getPrice() *QUANTITY) ;

assertEquals (expectedLineltem.getInvoice () ,
actuallLineltem.getInvoice()) ;

assertEquals (expectedLineItem. getProdu_
actuallineltem.getProduct()) ; Verbose Test
assertEquals (expectedLineltem.getQuantity (),

actuallineIltem.getQuantity()) ;

assertEquals (expectedLineltem.getPercentDiscount (),
actuallineltem.getPercentDiscount()) ;

assertEquals (expectedLineltem.getUnitPrice(),
actuallineltem.getUnitPrice()) ;

assertEquals (expectedLineltem.getExtendedPrice() ,
actuallineltem.getExtendedPrice()) ;

} else {
umm.gr..n\-'uﬂ‘.:-e%i.?.:'ll.ﬁ;ﬁdlﬁu’;ﬁiiwﬁi% H%-}.}&l‘}!aﬂd have exagtly one line it;.'%]_\.iu;;n)zifrll(.icmul.\l{-smms

We can reduce the verbosity of this test by ..

33

Introduce Custom Assert

List lineltems = invoice.getLineltems() ;

if (lineltems.size() == 1) {
LineItem actuallineltem = (LineItem)lineltems.get(0);
LineItem expectedLineltem = newlineltem(invoice,

product, QUANTITY, product.getPrice () *QUANTITY) ;

assertLineltemsEqual (expectedLineltem, actuallineltem) ;

} else {
fail ("invoice should have exactly one line item");

Gietling Fuﬂ’\-'niuc from Autemated Testing InfoC} Hangzhou 2012 34 Coprnght 2012 Gerard Meszaros

Doing an Extract Method refactoring to create a Custom Assertion called
assertLineltemsEqual.

Refactoring
Introduce Custom Assert

List lineltems = invoice.getLineltems() ;
if (lineltems.size() == 1) {

LineItem actualLineItem (LineItem) lineItems.get (0) ;

LineItem expectedLineltem newLineltem(invoice,
product, QUANTITY, pmeduct.getPrice()*QUANTITY) ;

assertlLineltemsEqual (expectedfiineltem, actuallLineltem) ;

} else {

fail ("invoice should have exactl¥ ®ne line item") ;

Conditional
Test Logic

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 35 Coprnght 2012 Gerard Meszaros

That reduce the amount of code in the test significantly. Now what else is wrong
with this code?

Well, it contains conditional logic in the form of an IF statement. This is bad because
we can’t be sure which path is being executed; tests are easier to understand if they
are purely sequential. Luckily, we can express the same thing more clearly by ...

35

I ol s ol o i 2
rREeTacitToring

)

Replace Conditional Logic with Guard Assertion

List lineItems = invoice.getLineItems() ;
assertEquals ("number of items",lineltems.size(),1);
LineItem actuallineltem = (Lineltem)lineltems.get(0) ;

Lineltem expectedLineltem = newlineltem(invoice,
product, QUANTITY, product.getPrice () *QUANTITY) ;

assertlLineltemsEqual (expectedLineltem, actuallineltem) ;

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 36 Coprnght 2012 Gerard Meszaros

Replacing the conditional logic with a Guard Assertion. Because a failed assertion
transfers control back to the test runner, we won’t execute the next statement if the
number of lineltems is wrong.

36

The Whole Test

public void testAddItemQuantity severalQuantity () throws Exception {
try {
// Setup Fixture
final int QUANTITY = 5;
Address billingAddress = new Address ("1222 1st St SW", "Calgary", "Alberta",K "T2ZN

2va", "Canada");

Address shippingAddress = new Address("1333 1lst St SW", "Calgary", "Alberta", "T2ZN
2v2", "Canada");

Customer customer = new Customer (99, "John", "Doe", new BigDecimal ("30"),

billingAddress, shippingAddress) ;
Product product = new Product (B8, "SomeWidget", new BigDecimal ("19.99"));
Invoice inveoice = new Inveoice (customer);

// Exercise SUT

invoice.addItemQuantity (product, QUANTITY) ; -r}\en: WE
// Verify Outcome h Id h
List lineltems = invoice.getLineItems () ; s ou ave

assertEquals ("number of items", lineltems.size(),1): one “ne item
LineItem actuallineltem = (Lineltem)lineltems.get (0); :
LineItem expectedlLineltem = newlineltem(invoice, product, QUANTITY) ;

assertlLineltemsEqual (expectedLineltem, actuallineltem);
} finally {

deleteObject (expectedLineltem) ;

deletedbject (invoice) ;

deleteObject (product) ;

deleteObject (customer) ;

deleteObject (billingAddress) ;

deleteCbject (shippingAddress) ;

]
Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 37 Coprnght 2012 Gerard Meszaros

So back to the whole test which is a bit more readable now.

37

The Whole Test

public void testAddItemQuantity severalQuantity () throws Exception {
try {
// Setup Fixture
final int QUANTITY = 5;

Address billingAddress = new Address ("1222 1st St SW", "Calgary", "Alberta",K "T2ZN

2va", "Canada");

Address shippingAddress = new Address("1333 1lst St SW", "Calgary", "Alberta", "T2ZN
2v2", "Canada");

Customer customer = new Customer (99, "John", "Doe", new BigDecimal ("30"),

billingAddress, shippingAddress) ;

Product product = new Product (B8, "SomeWidget", new BigDecimal ("19.99"));

Invoice inveoice = new Inveoice (customer);

// Exercise SUT

invoice.addItemQuantity (product, QUANTITY) ;

// Verify Outcome

List lineltems = invoice.getLineItems () ;

assertEquals ("number of items", 6 lineltems.size(),1):

Lineltem actuallineltem = (Lineltem)lineltems.get(0);

LinelItem expectedlLineltem = newlineltem(invoice, product, QUANTITY) ;

assertlLineltemsEqual (expectedLineltem, actuallineltem);
} finally {

deleteObject (expectedLineltem) ;

deletedbject (invoica) ;

deleteCbject (product) ;
deleteObject (customer) ; WTF: 9’7
deleteObject (billingAddress) ;

deleteObject (shippingAddress) ;
]
Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 38

Let's look at this code at the end; what does it do?

Coprnght 2012 Gerard Meszaros

38

Pattern

Inline Fixture Teardown - Naive

public void testAddItemQuantity severalQuantity () .. {

try {
// Setup Fixture
// Exercise SUT
// Verify Outcome

} finally {
deleteObject (expectedLineItem) ;
deleteObject(invoice) ;
deleteObject (product) ;
deleteObject (customer) ;
deleteObject(billingAddress) ;
deleteObject (shippingAddress) ;

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 39 Coprnght 2012 Gerard Meszaros

Oh, it's doing teardown of the test. The hint is the Finally statement which ensures
this code gets run whether the rest of the code runs clean or throws an exception.
But this teardown code could fail. Then what happens? That's right, the rest of the
teardown code won't run.

39

Pattern

Inline Fixture Teardown - Robust
public void testAddItemQuantity severalQuantity () .. {

try {
// Setup Fixture
// Exercise SUT
// Verify Outcome
} finally {
try {
deleteObject (expectedLinelItem) ;
} finally {
try {
deleteObject (invoice) ;
} finally {
try {
deleteObject (product) ;
} £inally {

Getting Full Value from Automated Testing Infol) Hangahou 2012 b Coprnght 2012 Gerard Meszaros

To ensure that it does, we’d have to code it like this.

40

Pattern

Implicit Fixture Teardown - Naive
public void testAddItemQuantity severalQuantity () .. {

// Setup Fixture

// Exercise SUT

// Verify Outcome

public void tearDown() {
deleteObject (expectedLinelItem) ;
deleteObject (invoice) ;
deleteObject (product) ;
deleteObject (customer) ;
deleteObject (billingAddress) ;
deleteObject (shippingAddress) ;

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 4l Coprnght 2012 Gerard Meszaros

Another option is to move it into the tearDown method but we have the same
problem here.

41

Pattern

Implicit Fixture Teardown - Robust

public void testAddItemQuantity severalQuantity () .. {
// Setup Fixture
// Exercise SUT
// Verify Outcome

public void tearDown() {

try {
deleteObject (expectedLineltem) ;

} finally {

try {
deleteObject (invoice) ;
} finally {
try {
deleteObject (product) ;
} finally {

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 42 Coprnght 2012 Gerard Meszaros

So we need to use nested Try/Finally’s here too.

42

Pattern

Automated Fixture Teardown

public void testAddItemQuantity severalQuantity () .. {
final int QUANTITY = 5;

Address billingAddress = new Address("1222 1st St SW",
"Calgary", "Alberta", "T2N 2V2", "Canada") ;

addTestObject(billingAddress) ;

Address shippingAddress = new Address("1333 1st St SW",
"Calgary", "Alberta", "T2N 2V2", "Canada");

addTestObject (shippingAddress) ;

public void tearDown() {
deleteAllTestObjects () ;

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 43 Coprnght 2012 Gerard Meszaros

A better alternative is to register each object we create and then use a well-
tested utility method to do the teardown for us.

43

Pattern

Automated Fixture Teardown

public void deleteAllTestObjects () {
Iterator i = testObjects.iterator():;
while (i.hasNext()) {
try {
Deletable object = (Deletable) i.next();
object.delete() ;
} catch (Exception e) {
// do nothing if the remove failed

}

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 +H Coprnght 2012 Gerard Meszaros

This method simply iterates through the list of objects and tries deleting each
one. If delete() throws an exception, it catches it and continues with the next
object. This guarantees that all the objects will have delete() called on them.

The Whole Test

public void testAddItemQuantity severalQuantity () throws Exception {
// Setup Fixture
final int QUANTITY = 5;

Address billingAddress = new Address("1222 1st St SW", '"Calgary", "Alberta",
"T2N 2v2", "Canada") ;

addTestObject (billingAddress) ;

Address shippingAddress = new Address("1333 1lst St SW", "Calgary", "Alberta",
"T2N 2Vv2", "Canada");

addTestObject (billingAddress) ;

Customer customer = new Customer (99, "John", "Doe", new BigDecimal ("30"),
billingAddress, shippingAddress);

addTestObject (billingAddress) ;

Product product = new Procduct (88, "SomeWidget", new BigDecimal ("19.99"));

addTestObject (billingAddress) ;

Invoice invoice = new Invoice (customer) ;

addTestObject (billingAddress) ;

// Exercise SUT

invoice.addItemQuantity (product, QUANTITY) ;

// Verify Outcome

assertEquals ("number of items",lineltems.size(),1);

Lineltem actuallineltem = (Lineltem)lineltems.get(0);

Lineltem expectedLineltem = newLineltem(invoice, product, QUANTITY) ;

assertLineltemsEqual (expectedlineltem, actuallineItem) ;

// No Visible Fixture Tear Downl!

Gietting Full Value from Auiomated Testing Tnfol} Hangzhou 2012 45 Copanght 2012 Gerard Meszaros

So now that we've eliminated the need for custom teardown code, what else can we
do to clean up this test?

The Whole Test

public wvoid testAddItemQuantity severalQuantity () throws Exception {
// Setup Fixture
final int QUANTITY = 5;

Address billingAddress = new Address("1222 1lst St SW", "Calgary",

"Alberta", "T2M 2V2", "Canada");
addTestObject (billingAddress) ;

Address shippingAddress = new Address("1333 lst St SW", "Calgary",
"Alberta", "T2N 2V2", "Canada");

addTestObject (billingAddress) ;

Customer customer = new Customer (99, "John", "Doe", new BigDecimal ("30"),

billingAddress, shippingAddress) ;
addTestObject (billingAddress) ;

Product product = new Product (88, "SomeWidget", new BigDecimal ("19.99"));

addTestObject (billingAddress) ;

Invoice invoice = new Invoice (customer);
addTestObject (billingAddress) ;

// Exercise SUT

invoice.addItemQuantity (product, QUANTITY) ;

// Verify Outcome

assertEquals ("number of items",lineltems.size(),1);
LineItem actuallLineItem = (LinelItem)lineIltems.get(0);

LineItem expectedLineltem = newLineltem(invoice, product, QUANTITY) ;

assertLineltemsEqual (expectedLineltem, actuallLinelItem);

}
Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 46

Coprnght 2012 Gerard Meszaros

46

Code Smell

Hard-Coded Test Data

public void testAddItemQuantity severalQuantity () {
final int QUANTITY = 5;

Address billingAddress = new Address("1222 1lst St SW"
"Calgary", "Alberta", "T2N 2V2", "Canada");

Address shippingAddress = new Address("1333 1st St SW",
"Calgary", "Alberta", "T2N 2V2", "Canada") ;

Customer customer = new Customer (99,

n", "Doe", new
BigDecimal ("30") , billingAddress, shi

Address) ;

Product product = new Product (88, "SomeWidge
BigDecimal ("19.99")) ;

Invoice invoice = new Invoice (customer) ;
// Exercise SUT

invoice.addItemQuantity (product, QUANTITY) ;

Getting Full Value from Automated Testing Infol} Hangehou 2012 47

Coprnght 2012 Gerard Meszaros

47

Pattern

Distinct Generated Values
public void testAddItamQuantity_savaralQuantity () {
final int QUANTITY = 5 ;

Address billingAddress = new Address (getUniqueString(),
getUniqueString () , getUniqueString() ,
getUniqueString() , getUniqueString()) ;

new Address (getUniqueString(),

Address shippingAddress
getUniqueString () , getUniqueString() ,
getUniqueString()) ;

getUniqueString (),
new Customer (

Customer customer
getUniquelInt() , getUniqueString(),
getUniqueString () , getUniqueDiscount() ,
billingAddress, shippingAddress) ;

Product product = new Product(
getUniquelInt (), getUniqueString(),

getUniqueNumber ()) ;
new Invoice (customer) ;

Invoice invoice

Coprnght 2012 Gerard Meszaros

48

Getting Full Value from Automated Testing Infol} Hangehou 2012

48

Pattern

Distinct Generated Values

public void testAddItemQuantity severalQuantity () {
final int QUANTITY = 5 ;
Address billingAddress = new Address(getUniqueString(),
getuntgquestring (), getiriguestrimg),
Uni Stri 0 Uni Stri (O ;
Address shippingAddress = new Address (getUniqueString(),
. d . . : o,

Customer customerl = new Customer (
getmrigqueint-O——getUniguessring () ,
getlUniqueString (), getlinicqueDiscount() ,
billi 1d hi i naidd w

Product product = new Product(

2 ; .] o,
getmriguelumber)3+

Invoice invoice = new Invoice (customer) ;

Getting Full Value from Autemated Testing Infol} Hangehou 2012 42

Coprnght 2012 Gerard Meszaros

49

Creation Method

public void testAddItemQuantity severalQuantity () {

final int QUANTITY = 5;
Address billingAddress = createAnonymousAddress() ;

Address shippingAddress = createAnonymousAddress() ;

Customer customer = createCustomer(billingAddress,
shippingAddress) ;

Product product = createAnonymousProduct() ;

Invoice invoice = new Invoice (customer) ;

Pattern

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 50 Coprnght 2012 Gerard Meszaros

50

Code Smell
Obscure Test - Irrelevant Information

public void testAddItemQuantity severalQuantity () {

}

final int QUANTITY = 5;

Address—shrippingiddress—=—createAneonymousiddress{) ;
Customer customer = createCustomer (
billinaAdd hkaei i g
Product product = createAnonymousProduct (
Invoice invoice = new Invoice (customer) ;
// Exercise
invoice.addItemQuantity (product, QUANTITY) ;
// Verify

LineItem expectedLineltem = newLineItem(invoice,
product, QUANTITY, product.getPrice () *QUANTITY) ;

List lineItems = invoice.getLineIltems() ;

assertEquals ("number of items", lineltems.size(), 1);
Lineltem actuallLineltem = (LineItem)lineItems.get(0);
assertlLineltemsEqual (expectedLineltem, actualLineltem) ;

Getting Full Value from Automated Testing Infol} Hangehou 2012 51 Coprnght 2012 Gerard Meszaros

51

. Refactorin
Remove Irrelevant Information ?

public void testAddItemQuantity severalQuantity () {
final int QUANTITY = 5 ;

Customer customer——eoreatednonymeusCustomert);
Product product = createAnonymousProduct() ;
Invoice invoice = new Invoice (customer) ;

// Exercise

invoice.addItemQuantity (product, QUANTITY) ;

// Verify

LineItem expectedLineltem = newLineItem(invoice,
product, QUANTITY, product.getPrice () *QUANTITY) ;

List lineItems = invoice.getLineIltems() ;

assertEquals ("number of items", lineltems.size(), 1);

Lineltem actuallineltem = (LinelItem)lineltems.get(0) ;

assertlLineltemsEqual (expectedLineltem, actualLineltem) ;
}

Getting Full Value from Automated Testing Infol} Hangehou 2012 52 Coprnght 2012 Gerard Meszaros

52

Refactoring

Remove Irrelevant Information

public void testAddItemQuantity severalQuantity () {
final int QUANTITY = 5 ;

Product product = createAnonymousProduct() ;
Invoice invoice = createAnonymousInvoice ()

// Exercise
invoice.addItemQuantity (product, QUANTITY) ;
// Verify

LineItem expectedLineltem = newLineItem(invoice,
product, QUANTITY, product.getPrice () *QUANTITY) ;

List lineItems = invoice.getLineIltems() ;

assertEquals ("number of items", lineltems.size(), 1);

Lineltem actuallineltem = (LinelItem)lineltems.get(0) ;

assertlLineltemsEqual (expectedLineltem, actualLineltem) ;
}

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 53 Coprnght 2012 Gerard Meszaros

53

. Refactorin
Introduce Custom Assertion :

public void testAddItemQuantity severalQuantity () {
final int QUANTITY = 5 ;

Product product = createAnonymousProduct() ;
Invoice invoice = createlAnonymousInvoice ()
// Exercise

invoice.addItemQuantity (product, QUANTITY) ;
// Verify

LineItem expectedLineltem = newLineItem (inwv
product, QUANTITY, product.getPrice () *QU.

—— . :) ;

r

TY)/

assertlLineltemsEqual (expectedLineltem, actuallLineItem) ;
}

Getting Full Value from Automated Testing Infol} Hangehou 2012 34 Coprnght 2012 Gerard Meszaros

. Refactorin
Introduce Custom Assertion *

public void testAddItemQuantity severalQuantity () {
final int QUANTITY = 5 ;

Product product = createAnonymousProduct() ;
Invoice invoice = createlAnonymousInvoice ()
// Exercise

invoice.addItemQuantity (product, QUANTITY) ;
// Verify

LineItem expectedLineltem = newLineItem(invoice,
product, QUANTITY, product.getPrice () *QUANTITY) ;

assertExactlyOnelLineltem(invoice, expectedLineltem) ;

Getting Full Value from Automated Testing Infol} Hangehou 2012 Coprnght 2012 Gerard Meszaros

55

The Whole Test — Done

Given an
public void testAddItemQuantity severalQuantity () { emp't'y invoice
final int QUANTITY = 5 ;
Product product = createAnonymousProdu ’
Invoice invoice = createBAnonymousInvoice() ; When 1 CC!”

// Exercise

T%‘ addItemQuantity
invoice.addItemQuantity (product, QUANTITY) ;

// Verify
Lineltem expectedLineltem =

newLineltem(invoice,

product, QUANTITY, product.getPrice () *QUANTITY) ;

assertExactlyOnelLineltem({invoice, expectedLineltem) ;
}

The invoice will end up
with exactly 1 lineItem
on it.

*Use Domain-Specific Language
*Say Only What is Relevant

Getting Full Value from Automated Testing Tnfol} Hangehou 2012

L1

Coprnght 2012 Gerard Meszaros

So now we have our test down to just 6 lines of code. We can read out the test

condition very easily.
Given an empty invoice
When | call additemQuantity

Then, the invoice will end up with exactly one line item on it with the item value
equal to the product price multipled by the quantity.

This is pretty clear but weshould always be looking for ways to improve the

readability of our tests.

56

The Whole Test — Done

public void testAddItemQuantity severalQuantity () {
final int QUANTITY = 5 ;
Product product = createAnonymousProduct() ;
Invoice invoice = createBAnonymousInvoice() ;

// When

invoice.addItemQuantity (product, QUANTITY) ;

// Then

Lineltem expectedLineltem = newLineltem(invoice,

product, QUANTITY, product.getPrice () *QUANTITY) ;
assertExactlyOnelLineltem(invoice, expectedLineltem) ;

*Use Domain-Specific Language
*Say Only What is Relevant

Gietting Full Value from Auiomated Testing Info} Hangzhou 2012 57 Coprnght 2012 Gerard Meszaros

We can replace the procedural comments Exercise and Verify with When and Then.

57

The Whole Test — Done

@Test public wvoid
tastAddItamQuantitymsaveralQuantity) {
final int QUANTITY = 5 ;
Product product = createAnonymousProduct() ;
Invoice invoice = createAnonymousInvoice() ;

// When

invoice.addItemQuantity (product, QUANTITY) ;

// Then

Lineltem expectedLineltem = newLineItem(invoice,

product, QUANTITY, product.getPrice()*QUANTITY) ;
assertExactlyOneLineltem(invoice, expectedLineltem) ;

*Use Domain-Specific Language
*Say Only What is Relevant

Gietting Full Value from Auiomated Testing Info} Hangzhou 2012 8 Coprnght 2012 Gerard Meszaros

Here | just split the method name from the returns type to give myself a little room.
Here’s what | want to do:

58

The Whole Test — Done

@Test public wvoid

addItem SeveralQuantity itemValuelIsQuantityTimesProductPrice() ({
final int QUANTITY = 5 ;
Product product = createAnonymousProduct() ;
Invoice invoice = createAnonymousInvoice() ;

// When

invoice.addItemQuantity (product, QUANTITY) ;

// Then

Lineltem expectedLineltem = newLineItem(invoice,

product, QUANTITY, product.getPrice()*QUANTITY) ;
assertExactlyOnelLineltem(invoice, expectedLineltem) ;

*Use Domain-Specific Language
*Say Only What is Relevant

Gietting Full Value from Auiomated Testing Info} Hangzhou 2012 3 Coprnght 2012 Gerard Meszaros

Rename the method to reflect the when and the expected outcome. When | call
AddIltemQuanity with several quantity, the item’s value is expected to be the
guantity time the product’s price.

59

The Whole Test — Done

@Test public wvoid
addItem SeveralQuantity itemValueIsQuantityTimesProductPrice() ({
final int QUANTITY = 5 ;
Product product = createAnonymousProduct() ;
Invoice invoice = createAnonymousInvoice() ;
// When
invoice.addItemQuantity (product, QUANTITY) ;
// Then

shouldBeExactlyOneLineItemOn (invoice,
expectedLineltem(invoice, product, QUANTITY,

product.getPrice () *QUANTITY)),

*Use Domain-Specific Language
*Say Only What is Relevant

Gietting Full Value from Auiomated Testing Info} Hangzhou 2012 fid Coprnght 2012 Gerard Meszaros

We can also make that clearer Then part of the test by renaming the assertion to
shouldBeExactlyOneLineltemOn the invoice and renaming the utility method to
make it clear we are constructing an expected object.

60

The Whole Test — Done

@Test public wvoid
addItem SeveralQuantity itemValueIsQuantityTimesProductPrice() ({
final int QUANTITY = 5 ;
Product product = createlrrelevantProduct() ;
Invoice invoice = createlrrelevantInvoice() ;
// When
invoice.addItemQuantity (product, QUANTITY) ;
// Then

shouldBeExactlyOneLineItemOn (invoice,
expectedLineltem(invoice, product, QUANTITY,

product.getPrice () *QUANTITY))

Constantly Strive to Improve Readability

*Use Domain-Specific Language
*Say Only What is Relevant

Gietting Full Value from Auiomated Testing Info} Hangzhou 2012 il Coprnght 2012 Gerard Meszaros

We can replace the procedural comments Exercise and Verify with When and Then.

It would be more accurate to call them “createlrrelevantSomething”.

61

The Whole Test — Done

@Test public wvoid

addItem SeveralQuantity itemValueIsQuantityTimesProductPrice() ({

final int QUANTITY = 5 ;

Product product = givenAnyProduct() ;
Invoice invoice = givenAnEmptyInvoice() ;

// When

invoice.addItemQuantity (product, QUANTITY) ;
// Then
shouldBeExactlyOneLineItemOn (invoice,

expectedLineltem(invoice, product, QUANTITY,

product.getPrice () *QUANTITY))

Constantly Strive o Improve Readability

*Use Domain-Specific Language
*Say Only What is Relevant

Gietting Full Value from Auiomated Testing Info} Hangzhou 2012 62

But it is even clearer if we simply call them givenSomething().

Coprnght 2012 Gerard Meszaros

62

GGMe8

Test Coverage

TestinvoiceLineltems extends TestCase {
TestAdditemQuantity_oneltem {..}
TestAddItemQuantity_severalltems {..}
TestAdditemQuantity_duplicateProduct {..}
TestAddltemQuantity_zeroQuantity {..}
TestAddIitemQuantity_severalQuantity {..}
TestAdditemQuantity_discountedPrice {..}
TestRemoveltem_noltemsLeft {..}
TestRemoveltem_oneltemLeft {..}
TestRemoveltem_ severalltemsLeft {..}

Pattern:
Testcase
Class per
Feature

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012] Coprnght 2012 Gerard Meszaros

63

Slide 63

GGM68 Change to new naming conventions
Gerard Meszaros, 10/19/2012

GGM67

public void testAddItemQuantity duplicateProduct () { Given an

Rapid Test Writing

final int QUANTITY = 1 ;

empty invoice

final int QUANTITY2 = 2 ;

Product productl = createAnonymousPrMWhen I CG”
Invoice invoice = createAnonymousInvoice() ; uddI'remQuanTity
// Exercise twice with same
invoice.addItemQuantity (productl, QUANTITY) ;| product
invoice.addItemQuantity (productl, QUANTITY2) ;

// Verify

Lineltem expectedLinelteml = newlLineltem(invoice,
product, QUANTITY + QUANTITYZ2,
product.getPrice() * (QUANTITY+QUANTITY2)) ;

assertExactlyOnelineltem(invoice, expectedLinelteml) ;

The invoice will end up with
exactly 1 lineItem on it for the
sum of the two calls to add..().

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 CO RN 20T Cerar

Slide 64

GGM67 Redo using new naming conventions
Gerard Meszaros, 10/19/2012

Test Coverage

TestinvoiceLineltems extends TestCase {
TestAdditemQuantity_oneltem {..}
TestAddIitemQuantity_severalltems {..}
TestAddIitemQuantity_duplicateProduct {..}
TestAddltemQuantity_zeroQuantity {..}
TestAddIitemQuantity_severalQuantity {..}
TestAdditemQuantity_discountedPrice {..}
TestRemoveltem_noltemsLeft {..}
TestRemoveltem_oneltemLeft {..}
TestRemoveltem_ severalltemsLeft {..}

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 05

Coprnght 2012 Gerard Meszaros

65

Rapid Test Writing

public void testAddItemQuantity severalItems () { Given an

final int QUANTITY = 1 ; emp.t.y invoice
Product productl = createAnonymousProduct() ;

Product product2 = createAnonymousPro,d% when I call
Invoice invoice = createAnonymousInvoice() ; addIfemQuanﬂfy
// Exercise twice with
invoice.addItemQuantity (productl, QUANTITY)| different products

invoice.addItemQuantity (product2, QUANTITY) ;

// Verify

Lineltem expectedLinelteml = newlineltem(invoice,
product, QUANTITY, product.getPrice () *QUANTITY) ;

LineItem expectedLineltem?2 = newlLineltem(invoice,

product2, QUANTITY, product2.getPrice () *QUANTITY) ;

assertExactlyTwoLinelItems (invoice,
expectedLinelteml, expectedLineltem2) ;

The invoice will end up with 2 lineItems on
it, one for each of the two calls to add..(). oo

(j\‘hiu‘g Full Value fi

66

Test Automation Pyramid

* Tools to support effective
exploratory testing
* A small number of tests
for the entire application
& workflow

— Ensure application(s) suppo
users’ requirements

* Medium number of
functional tests for major
components Unit Tests

— Verify integration/of units

Component
Tests

* Large numbers of very
small unit tests

— Ensures integrity of code

Getting, Full Value from Automated Testing Infi Pyramid originally proposed by Mike Cohn Copuright 2012 Gerard Meszares

67

Behavior Specification at Right Level

» Specify broad scope at minimum detail
—E.g. Use least detail when specifying workflow

» Specify most detailed req’ts at narrowest scope
—E.g. Don’t use workflow when specifying business rules

Too vague

[N Requires too

Transactions SQUEWATEIE
(Use Cases) L\

- U /- o
Business
.g‘ s
bl Too much detai
Unmaintainable b
/. - @ <

Broad Narrow

Low

Make examples /
tests easy to
understand and
easy to write

Detail

Getting Foll Value from Auiemated Testing Tnfo} I'fﬁl;'qng!% o Coprnght 2012 Gerard Meszaros

It is important to specify each story at the right level.

Tests with very broad scope (such as the end-to-end process) should be specified
with a minimum of detail.

Tests that specify a great deal of detail should be kept very narrow in scope.

Specifying broad scope in high detail results in a lot of duplicated and
unmaintainable detail.

Specifying with too little detail for narrow scope results in too many specs that say
very little.

The goal is to make our examples and tests each to understand and easy to write.
This requires using the right language in each spec.

68

Example: Mega Bank Use Case

Any/all of:
*amount

— *account
*transaction type
*region,

*charge category

onfigure Notification
Rules

i : Notificati
Suspend Notification otification can

be sent via:
Account”, - e-mail
Holder voice-mail or

Resume Notification) "SMS/IM

Process Transaction

Transaction
Settlement

Getting Full Value from Automated Testing Infol) Hangehou 2012 it Coprright 2012 Gerard Meszaros

Let’s look at how we can structure the tests for a banking application that notifies
the user of transactions against their accounts.

User can configure threshold amount for notification based on any/all of account,
transaction type or region, charge category

Notification can be sent via e-mail, voice-mail or SMS/IM
User can suspend notifications indefinitely or for a defined period of time.

When the bank processes a charge or credit transaction, it uses these rules to
decide whether and how to send the notification.

69

Example

GUI for Manage Notifications Tx

. U ser I nte rface Global Bank Customer Service Application
implies specific o i R | s o (R T
fu nctionality: Send Identity Thelt Piotection Service Warmings? [@ Sendvis: T -
Cusient Rules
— List of accounts froor R o Thehdd Locaion EdtRue
-] 2useren 1000 Alica ..
— Ab|l|ty tO make 12045678 AL 1000 Asia
1234567890 Al S00 Bushaka
changes to o e a——
notifications 12356789 | L[e
123456789 Al 5_ Edit Rule
— List of active Delete Rule
notifications
* This functionality
independently of Ul _ L ol ssemeatises |
Getting Full Value from Automated Testing Infol} Hangehou 2012 70 Coprnght 2012 Gerard Meszaros

Now that we understand how the various use cases (or transactions) relate to each
other (the overall workflow) we can design the user interface for Managing the
Notifications. We often want to design the Ul to handle a whole range of user stories
to ensure consistency of the user experience even though we will typically
implement it story by story.

Once we've designed the Ul required by the User Stories, we’ll want to do some
usability testing to find out whether users find it useful or cumbersome. Much
cheaper to find out now that after we’ve built and deployed the stories.

We can also implement automated tests for the Ul although this is a contentious
topic; it's rather cumbersome to automate but relatively easy to test manually.

70

Example: Use Case:

Testing Notifications - 1 | Manage

:.Custamer.—.bubma :.lugs in; Nofifica*ions]

System lists all available accounts for the authorized customer

account type notifications

| 10035692877 | chequing | disabled ___________A Data to be shown on

| 10035652850 | savings | disabled

| 20010928892 |creditline | disabled Manuge Accounts Tab

:Cusmmer sets notification threshold for | all | transactions from | all | locations to | $10,000.00 | on accos 2877 | via| email | to | bobma@live.com
ensure | No system messages

: ensure | System log contains | “Customer bobma set notification threashold for sactions from all locations to 510,000 on account 10035692877

System lists all available accounts for the authorized customer . %
!.aoocunt “type 1 not.ii.icaiiéms . s 'de effec'.r _of Add' ng
j 10035692877 | c;’-lt.?quil!g . A No.rif'ca‘r Ioh
| 10035692890 | sav‘ing‘s . disabled
| 20010928892 | credit line | disabled

:Nullﬂcatiun settings for ac:ount; 10035692877

Data to be shown
on Manage
Notifications Tab

| transaction type | location where initiated | threshold amount | via | address

:all |all | 510,000.00 email bolma@iive‘cum;

Given: Notification Rulz%

Getting Full Value from Automated Testing Infol} Ha Coprnght 2012 Gerard Meszaros

Here’s a first crack at writing a test that specifes how our application should work.
First, a user signs in and configures a notification rule on one accounts. All
transactions of any type over $10,000 on their chequing account should result in an
e-mail to them. They can verify that the rule was accepted by reviewing the list of
accounts and the active notifications. All of this effort just to set up the Given for the
test conditions.

Next we need to create some transactions against these accounts.

71

Use Case:
Process
Transactions

Example:

Testing Notifications - 2

Time now is 9:30AM, 03/18/2008
Bank processes |debit | to| 10035692877 | in the amount of $15,000.00

When: The
Transactions to

Bank processes debit

Bank processes deb to | 10035692877 | in the amount of | $11,000.00

Bank processes |debit | to 20010928892 in the amount of $12,000.00 be pr‘ocessed

Bank processes |credit | to 10035692877 | in the amount of ' $13,000.00
Bank processes |credit | to| 10035692877 | in the amount of | $9,999.99

Bank processes | charge to 10035692877 | in the amount of | $9,999.99

Then: Expected
Notifications

Bank processes |charge to 10035692877 in the amount of | $11,000.00

New notifications sent to customer | bobma
type account timestamp amount address

.deb1t | email | bobma@live.com |

debit 10035692877 | 9:30AM, 03/18/2012 | $11,000.00 | email | bobma@live.com |
credit 10035692877 | 9:30AM, 03/18/2012 | $13,000.00 | email | bobma@live.com
.rharua ﬁmzamm‘n- 9-30AM 03/18/2012 . $11,000.00 | email | bobma@live.com |

Medium Detail; Large Scope

Coprnght 2012 Gerard Meszaros

So we process a bunch of transactions in various amounts above and below the
threshold for various accounts and transaction types. These constitute the When'’s
of the test conditions. The final table lists the expected notifications; the Then’s of
the test conditions.

It's getting a bit difficult to follow along because the cause & effect are not close to
each other. And this test only verifies one particular combination of notification rule.
We’'ll need to create other test cases for each of various combinations of rules we
could have. That will result in a lot of repetition across the test cases. And these test
cases will take a long time to run if we hook them up to the user interface of our
application.

72

Test - After Architecture

* Must test through User Interface

System Under Test

onfiguration|| Configure

Workflow User Notification Notification
Test Interface Threshold Rules
| Should we
nsaction Process Notify?
Interface || Transaction Do
Notification.

Notification
Log

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 73 Coprnght 2012 Gerard Meszaros

The problem with trying to automate the tests after we’ve finished building the
system is that it is very difficult or even impossible to do effectively because the
system wasn’t designed with testability in mind. We are typically forced to test too
much code and via awkward interfaces such as the user interface. And it is very
difficult to control the behavior of all those other things our application logic is
expected use as input.

This is why test automation done by independent test groups is often an outright
failure. And why the most successful test automation is seen on eXtreme
Programming teams where the testing is part of the team’s job, not relegated to a
separate group.

73

Test-Driven Architecture

* Need to provide API’s to invoke functionality
directly

System Under Test |

Configuration|| Configure
Workflow : ‘> Notification
Test Interface Threshold
Should we Test Stub

oot Process Notify?
nterface Transaction

Noti

— — 1

« And ways to stub out N°“f_‘g§“°"
dependencies

.

Getting Full Value from Automated Testing Infol) Hangzhoo 2012 IR Copyright 2012 Gerard Meszaros

When the team building the application is also responsible for testing it, they are
highly motivated to make test automation easy. In fact, they will typically start the
design process by deciding what kinds of tests they want to be able to automate
and what affordances the application needs to provide the automated tests. When
this kind of thinking is applied at the Component and System levels of the test
automation pyramid, | call it test-driven architecture. That is, the architecture of the
application is shaped by the test requirements as much as by the functional
requirements. For example, to automate workflow tests of a business process, we
want to be able to bypass the user interface so that the tests can be expressed in
terms of business process actions, not Ul actions. And we may need to be able to
control the behaviour of certain sub-components to ensure that they provide the
particular response our test case requires. We often fulfil this requirement by
providing a means to stub out specific components dynamically in our test
environment.

74

Changing Level of Abstraction/Detail

* Need to Reduce Detail or Reduce Scope

[

Too vague
(Rarely Happens!)

Detail

Broad Narrow

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 Sco pe 75 Coprnght 2012 Gerard Meszaros

It is important to specify each story at the right level.

Stories with very broad scope (such as the end-to-end process) should be specified
with a minimum of detail.

Stories that specify a great deal of detail should be kept very narrow in scope.

Specifying broad scope in high detail results in a lot of duplicated and
unmaintainable detail.

Specifying with too little detail for narrow scope results in too many specs that say
very little.

The goal is to make our examples and tests each to understand and easy to write.
This requires using the right language in each spec.

That test we just wrote falls into the bottom right quadrant; too much detail for the
broad scope it encompasses. So we need to reduce the level of detail.

75

Example:

Specifying Notification Workflow

Given:

Time now is | 9:00AM, 03/18/2008

Customer | bobma | sets notification threshold to | $10,000.00 | for all transactions

Time now is | 9:30AM, 03/18/2008

Bank processes | dedit to | 10035692877 I in the amount of | $15,000.00

Bank processes | debit | to | 10035692877 | in the amount of | $9,000.00

Bank processe(dedit to | 10035692877 in the amount of | §11 ,000.00)

Notification
Rules

When:
Process
Transaction

New notifications sent to customer

type
dedit

bobma

account timestamp amount

10035692877 | 9:30AM, 03!18!2008;515,000.00&

(" dedit

10035692877 | 9:30AM, 03/18/2008 | $1 1,000.@ Then:

Broad Scope; Minimum Detail;
Irrelevant Details Omitted!

Too high level

Maybe too cumbersome

Can be defined before user interface is designed.

Should be defined before software is built

Can (and should) be automated bypassing the user interface
Should be run by developers as they build the software

Not the right way to test detailed functionality

Is it right way to test notification algorithms?

Expected
Notifications

Coprnght 2012 Gerard Meszaros

The overall workflow should be defined at a very high level. Only the essential
details should be specified here because we’ll need to touch on many of the
transactions and providing too much detail would make these specs too hard to
understand. The details can be provided in other specs.

76

Alternate form of Workflow Test:

Given Bobma has account 1003592877

And BobMa sets notification threshold to
$10,000 for all transactions

When the bank processes debit for 15,000 to
account 1003592877

And the bank processes debit for 9,000 to
account 1003592877

And the bank processes debit for 11,000 to
account 1003592877

Then bobma receives notification for debit
15,000 to account 1003592877

And bobma receives notification for debit 11,000
to account .19035.92377

Getting Full Value from Automated T Coprnght 2012 Gerard Meszaros

Here’s another way to express the same test using the given-when-then terminology
in a text-based domain-specific language.

77

How can we test the business rules around notification more effectively? Testing this
via the overall workflow would be very tedious and slow. It takes too many steps and
too much extraneous detail to do this effectively. The alternative is to reduce the

scope drastically to just the part of the system that implements the decision whether

to notify.

Changing Level of Abstraction/Detail

* Need to Reduce Detail or Reduce Scope

Detail

Too vague
(Rarely Happens!)

Broad

Getting Full Value from Autemated Testing Infol} Hangehou 2012 Sco pe s

Narrow

Coprnght 2012 Gerard Meszaros

78

Example: When we call

Business Rule Specs sho;idWeNoﬁfy_? with
Threshold per Charge Ty S ransaction

Configuration |Given these Process\Transaction

rules

| CustomerAccounts[?] "NotiffcationRequir; d .
‘CustomerllAccount Label_Added{} -Account-chargeTy ;Amount :Natify?.
bobma ‘100372 Checking (1003?2 Travel 1999.99 INO
100372 | Travel 11,000.00 | Yes
CustomerThresholds[?] | 100372 |Restaurant |99.99 |No
Customer | Account | Charge Type | Threshold Added()' 100372 ‘Restaurant E10‘101:.1 :Ye
bobma [100372 |ALL 10,000 | OK 1100372 |Groceries | 26422 |Nd | |
bobma 100372 | Travel 1,000 0K -100372 ‘Groceries j264.23 :Y s
bobma | 100372 |Restaurant | 100 OK | |100372 |other |9.999.99 |fio
bobma |100372 |Groceries |264.23 |OK 1100372 | Other %m,OOD.ODTYes
Then: The

High Detail; Narrow Scope iiisllian chiodlt be

Now that we have decide to isolate the Notification Logic, we can specify it's
behaviour using component tests. Here we are using Fit Column fixtures to
configure the data (on the left side of the slide) and to invoke the Should We Notify
component. Each row in the table on the right is one test. The first 3 columns are
the inputs to the notification decision and the last column is the expected result.
Once again, we can easily read the test conditions directly from these tests. Given
these thresholds, when we call shouldWeNotify? With Account 100372 with Travel
charge for 999.99, the answer should be No.

This approach allows us to test algorithms and business rules without overhead of
use case or workflow tests.

Require access to component(s) that implement the business rules and that
encourages a more modular software design.

Business Component Test

* “What other components would that component
depend on?”

* “How can | break that dependency when component
testing this component?”

N e Notiicaion|
Interface ThresgBRR | i
Notification | Should we
Trq Rule Test : Notify?
In RBlfcation Transaction Do
Method Test [> | Notification.

e

Notification
Log

* With the right architecture, automating these
Gietling tg§\t§ ;ﬁ.lctl:ih!iﬁ l’i;lng/hu:l 2012 &0 Copvright 2012 Gerard Meszaras

This requires us to structure the system so that the notification logic is easily
accessed via an API thus allowing our tests to focus on what they want the Should
We Notify component to do, not how to interact with it via the Process Transaction
components.

We also want to make it easy to provide the rules to the component directly from the
test so we can bypass the Configuration component.

We can achieve all this by asking the questions [READ FROM THE SLIDE]. This
leads us to a testable architecture where the Should We Notify component is
passed the Notification Rules by it's caller, something | call Data Injection.

80

Changing Level of Abstraction/Detail

* Need to Reduce Detail or Reduce Scope

T

Too vague

(Rarely Happens!)
'S
-
[
fal

Broad Narrow
Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 SCO pe 1 Coprnght 2012 Gerard Meszaros

It is important to specify each story at the right level.

Stories with very broad scope (such as the end-to-end process) should be specified
with a minimum of detail.

Stories that specify a great deal of detail should be kept very narrow in scope.

Specifying broad scope in high detail results in a lot of duplicated and
unmaintainable detail.

Specifying with too little detail for narrow scope results in too many specs that say
very little.

The goal is to make our examples and tests each to understand and easy to write.
This requires using the right language in each spec.

81

Example: Use Case:

~ 8Single Use Case Test oo Darie
Customer | bobma | logs in | M

System lists all available accounts for the authorized customer

account type [notifications

I100356923?? _d‘iequing .disabled _'_'_'_'_'_,_,_,_._-4 Da_ra 1_0 be shown on
10035692890 savings disabled

| 20010928892 |creditline | disabled Manuge Accounts Tab

| Customer sets notification thresheld for | all | transactions from | 2ll | locations to | $10,000.00 | on acco 2877 | via| email | to | bobma@live.com

ensure | No system messages

ensure | System log contains | “Customer bobma set notification threashold fo sactions from all locations to 510,000 on account 10035692877

iSvilern lists all availatfle accounts for thg authorized customer lside effec'r Of Addlng

account type notifications

ey e A Notification
10035692890 savings disabled
20010928892 credit line disabled

:Notli.icatiun settings for accounl‘: 10035692877
| transaction type . -'lncation where initiated.threshold amount.via -address | DGTG ?o be Shown
[an [au [510,000.00 .Email-bobma@ﬁve.cum.: on Manage
Medium Detail; Medium Scope Notifications Tab
Still no mention of User Interface!

The overall workflow specification helps us understand the big picture but we want
to make sure we understand how each transaction, such as configuring a
notification rule, actually works. We can write a specification for this using a walk-
through the Ul as an inspiration. We want to ensure that the behavior of the system
behind the Ul at each step is clearly understood. This spec helps us do that. Each
piece of data on the screen and each action accessible from it is represented in this
transaction spec. That way we can be sure that the code behind the screen is
implemented properly.

Note that there is a lot more detail shown here than in the workflow spec where it
only took a single line to describe the equivalent of what we are doing here.

82

Automating the Use Case Test

+ “What kind of tests do | want to be able to automate?”

* “Which component would be responsible for that part
of the behavior?”

Configuration?nfiguration | Configure

T et Notification Notification
Interface Threshold Rules
Should we
Transaction Process Notify?
Interface Transaction Do
Notification.

Notification
Log

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 #3 Coprnght 2012 Gerard Meszaros

To automate the use case tests, we expose the appropriate API on the configuration
interface. This is most likely the same interface used by the User Interface.

Depending on the nature of the test, we may choose to stub out the database or
include it within the scope of the system.

83

Conclusions — Reducing Costs

Build tests

— Write tests first to ensure testability
—Less Detail, Less Overlap
Run tests

— Automatically
Inspect test results

— Self-checking tests have zero effort
Fix or maintain tests

Focus on maintainability when writing tests

Getting Full Value from Automated Testing Infol) Hangehou 2012 4 Coprright 2012 Gerard Meszaros

Maximizing Value for effort spent requires us to reduce cost and increase value.

We can reduce cost and effort by
eavoiding unnecessary detail in tests and reducing the overlap between tests.

erunning tests automatically and ensuring that tests are self-checking so we don’t
need to look at them every time they are run.

*We can reduce the Cost of Ownership of the product and it's tests by focusing on
maintainability when writing the tests.

Conclusions — Increasing Value

* Focus
— Write tests first; use them to guide development
» Safety
— Tests act as “Safety Net” during subsequent development
» Saved Effort
— (A/C/U)TDD reduces debugging, bug triage/fixing
+ Confidence
— Tests act as documentation of the functionality.
— Better coverage, run more frequently
—Used as measure of progress

* Reward
— Constant progress and reduced stress makes work more
Gietting Full \-'ﬁmjﬂyﬁpmzmg Infol} Hangehou 2012 3 Coprnght 2012 Gerard Meszaros

To summarize the value provided by our automated tests:
*We write the tests first so that they guide us during development
*The tests act as a safety net during subsequent development.

*Driving development with Acceptance, Component and Unit tests reduces the
number of defects we put into the code thereby reducing the amount of debugging
we need to do and the number of founds that are found, have to be triaged and
managed until they are fixed.

*The Tests act as documentation of the functionality giving us confidence in our
knowledge of what the product does and how it works.

*Running the tests frequently gives us better confidence in the quality of our
product. And we can use the number of acceptance and component tests passing
as a measure of progress.

*The constantly visible process and the reduced stress of working with a safety net
of tests make work more enjoyable.

85

Conclusions

Getting full value from our automated tests
requires conscious thinking about:
* How to reduce costs

« How to maximize the value derived

» Tests should be either broad in scope or
detailed but not both

Gietting Full Value from Auiomated Testing Infol} Hangzhou 2012 i Coprnght 2012 Gerard Meszaros

86

Thank You! ——
XUNIT TEST o
Gerard Meszaros PATTERNS
infoQ2012hz@gerardm.com
http://www.xunitpatterns.com

; i Jolt Productivity Award
http://GettingFullValue.gerardm.com e liisgli s

http://testingguidance

odeplex

Call me when you:

+ Want to transition to Agile or Lean

+ Want to do Agile or Lean better

+ Want to teach developers how to test

* Need help with test automation strategy
* Want to improve your test automation

patterns & practices

Getting Full Value from Automated Testing Infol} Hangehou 2012 &7

87

