
Turning data into products

Sam Shah

©2012 LinkedIn Corporation. All Rights Reserved.

LinkedIn: the professional profile of record

 250M Members 250M Member

Profiles

1 2

We have a lot of data.
We want to leverage this data to build products.

Applications

Homepage powered by data

We’re in the “pre-industrial age” of Big Data

§  Need “bridges & railways”

Algorithms

Year in Review

§  Steps to make the email

–  Collect job changers
–  Figure out who is connected

to them
–  Rank job changes

Example: Year in Review

memberPosition = LOAD '$latest_positions' USING BinaryJSON;	
memberWithPositionsChangedLastYear = FOREACH (
 FILTER memberPosition BY ((start_date >= $start_date_low) AND  
 (start_date <= $start_date_high))	
) GENERATE member_id, start_date, end_date;	
	
allConnections = LOAD '$latest_bidirectional_connections' USING
BinaryJSON; 	
	
allConnectionsWithChange_nondistinct = FOREACH (
 JOIN memberWithPositionsChangedLastYear BY member_id,  
 allConnections BY dest	
) GENERATE allConnections::source AS source,  
 allConnections::dest AS dest;	
 
allConnectionsWithChange = DISTINCT  
 allConnectionsWithChange_nondistinct;	
	
memberinfowpics = LOAD '$latest_memberinfowpics' USING  
 BinaryJSON;	
pictures = FOREACH (FILTER memberinfowpics BY 	
 ((cropped_picture_id is not null) AND  
 ((member_picture_privacy == 'N') OR  
 (member_picture_privacy == 'E')))	
) GENERATE member_id, cropped_picture_id, first_name as  
 dest_first_name, last_name as dest_last_name;	
	
resultPic = JOIN allConnectionsWithChange BY dest, pictures  
 BY member_id;	
connectionsWithChangeWithPic = FOREACH resultPic GENERATE	
 allConnectionsWithChange::source AS source_id,  
 allConnectionsWithChange::dest AS member_id,	
 pictures::cropped_picture_id AS pic_id,  
 pictures::dest_first_name AS dest_first_name,	
 pictures::dest_last_name AS dest_last_name;	
	
	

	
joinResult = JOIN connectionsWithChangeWithPic BY source_id,  
 memberinfowpics BY member_id;  
withName = FOREACH joinResult GENERATE	
 connectionsWithChangeWithPic::source_id AS source_id,  
 connectionsWithChangeWithPic::member_id AS member_id,	
 connectionsWithChangeWithPic::dest_first_name as first_name,  
 connectionsWithChangeWithPic::dest_last_name as last_name,	
 connectionsWithChangeWithPic::pic_id AS pic_id,  
 memberinfowpics::first_name AS firstName,	
 memberinfowpics::last_name AS lastName,  
 memberinfowpics::gmt_offset as gmt_offset,	
 memberinfowpics::email_locale as email_locale,  
 memberinfowpics::email_address as email_address;	
	
resultGroup0 = GROUP withName BY (source_id, firstName,  
 lastName, email_address, email_locale, gmt_offset);	
	
-- get the count of results per recipient	
resultGroupCount = FOREACH resultGroup0 GENERATE group ,  
 withName as toomany, COUNT_STAR(withName) as num_results;	
resultGroupPre = filter resultGroupCount by num_results > 2;	
resultGroup = FOREACH resultGroupPre {	
 withName = LIMIT toomany 64;	
 GENERATE group, withName, num_results;	
}	
	
x_in_review_pre_out = FOREACH resultGroup GENERATE  
 FLATTEN(group) as (source_id, firstName, lastName,  
 email_address, email_locale, gmt_offset),	
 withName.(member_id, pic_id, first_name, last_name) as  
 jobChanger, '2011' as changeYear:chararray,  
 num_results as num_results;	
	
x_in_review = FOREACH x_in_review_pre_out GENERATE	
 source_id as recipientID, gmt_offset as gmtOffset,  
 firstName as first_name, lastName as last_name, email_address,  
 email_locale,	
 TOTUPLE(changeYear, source_id,firstName, lastName,  
 num_results,jobChanger) as body;	
	
rmf $xir;	
STORE x_in_review INTO '$xir' USING BinaryJSON('recipientID');	
	

	

People You May Know

People You May Know

Alice Bob

Carol

People You May Know

Alice Bob

Carol
Dave

Eve

Organizational Overlap Age
Distance

Ranked
Matches

User
Interactions Results

…

Infrastructure

Skill sets

Top Complaints from Data Scientists

§  Discovery: where is the data?
§  Wrangling: can I make sense of the data?
§  Verifying: is the data correct?
§  Scaling: how can I scale my computation?
§  Workflow: how can I operate my processing?
§  Publishing: how can I get my results into production?

Top Complaints from Data Scientists

§  Discovery: where is the data?
§  Wrangling: can I make sense of the data?
§  Verifying: is the data correct?
§  Scaling: how can I scale my computation?
§  Workflow: how can I operate my processing?
§  Publishing: how can I get my results into production?

Discovery: where is the data?

Oracle
Oracle

Oracle User Tracking

Hadoop
Log

Search
Monitoring

Data

Warehous

e

Social

Graph

Rec.

Engine
Search Email

Voldemort
Voldemort

Voldemort

Espresso
Espresso

Espresso
Logs

Operational

Metrics

Production Services

...Security

§ O(n2) point-to-point data integration complexity

LinkedIn (circa 2010)

Infrastructure fragility

Applications Applications Applications Applications

Central
Logging
Service

HTTP HTTP HTTP HTTP

rsync

Staging
Servers

Data

Warehouse

Live datacenters

Ofine datacenters

Hadoop

•  Can’t get all data
•  Hard to operate
•  Multi-hour delay
•  Labor intensive
•  Slow
•  Does it work?

Ingress - O(n) data integration

Oracle
Oracle

Oracle User Tracking

Hadoop
Log

Search

Monitorin

g

Data

Warehous

e

Social

Graph

Rec

Engine &

Life

Search Email

Voldemort
Voldemort

Voldemort

Espresso
Espresso

Espresso
Logs

Operational

Metrics

Production Services

...Security

Data Pipeline

LinkedIn (2013)

Ingress – Apache Kafka

§ Multi-broker publish/subscribe system

§ Categorized topics

–  “PeopleYouMayKnowTopic”

–  “ConnectionUpdateTopic”

Topic 1

Topic 2

Pr
od

uc
er

s
Pr

od
uc

er
s

Consumer

Consumer

Topic
partitions

Brokers

Writes

Table Index Index
Material

ized
View

Commit Log...

What is a commit log?

Top Complaints from Data Scientists

§  Discovery: where is the data?
§  Wrangling: can I make sense of the data?
§  Verifying: is the data correct?
§  Scaling: how can I scale my computation?
§  Workflow: how can I operate my processing?
§  Publishing: how can I get my results into production?

Data model

{!
 tracking_code=null, !
 session_id=42,!
 tracking_time=Tue Jul 31 07:27:25 PDT 2010,!
 error_key=null, !
 locale=en_us, !
 browser_id=ddc61a81-5311-4859-be42-ca7dc7b941e3,!
 member_id=1214, !
 page_key=profile, !
tracking_info=Viewee=1213,lnl=f,nd=1,o=1214,^SP=pId-'pro_stars',rslvd=t,vs=v
,vid=1214,ps=EDU|EXP|SKIL|,!
 error_id=null, !
 page_type=FULL_PAGE, !
 request_path=view!
 ...!
}!

LinkedIn (circa 2010)

Schemas

§  Schemas are the contract
–  DDL for data definition and schema

§  Central versioned registry of all schemas
§  Schema evolution with programmatic checks

Audit trail

Top Complaints from Data Scientists

§  Discovery: where is the data?
§  Wrangling: can I make sense of the data?
§  Verifying: is the data correct?
§  Scaling: how can I scale my computation?
§  Workflow: how can I operate my processing?
§  Publishing: how can I get my results into production?

Models of computation

§  Sub-second processing
§  Harder to scale
§  Must handle failures gracefully

§  Computationally intensive
§  Easier to scale
§  Easier to tolerate failures
§  Faster iteration

Online Offline Nearline

Models of computation

§  Sub-second processing
§  Harder to scale
§  Must handle failures gracefully

§  Computationally intensive
§  Easier to scale
§  Easier to tolerate failures
§  Faster iteration

Online Offline Nearline

Hadoop

Why we use Hadoop

§  Simple programmatic model
§  Rich developer ecosystem

–  Languages: Pig, Hive, Crunch, Cascading, …
–  Libraries: Mahout, DataFu, ElephantBird, …

§  DataFu
–  Large-scale machine learning and statistical operations

§  Horizontal scalability, fault tolerance, multi-tenancy
–  Reliably process multiple TB of data

Models of computation

§  Sub-second processing
§  Harder to scale
§  Must handle failures gracefully

§  Computationally intensive
§  Easier to scale
§  Easier to tolerate failures
§  Faster iteration

Online Offline Nearline

Apache Samza – “MapReduce for streams”

Samza

 SELECT COUNT(*) FROM PageViewEvent GROUP BY member_id

Samza: State Management

Samza: State Management

Top Complaints from Data Scientists

§  Discovery: where is the data?
§  Wrangling: can I make sense of the data?
§  Verifying: is the data correct?
§  Scaling: how can I scale my computation?
§  Workflow: how can I operate my processing?
§  Publishing: how can I get my results into production?

People You May Know – Workflow

Perform triangle closing
for all members

Rank by discounting previously
shown recommendations

Push recommendations
to online service

Connection

 data

Impression

 data

37

People You May Know – Workflow (in reality)

Workflow Management - Azkaban

§ Dependency management

§ Diverse job types

§ Scheduling

§ Monitoring

§  Visualization

§ Configuration

§ Retry/restart on failure

§ Resource locking

Top Complaints from Data Scientists

§  Discovery: where is the data?
§  Wrangling: can I make sense of the data?
§  Verifying: is the data correct?
§  Scaling: how can I scale my computation?
§  Workflow: how can I operate my processing?
§  Publishing: how can I get my results into production?

People You May Know – Workflow

Perform triangle closing
for all members

Rank by discounting previously
shown recommendations

Push recommendations
to online service

Connection

 stream

Impression

 stream

Member Id 1213 =>

[Recommended member id 1734,

 Recommended member id 1523

 …

 Recommended member id 6332]

Egress – Key/Value

§  Voldemort

–  Based on Amazon’s Dynamo

§ Distributed and elastic

§ Horizontally scalable

People you may
know service

Voldemort

Hadoop

Batch load

getRecommendations(member id)

Systems (all open source)

§  Apache Kafka: publish/subscribe commit log

§  DataFu: Common data routines

§  Apache Samza: stream processing framework

§  Azkaban: workflow management

§  Voldemort: key/value store

Empowers data scientists and engineers to focus on
new product ideas, not infrastructure

data.linkedin.com
Learning More

