QCon

www.qconferences.com

Guagua: An Iterative Computing Framework on Hadoop

Zhang Pengshan(David), PayPal

AGENDA

- Introduction
- Distributed Neural Network Algorithm
- What is Guagua?
- Guagua Advanced Features
- Shifu on Guagua
- Future Plans

AGENDA

- Introduction
- Distributed Neural Network Algorithm
- What is Guagua?
- Guagua Advanced Features
- Shifu on Guagua
- Future Plans

ALIPAY vs. PAYPAL

FRAUD TYPES IN PAYPAL

RISK CONTROL IN PAYPAL

RISK MODELING IN PAYPAL

MODELING CHALLENGES

Thousands of Features

Algorithms (LR, NN, DT)

Big Training Data

SLA (Online)

Simulation

RISK MODELING IN PAYPAL

Q: How to train models with TB data and thousands of features?

AGENDA

- Introduction
- Distributed Neural Network Algorithm
- What is Guagua?
- Guagua Advanced Features
- Shifu on Guagua
- Future Plans

DISTRIBUTED NEURAL NETWORK ALGORITHM*

^{*} Distributed batch gradient descent algorithm.

DISTRIBUTED NEURAL NETWORK ALGORITHM

WHY NOT MAHOUT OR SPARK?

Q: How to implement it in **Hadoop**?

POSSIBLE SOLUTIONS

	Hadoop YARN	Hadoop MapReduce			
	Flexible framework for framework	Works well on all Hadoop versions			
Pros	Self resource management	Mature computing model			
		Internal fault tolerance, splits, UI			
	2.0.3-Alpha	Different computing model			
Cons	PayPal Clusters: Hadoop 0.20.2	How to do iterative coordination?			
	Extra fault tolerance, splits, UI				

AGENDA

- Introduction
- Distributed Neural Network Algorithm
- What is Guagua?
- Guagua Advanced Features
- Shifu on Guagua
- Future Plans

ITERATIVE COMPUTING MODEL IN GUAGUA

Guagua is a framework over such iterative computing model, compared with Hadoop 1.0 over MapReduce.

GUAGUA API

MasterComputable

WorkerComputable

GUAGUA OVERVIEW

PLUGGABLE, SCALABLE INTERCEPTORS

GUAGUA RUNTIME

Master: Mapper (Container)

Worker: Mapper (Container)

GUAGUA RUNTIME

- 1. Master is listening znodes of workers.
- 2. Workers are listening znode of master.

GUAGUA RUNTIME

- 1. Data is loaded in worker memory in the first iteration.
- 2. Whole process is done when reaches maximal iteration or halt condition is triggered.

AGENDA

- Introduction
- Distributed Neural Network Algorithm
- What is Guagua?
- Guagua Advanced Features
- Shifu on Guagua
- Future Plans

FAULT TOLERANCE

FAULT TOLERANCE

* The same on workers.

STRAGGLER MITIGATION

3

STRAGGLER MITIGATION

3

STRAGGLER MITIGATION

PROGRESS AND STATE REPORT

	Task	Complete	Status		Start Time	Finish Time	Errors	Counters	
1	ask_201409031209_114530_m_000000	86.22%	Start master iteration	(433/501), progre	ss 86%	8-Sep-2014 22:56:01			11
t	ask_201409031209_114530_m_000001	86.02%	Complete worker cor	nputing (432/501)	progress 86%	8-Sep-2014 22:56:01			10
t	ask_201409031209_114530_m_000002	86.02%	Complete worker cor	nputing (432/501)	progress 86%	8-Sep-2014 22:56:01			10
t	ask_201409031209_114530_m_000003	86.02%	Complete worker cor	nputing (432/501)	progress 86%	8-Sep-2014 22:56:02			10
t	ask_201409031209_114530_m_000004	86.02%	Complete worker cor	nputing (432/501)	progress 86%	8-Sep-2014 22:56:02			10
t	ask_201409031209_114530_m_000005	86.22%	Complete worker cor	puting (433/501)	progress 86%	8-Sep-2014 22:56:04			10
t	ask_201409031209_114530_m_000006	86.02%	Complete worker cor	nputing (432/501)	progress 86%	8-Sep-2014 22:56:05			10
t	ask_201409031209_114530_m_000007	86.02%	Complete worker cor	nputing (432/501)	progress 86%	8-Sep-2014 22:56:05			10
•	ask_201409031209_114530_m_000008	86.02%	Complete worker cor	nputing (432/501)	progress 86%	8-Sep-2014 22:56:06			10
t	ask_201409031209_114530_m_000009	86.02%	Complete worker cor	nputing (432/501)	progress 86%	8-Sep-2014 22:56:06			10
1	ask_201409031209_114530_m_000010	86.02%	Complete worker cor	nputing (432/501)	progress 86%	8-Sep-2014 22:56:06			10
t	ask_201409031209_114530_m_000011	86.02%	Complete worker cor	nputing (432/501)	progress 86%	8-Sep-2014 22:56:06			10
1	ask_201409031209_114530_m_000012	86.02%	Complete worker cor	puting (432/501)	progress 86%	8-Sep-2014 22:56:06			10
t	ask_201409031209_114530_m_000013	86.02%	Complete worker cor	puting (432/501)	progress 86%	8-Sep-2014 22:56:06			10
	ask_201409031209_114530_m_000014	86.02%	Complete worker cor	nputing (432/501)	progress 86%	8-Sep-2014 22:56:06			10

GUAGUA UNIT

```
public class SumTest { 9
   private static final String SUM OUTPUT = "sum-output"; 9
   ·@Test¶
   public void testSumApp() throws IOException {
       Properties props = new Properties(); ¶
       props.setProperty(GuaguaConstants.WORKER COMPUTABLE CLASS, SumWorker.class.getName());
       props.setProperty(GuaguaConstants.GUAGUA ITERATION COUNT, "10"); 
       props.setProperty(GuaguaConstants.GUAGUA WORKER RESULT CLASS, LongWritable.class.getName());
       props.setProperty(GuaguaConstants.GUAGUA MASTER INTERCEPTERS, SumOutput.class.getName()); 9
       props.setProperty(GuaguaConstants.GUAGUA INPUT DIR, getClass().getResource("/sum").toString());
       props.setProperty("guagua.sum.output", SUM OUTPUT); 
       GuaguaUnitDriver<GuaguaWritableAdapter<LongWritable>, GuaguaWritableAdapter<LongWritable>> driver = - 9
              hew GuaguaMRUnitDriver<GuaguaWritableAdapter<LongWritable>, GuaguaWritableAdapter<LongWritable>>(
             ·props);
       driver.run();¶
       Assert.assertEquals(15345 + "", FileUtils.readLines(new File(SUM OUTPUT)).get(0)); 
····@After¶
  public void tearDown(){9
       FileUtils.deleteQuietly(new File(System.getProperty("user.dir") + File.separator + SUM_OUTPUT)); 9
       FileUtils.deleteQuietly(new File(System.getProperty("user.dir") + File.separator + "." + SUM_OUTPUT + ".crc"));
}9
```


AGENDA

- Introduction
- Distributed Neural Network Algorithm
- What is Guagua?
- Guagua Advanced Features
- Shifu on Guagua
- Future Plans

WHAT IS SHIFU?

Shifu* is an open-source, end-to-end machine learning and data mining framework built on top of Hadoop.

SHIFU ON GUAGUA (TRAIN STEP)

SHIFU CODE

ENCOG CODE

GUAGUA API

SHIFU NN vs. SPARK LR

Run Time Comparison

Shifu-NN: 1102*20*1 Network, 319 Mappers * 1G Spark-LR: 1102 features, 120 executors * 3G

SHIFU NN BENCHMARK RESULTS

All data are located in memory. At most we used 2400 mappers. 20 epochs are used.

AGENDA

- Introduction
- Distributed Neural Network Algorithm
- What is Guagua?
- Guagua Advanced Features
- Shifu on Guagua
- Future Plans

WHAT'S NEXT?

- More open source docs
- Support more (distributed) machine learning algorithms
- Improve YARN (Beta) implementation
- Support more input formats
- Big model support
- Deep learning support

Q&A

APPENDIX

- Website
 - http://shifu.ml
 - http://shifu.ml/docs/guagua/
- Guagua issue website
 - https://github.com/shifuml/shifu/issues
 - https://github.com/shifuml/guagua/issues
- Shifu & Guagua source code:
 - https://github.com/shifuml/shifu/
 - https://github.com/shifuml/guagua/

