
© Hortonworks Inc. 2014 Page 1

Apache Tez : Next Generation
Execution Engine upon Hadoop

Jeff Zhang

© Hortonworks Inc. 2014

Outline

•Tez Introduction

•Tez API

•Tez Internal

•Tez Project Status

•Q & A

© Hortonworks Inc. 2014

Tez – Introduction

Page 3

• Distributed execution framework
targeted towards data-processing
applications.

• Based on expressing a computation
as a dataflow graph.

• Highly customizable to meet a
broad spectrum of use cases.

• Built on top of YARN – the resource
management framework for
Hadoop.

• Open source Apache project and
Apache licensed.

Hadoop 1 -> Hadoop 2

HADOOP 1.0

HDFS
(redundant, reliable storage)

MapReduce
(cluster resource management

 & data processing)

Pig
(data flow)

Hive
(sql)

Others
(cascading)

HDFS2
(redundant, reliable storage)

YARN
(cluster resource management)

Tez
(execution engine)

HADOOP 2.0

Data Flow
Pig

SQL
Hive

Others

(Cascading)

Batch
MapReduce Real Time

Stream
Processing

Storm

Online
Data

Processing
HBase,

Accumulo

Monolithic
• Resource Management
• Execution Engine
• User API

Layered
• Resource Management – YARN
• Execution Engine – Tez
• User API – Hive, Pig, Cascading, Your App!

© Hortonworks Inc. 2014

Pig/Hive-MR versus Pig/Hive-Tez

Page 5

Pig/Hive - MR Pig/Hive - Tez

I/O Synchronization

Barrier

I/O Synchronization

Barrier

Job 1

Job 2

Job 3

Single Job

© Hortonworks Inc. 2014

Outline

•Tez Introduction

•Tez API

•Tez Internal

•Tez Project Info

•Q & A

© Hortonworks Inc. 2014

Tez – Expressing the computation

Page 7

Tez provides the following APIs to define the processing

• DAG API (Vertex, Edge)

• Defines the structure of the data processing and the relationship
between producers and consumers

• Enable definition of complex data flow pipelines using simple graph
connection API’s. Tez expands the logical DAG at runtime

• This is how all the tasks in the job get specified

• Runtime API (Task)
• Defines the interfaces using which the framework and app code interact

with each other

• App code transforms data and moves it between tasks

• This is how we specify what actually executes in each task on the cluster
nodes

© Hortonworks Inc. 2014

Tez – DAG API

 // Define DAG

 DAG dag = new DAG();

 // Define Vertex

 Vertex map1 = new Vertex(MapProcessor.class);

 // Define Edge

 Edge edge1 = Edge(map1, reduce1, SCATTER_GATHER,
PERSISTED, SEQUENTIAL, Output.class, Input.class);

 // Connect them

 dag.addVertex(map1)

 .addEdge(edge)

 …

Page 8

Simple DAG definition API

© Hortonworks Inc. 2014

Tez – DAG API

Page 9

• Data movement – Defines routing of data between tasks

–One-To-One : Data from the ith producer task routes to the ith consumer task.

–Broadcast : Data from a producer task routes to all consumer tasks.

–Scatter-Gather : Producer tasks scatter data into shards and consumer tasks
gather the data. The ith shard from all producer tasks routes to the ith consumer
task.

• Scheduling – Defines when a consumer task is scheduled

–Sequential : Consumer task may be scheduled after a producer task completes.

–Concurrent : Consumer task must be co-scheduled with a producer task.

• Data source – Defines the lifetime/reliability of a task output

–Persisted : Output will be available after the task exits. Output may be lost later
on.

–Persisted-Reliable : Output is reliably stored and will always be available

–Ephemeral : Output is available only while the producer task is running

Edge properties define the connection between producer and
consumer tasks in the DAG

© Hortonworks Inc. 2014

Tez – Runtime API (IPO)

Flexible Inputs-Processor-Outputs Model
• Thin API layer to wrap around arbitrary application code

• Compose inputs, processor and outputs to execute arbitrary processing

• Event routing based control plane architecture

• Applications decide logical data format and data transfer technology

• Customize for performance

• Built-in implementations for Hadoop 2.0 data services – HDFS and YARN ShuffleService.
Built on the same API. Your impls are as first class as ours!

Page 10

Input Processor Output

© Hortonworks Inc. 2014

Tez – Runtime API (VertexManager)

• VertexManager

–Control on the flow execution engine in vertex level

© Hortonworks Inc. 2014

Tez – Logical DAG expansion at
Runtime

Page 12

Reduce1

Map2

Reduce2

Join

Map1

© Hortonworks Inc. 2014

Tez – Performance

• Benefits of expressing the data processing as a DAG
• Reducing overheads and queuing effects

• Gives system the global picture for better planning

• Efficient use of resources
• Re-use resources to maximize utilization

• Pre-launch, pre-warm and cache

• Locality & resource aware scheduling

• Support for application defined DAG modifications at runtime
for optimized execution
• Change task concurrency

• Change task scheduling

• Change DAG edges

• Change DAG vertices

Page 13

© Hortonworks Inc. 2014

Tez – Benefits of DAG execution

Faster Execution and Higher Predictability
• Eliminate replicated write barrier between successive computations.

• Eliminate job launch overhead of workflow jobs.

• Eliminate extra stage of map reads in every workflow job.

• Eliminate queue and resource contention suffered by workflow jobs that
are started after a predecessor job completes.

• Better locality because the engine has the global picture

Page 14

Pig/Hive - MR
Pig/Hive - Tez

© Hortonworks Inc. 2014

Outline

•Tez Introduction

•Tez API

•Tez Internal

•Tez Project Info

•Q & A

© Hortonworks Inc. 2014

Tez System Diagram

© Hortonworks Inc. 2014

Tez – Container Re-Use

• Reuse YARN containers/JVMs to launch new tasks

• Reduce scheduling and launching delays

• Shared in-memory data across tasks

• JVM JIT friendly execution

Page 17

YARN Container / JVM

TezChild

TezTask1

TezTask2

Sh
ar

ed
 O

b
je

ct
s

YARN Container

Tez
Application Master

Start Task

Task Done

Start Task

© Hortonworks Inc. 2014

Tez – Customizable Core Engine

Page 18

Vertex-2

Vertex-1

Start

vertex

Vertex Manager

Start

tasks

DAG
Scheduler

Get Priority

Get Priority

Start

vertex

Task
Scheduler

Get container

Get container

• Vertex Manager

• Determines task
parallelism

• Determines when
tasks in a vertex
can start.

• DAG Scheduler

Determines priority
of task

• Task Scheduler

Allocates containers
from YARN and
assigns them to tasks

© Hortonworks Inc. 2014

Tez – Sessions

Page 19

Application Master

Client

Start
Session

Submit
DAG

Task Scheduler

C
o

n
ta

in
er

 P
o

o
l

Shared
Object

Registry

Pre
Warmed

JVM

Sessions

• Standard concepts of pre-launch
and pre-warm applied

• Key for interactive queries

• Represents a connection between
the user and the cluster

• Multiple DAGs executed in the
same session

• Containers re-used across queries

• Takes care of data locality and
releasing resources when idle

© Hortonworks Inc. 2014

Use case of Tez

• Split Group by + Join

• Orderby

• Automatic Reduce Parallelism

• Reduce Slow Start/Pre-launch

© Hortonworks Inc. 2014

Split Group by + Join

f = load ‘foo’ as (x,y,z)
f1 = Group f By x;
f2 = Group f By y;
j = Join g1 by group, g2 by group

© Hortonworks Inc. 2014

Orderby

f = Load ‘foo’ as (x, y);
o = Order f by x;

© Hortonworks Inc. 2014

Tez – Automatic Reduce Parallelism

Page 23

 Map Vertex

Reduce Vertex

App Master

Vertex Manager

Data Size Statistics

Vertex State
Machine

Set Parallelism

Cancel Task

Re-Route

Event Model

Map tasks send data
statistics events to
the Reduce Vertex
Manager.

Vertex Manager

Pluggable application
logic that understands
the data statistics and
can formulate the
correct parallelism.
Advises vertex
controller on
parallelism

© Hortonworks Inc. 2014

Tez – Reduce Slow Start/Pre-launch

Page 24

 Map Vertex

Reduce Vertex

App Master

Vertex Manager

Task Completed

Vertex State
Machine

Start Tasks

Start

Event Model

Map completion
events sent to the
Reduce Vertex
Manager.

Vertex Manager

Pluggable application
logic that understands
the data size. Advises
the vertex controller to
launch the reducers
before all maps have
completed so that
shuffle can start.

© Hortonworks Inc. 2014

Outline

•Tez Introduction

•Tez API

•Tez Internal

•Tez Project Status

•Q & A

© Hortonworks Inc. 2014

Tez – Current status

• Apache Top Level Project
–Rapid development. Over 1500 jiras opened. Over 1100 resolved

–Growing community of contributors and users

–Latest release is 0.5

• Focus on stability
–Testing and quality are highest priority

–Code ready and deployed on multi-node environments at scale

• Support for a vast topology of DAGs
– Already functionally equivalent to Map Reduce. Existing Map Reduce

jobs can be executed on Tez with few or no changes

–Apache Hive 0.13 release supports Tez as an execution engine (HIVE-
4660)

–Apache Pig port to Tez is also done(PIG-3446)

–Cascading 3.0 support Tez

Page 26

© Hortonworks Inc. 2014

Tez – Adoption

• Apache Hive
• Hadoop standard for declarative access via SQL-like interface

• Apache Pig

• Hadoop standard for procedural scripting and pipeline processing

• Cascading
• Developer friendly Java API and SDK

• Scalding (Scala API on Cascading)

• Commercial Vendors
• ETL : Use Tez instead of MR or custom pipelines

• Analytics Vendors : Use Tez as a target platform for scaling parallel
analytical tools to large data-sets

Page 27

© Hortonworks Inc. 2014

Tez – Community

• Early adopters and code contributors welcome
–Adopters to drive more scenarios. Contributors to make them happen.

• Tez meetup for developers and users
–http://www.meetup.com/Apache-Tez-User-Group

• Technical blog series
–http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-

processing

• Useful links
–Work tracking: https://issues.apache.org/jira/browse/TEZ

–Code: https://github.com/apache/tez

– Developer list: dev@tez.apache.org
 User list: user@tez.apache.org
 Issues list: issues@tez.apache.org

Page 28

http://www.meetup.com/Apache-Tez-User-Group
http://www.meetup.com/Apache-Tez-User-Group
http://www.meetup.com/Apache-Tez-User-Group
http://www.meetup.com/Apache-Tez-User-Group
http://www.meetup.com/Apache-Tez-User-Group
http://www.meetup.com/Apache-Tez-User-Group
http://www.meetup.com/Apache-Tez-User-Group
http://www.meetup.com/Apache-Tez-User-Group
http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-processing
http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-processing
http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-processing
http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-processing
http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-processing
http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-processing
http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-processing
http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-processing
http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-processing
http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-processing
http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-processing
http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-processing
http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-processing
http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-processing
http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-processing
http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-processing
http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-processing
http://hortonworks.com/blog/apache-tez-a-new-chapter-in-hadoop-data-processing
https://issues.apache.org/jira/browse/TEZ
https://github.com/apache/incubator-tez
https://github.com/apache/incubator-tez
mailto:dev@tez.incubator.apache.org
mailto:dev@tez.incubator.apache.org
mailto:user@tez.incubator.apache.org
mailto:user@tez.incubator.apache.org
mailto:issues@tez.incubator.apache.org
mailto:issues@tez.incubator.apache.org

© Hortonworks Inc. 2014

Tez VS Spark

 Tez Spark

Solve DAG Computation Solve DAG Computation

Integrate Yarn from its beginning

Borrow lots of work from MapReduce
(e.g. Shuffle)

Start from scratch

Design for computing engine For general application developer

More API on the execution engine More friendly on API

Good performance (have potential to
improve once the streaming shuffle is
implemented or the in-memory HDFS is
integrated)

Better performance

Better scalability and stable

© Hortonworks Inc. 2014

Thank You!

Questions & Answers

Page 30

