Ingres® 9.3

Star User Guide

INGR=S

This Documentation is for the end user's informational purposes only and may be subject to change or withdrawal
by Ingres Corporation ("Ingres") at any time. This Documentation is the proprietary information of Ingres and is
protected by the copyright laws of the United States and international treaties. It is not distributed under a GPL
license. You may make printed or electronic copies of this Documentation provided that such copies are for your
own internal use and all Ingres copyright notices and legends are affixed to each reproduced copy.

You may publish or distribute this document, in whole or in part, so long as the document remains unchanged and
is disseminated with the applicable Ingres software. Any such publication or distribution must be in the same
manner and medium as that used by Ingres, e.g., electronic download via website with the software or on a CD-
ROM. Any other use, such as any dissemination of printed copies or use of this documentation, in whole or in part,
in another publication, requires the prior written consent from an authorized representative of Ingres.

To the extent permitted by applicable law, INGRES PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IN NO EVENT WILL INGRES BE LIABLE TO THE
END USER OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USER OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF INGRES IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The manufacturer of this Documentation is Ingres Corporation.

For government users, the Documentation is delivered with "Restricted Rights" as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Copyright © 2009 Ingres Corporation. All Rights Reserved.

Ingres, OpenROAD, and EDBC are registered trademarks of Ingres Corporation. All other trademarks, trade names,
service marks, and logos referenced herein belong to their respective companies.

Contents

Chapter 1: Introducing Ingres Star 9
T =) = 9
Y 8 T 11T o =P 9
L@ TU L= VA 1= o T U = o = S 9
oIS =11 = o] I @fe] o TYTa [T =1 u o o = PR 10
Setup for REMOte Database ACCESSuiiuiiiii ittt et e et e e e s e e enes 11
Command Syntax for Accessing a Distributed Database.......ccccooviiiiiiiiin 12
Examples: Accessing Distributed Databases..........oveiiiiiiiiii s 12
Chapter 2: Understanding Ingres Star Architecture 13
Distributed Databaseo.viuiiiiiiiiiii et 13
Creation of a Distributed Databaseciuiiiiiiiiiii i 13
Registration of Distributed Database Tablesccooviiiiiiiiii e 14
Population of the Distributed Database......ccuviiiiiiiiiiii i e ea s 14
L@F=1 = o o |3 14
L@ oy 1= ot 1N 0= 15
B Yo [=TS =Y gl O] g a1 Y] =] o | =P 15
S = o] 1 o 0 16
SYStemM ArChItECEUNE ... s 16
Configuration ACCESS EXamMPlES. . uuiiiiiiii ittt a e a et a e e e e e e e e e e e aneeaeeannans 17
Example: Single Node Configurationoeieiiiiiii et e e e 18
Example: Two Node Configurationouoiiiiii et e e 19
Example: Three Node Configuration.......oiieiiiiiiiii i it e e eanees 21
(D)1 gl o TUN =T B W =Y 1= Tt T] T PP 22
B Yo Tl o = =T < o 1 o) N 23
When Two-Phase Commit IS NOt USEd......oviiriiiiiiiiiiii it s e e s e e s 24
Simulated TWOo-Phase CommMit ..o et e e e e e e aaanes 24
L= L VAT O L 25
(@ 1B L= VA o a1 o] = 26
Chapter 3: Preparing to Install Ingres Star 27
Installation ReQUINTEMIENESuiii ittt sttt et s e et e e e a e e e enes 27
Installation Prompts for INgres Star....uiii it i e e a e eaneanes 28
SEar SEIVEN SEaAITUP . et 28
Operating System ReqUINEMENTS. ...ttt e e e e e e eeenes 29
How User Authorization to Nodes Is Established..........coviiiiiiiiii e 29
INSTAllation PaSSWOIAS . uuuieit ittt ettt ettt ettt e a et e e et et e e et 29

Contents iii

User Authorization Using Netutil and Ingnet ..o 31

Global and Private AUthOFZatioNSvuvieiii 31
How User Authorization to the Local Node Is Establishedc.ccoviiiiiiiiiiiiiiiiic e 32
Authorization in Netutil and Inget for RECOVEIY......cuiiuiiiii i 32
AN Ldalo] g 4= ule] g T = C= 11 41 o] (=T PP 32
Chapter 4: Maintaining a Distributed Database 37
Distributed Database MaintenancCe TasKs ...icvviiiiii i e e e e e e s e e e raneannes 38
VDBA and Distributed Database MaintenanCecooviiiiiiiiiiiii 39
Commands for Performing Distributed Database Maintenancec.ccvviiiiiiiiii i e 39
Statements for Performing Distributed Database Maintenance..........oovviiiiiiiiiiiii i e 40
[NE=T 0 11 Lo e o 12T o} o o o = 40
Database Naming RESEIICHIONS. vttt et e e e e s e e s e e s e e raaeananens 40
SIZING AL DULES e 41
=1 V2= O = 1= PP 41
L= 1 <P 41
(@19 <F=1 =T | s 1 @] o 01 2.0 1=1 o [[P0 PP 45
EXamples: Createdb ..o e 46
[DJ=TS e)7 o I @o] o Vo s = T [P 46
EXamMPle: DeStrOyaD .. et 46
Register as Link Statement—Define Database Objects to Ingres Starccovvviiiiiiiiiiiicicee e 47
Register Table as Link Statement—Define Table to Ingres Starccocoiiiiiiiiiiii s 50
Register View as Link Statement—Define View to Ingres Star.......ccocviiiiiiiiiiiiiic i 53
Register Procedure as Link Statement—Define Procedure to Ingres Star........ccovveviiiiiiiinnnnnns 55
Catalogs for the Register Statemento e 56
Execute Immediate Statement--Execute Register as Link Statement Dynamically.................... 56
Register as Link with Refresh Statement—Refresh Registrationc.ccoviiiiiiiiiii i 57
Register as Link with Refresh ReStriCtioNSiiieiii e 58
Effects of Register as Link with Refreshcooiiiiiii e 59
Example: Register as Link with Refreshcooiiiiiiii e 60
Using Register with Enterprise ACCESS ProdUCESouieiiiiiii e e e e 61
Remove Statement—Remove Registration.........ccoiiiiiiiii i 62
Remove Table Statemento 63
REMOVE VieW Statemient ... e e e e e e e 64
20T g LoV I e o Yol =Ta (8L S IS) =) (=T o 1= L PP 64
Create Statemento 65
Create Table Statement .. 65
Create View Statement . i e e 69
(O =T L Y TN o L = G 69
[0 o TS = =] g = o 69
Drop Table StatemeEnto.vii e 70
[Lan] o] (ST B ge] o T =1 o1 L= T PP 70

iv Star User Guide

Drop View Statement ..o e 70

Table Registration UsSiNg StarViEW . ..o et e e e s e e e e sar e aneaaneanes 70
(3] I @) o To{ WY /=1 [o) VN 1 o Yo =P 71
Chapter 5: Using a Distributed Database 73
Connecting Directly to a Local Databasec.viiriiiiiii s 73
Direct Connect Statemento e 74
Direct Disconnect Statement ... s 76
Direct Execute Immediate Statement......c.ciiiiiiiiiii 77
Direct Connect and Direct Execute Immediate Compared.........cooeieiiiiiiiiiiiiiie e reaeeaas 80
Unloading and Reloading @ Database........ccoviiiiiiiii e 81
Example: Unloaddb ..o s e e 82
(@0e]0)%TaTs [@] o) =Tol =3 U1 a Lo I lo] 017 | s PP 83
EXAMIPIE: COPYAD .. 84
Modifying Catalogs USiNg SYSMOQ .. .ueiiriiiiiiiii i et r e e e e e s e s a e s e e e e aan e e aneaaneannes 85
Lot T o] (S V=] o o T [85
Updating Catalog Information Using verifydb ..o 86
EXamples: VM YA e e 87
(0] gL == Tol Qi I = 1=3= [f o o = 88
dbmsinfo() Function—Request Information from a Database.........c.covviiiiiiiiii i 88
help register Statement—Get Help with ObjJects.....cccviiiiiii i e 91
Chapter 6: Managing a Distributed Database with StarView 93
StarView Capablilties . ..o e 93
[\{[oXV4 T aTo AN o181 a o BT o I Y = [VAT =) PR 94
L@ 07T o= o 1= 1 =T o U 94
Options for Selecting an Operationcciiiiiiiii e 95
(0] gl et Y=T o Ty LA Y7 o 1= o T PP 96
IS o= L o o= T 97
STArVIEW MEBNMU Attt ettt st et st sttt st st s e e st st s et s e e e e e s 97
The DDB CONEENTS MaD 1.ttt ittt i i e e et e et e st e s te et e ta e saa e sn e sanesneaaneanneanneans 98
The SEarViEW Main Framie oottt e e e et et e et e e et e a e e et e et e e s e an e st anseanannannans 98
Select a Distributed Databasecouiieiiniiii s 99
Node Status and Local Database TypeS Frame ...ciiiiiiiiiiii i naea s 100
[(@] o) B @ =T =1 (o] o 1P 102
[T 7 ot ol @ oY= =] o [o 102
YO] @ o= = of o] IS 103
L= o] (== @ 0 1= o= o] o 104
LIS (o T 3@ o =T o= | o I 104
=TS B T @ o 7= = o o P 105
LS N (o e LR U T o B L PP 105

Contents v

Distributed Database ContENtS FramiE. i iiiiiii ittt triiiirr e e s s rranaasteeesstraanssnreerrrannnns 106

DDB Contents Frame Operations ...uuiiiiiiiii s iiie it s saae s saee s sanre s saanessanseesaannesaannenrans 108
LT] o)A Nutu g @] o =T = ol T o I P 109
L = e X TSI @ 01T = o [0 o 111
RN (R R G aa o)V = O] 01 =) o] o H PPN 113

Remove @ Registration......c.iviiiiiii e 113
SR O g LT g 1= @ o T=T o= f o o [114

BRI\ [oTe (=] o T=1 o M@ =] =1 (o] o PP 115

RSB =] =1 o @] o 7= =1 ol o) o I 116

The OwnerHelp Operation ... e e r e e s e e rne e aneas 117
Register Tables With STarVieW ... e r e a e aeans 117

Register Tables in a Distributed Database........c.ocvuiiiiiiiii e 118

Register Other Database ObJeCtS.ciiiiiiiiiiii i e e aeas 119
Chapter 7: Understanding Ingres Star Catalogs 121
| g To] ST = |l @1 = o o | 121

(1] s e 1o I =] =] [T 1= PP 121

Y= aLe =1 o IOt =1 o Yo [PPN 125

1SV =T =1 =] [Yo [O 127
Mapping INgres Star ODJeCS ... o s 128

Registered Names and Related Catalogs.....uvviiiiiiiii i e e 128

Tables and Related Catalogs .. .ouiueiniiiiii e e e e 128

| Te [=50 Q=T o o 1o e 129

Table and ColumN MapPiNg «ooueiieeiieiie it s e a et a e e e anesaneeareeanesaneaaresarens 129

Physical Information and Statistics Mapping........ccveiie i e 129

Local Tables IndeX INformationouoiuiiriiii e e e e e raeas 129

Views and Related Catalogs . .uuiei ittt i i e e e e e e e e e e 130

Registered Procedures and Related Catalogscovvuiieieiiiiiii i 130
Appendix A: Release Compatibility 131
Utilities for Updating a Release 6.4 Star Databasecoviiiiiiiii i e 131

Ingres Star and Upgradedbo.oeiiieiii i e 131

Ingres Star and Upgradefe ... e 133
How You Determine Local and Remote RDBMS Server Releases........ccvvvviiiiiiiiiiiiniiniens 134
Appendix B: SQL Statement Summary 135
Statements Supported by INGreS Star......o.viiiiii i e e aaaas 135

1Yo | T D T=To E= Tl TS <ot o [o T 135

[1| PPN 135

(o 2 10 1 1 135

vi Star User Guide

{51 o 1 P 136
(@1 T ot I IR o | PP 136
(O T 1oL 1= o = 136
L ST LY 136
(O =T] g = L= g 0 = o | (= N 136
[Lol =1 ol <R 1= o] = PP 137
7] = o= PP 137
[=T e o] =T ot o 137
[0 X =T ot a1 £ 00 g =T ot S 137
Direct EXecute ImMmediateciiiiii it 137
[1=l ¥ =T ot P 137
5 0 oL 137
127 o= 0 1 o] | PP 138
=] ool B T=Tel oY o =TT =T o u o o T PP 138
] Lo £ =] 1T ot o PP 138
Execute ImMmediate ..o s 139
o oW <Y o o Tl =T [U] T PP 139
o 1= 139
Lo 6T = 139
g o [11 =T | PR 139
= o 139
o [W= =T X1 o PP 140
Register As Link With Refresh ... e e 140
=T 1 10 Y7 140
=T 0L T= L @ T L=T o =N 140
1200] | 5= Lol QPP 140
L= V= o o T o | P 141
1S = [oL v 141
1T PP 141
1T = o | 142
L8]0 =) (T PP 142
LA A= TSN YZ= T PN 142
SQL Statements Not Supported by INGres Starooviiiiiii e 143
Terminal Monitor Statements Not Supported by INgres Star.......ccoviiiiiiiiiii i e 145
Appendix C: Standard Catalog Interface 147
Standard Catalog Interface and INgres Star......oov i iiiiii i e e 147
(@ =] [T I o] o' p ¢ =) 3 P 147
L@F=1 =] (o o [P 148
The iialt_columns Catalog ..ovieiieiiiiii e e s e e e e e e aeeas 148
R ST LLele] 18 g] F-ROF) ir=] [o T For PP 148

Contents vii

The iidbcapabilities Catalogouiiuiiii i e as 150

The iidbconstants Catalog ...uiueiiiiii i e e e e e e e e 153
The iihistograms Catalogcouiiiiiii et e e e e e e aaees 153
The iiindex_columns Catalogoiuiiiiiiiii e r e r e e anens 154
The HINAEXES Catalog vouviiiii it e e e e e et e e e et erae e sae e ran e rar e rneenneannas 154
The iiintegrities Catalog ...t 155
The iimulti_locations Catalogo e e e aes 156
The HPermMits Catalog. ..ot e e e e e e e e e et e e st e rneeeeannes 156
The iiphysical_tables Catalogo e 157
The iIprocedUIres Catalog....ou it e e st e ean e anerrennenes 159
The iiregistered_ 0bjects Catalog. . ..oivuiiiiiii i e 160
The iiregistrations Catalogouie i e e e e e e 160
The liStats Catalog ..u.ei i e s et e e r et e e s 161
The HEables Catalog .. oo e e e e e e e e e e e e e 162
The IVIEWS Catalog ..uceieiie i et et e e e e e e e a e e e e e es 167
Index 169

viii Star User Guide

Chapter 1: Introducing Ingres Star

Ingres Star

Audience

This section contains the following topics:

Ingres Star (see page 9)

Audience (see page 9)

Query Languages (see page 9)

Installation Considerations (see page 10)

Setup for Remote Database Access (see page 11)

Ingres® Star (formerly Ingres Distributed Option) is a distributed data
manager that adds to Ingres a distributed relational database management
system capability, which includes distributed access, storage, and processing.
You can include multiple hardware and operating systems (mainframe, mid-
range, and desktop) and database management systems in this distributed
system.

With Ingres Star, you can combine many separate databases into a single view
of your data, which you can access just as you would any single, local
database. If you install Ingres Net and the Enterprise Access products along
with Ingres Star, you get transparent, simultaneous access across multiple
nodes, hardware platforms, and software configurations by means of multiple
network communication protocols.

This guide is addressed to two levels of Ingres users:

®m For end users, this guide explains the concepts of distributed database
processing and how Ingres Star provides access to data in multiple local
Ingres databases, and to non-Ingres databases through the use of
Enterprise Access products.

®m For the system administrator and the database administrator, this guide
details how to use and maintain Ingres Star and the catalogs. Individual
product guides address installation and maintenance of the Enterprise
Access products.

Query Languages

This guide uses the industry standard query language, SQL. QUEL is not
supported in Ingres Star.

Introducing Ingres Star 9

Installation Considerations

Installation Considerations

The type and location of the databases you wish to access determine which
Ingres products you must install.

® For local data access:

Ingres by itself works with one database at a time on your own computer.
Therefore, to access a single database on a single computer, just install
Ingres on your local computer.

® For remote data access:

When your computer is part of a network, Ingres Net allows you to access
a single database stored on another computer from your local computer.
Therefore, to access a database on a remote computer, you must install
Ingres Net both on your local computer and the remote computer.

For information, see the System Administrator Guide. For information
about using Ingres Net with Ingres Star, see Setup for Remote Database
Access (see page 11).

®m For heterogeneous data access:

The Enterprise Access products allow you to access data stored in non-
Ingres databases. Therefore, to access a non-Ingres database, install the
appropriate Enterprise Access for that database type. See the guides that
are specific to that Enterprise Access.

Note: If the non-Ingres database is on a remote computer, you must also
install Ingres Net.

® For distributed data access:

Ingres Star gives you access to multiple databases simultaneously. You
need not even know where the data you need resides. The other databases
and their configurations are invisible to you. You work transparently with
Ingres Star distributed database as if it were a single local Ingres database
on your own computer.

Combining Ingres Star with Ingres Net gives you access to remote as well
as local databases, no matter where those databases are stored on your
network.

Combining Ingres Star with Enterprise Access products allows you to
access both non-Ingres and Ingres databases, or even several different
types of non-Ingres databases. For example, you can create a distributed
database that contains Ingres, DB2, and IMS data. By joining them
together in a single distributed database, you can perform complex
operations such as joins and subselects between DB2 and IMS data that
would be very difficult without the use of Ingres Star.

Combining Ingres Star with Ingres Net and Enterprise Access or EDBC
products allows you to access both Ingres and non-Ingres databases
simultaneously, anywhere on your network.

10 Star User Guide

Setup for Remote Database Access

Setup for Remote Database Access

To work with an Ingres database stored on another computer, the computer on
which you are entering commands and the computer that contains the
database must be connected by a network. (The computer on which you are
entering commands is called the /ocal node and the computer that contains the
database is called the remote node.)

To work on an Ingres database on a remote node, the following setup is
required:

Ingres Net must be installed on your local node and on each remote node.

Either you or the system administrator must use the netutil or ingnet
utility to define each remote node that contains a database that you want
to access. Defining a remote node gives it a vnode (virtual) name. From
then on, you need only specify the vnode name of the remote node and
the name of the database. Net handles the details of gaining access to the
remote node.

Ingres Star users must be authorized on the local node as well as each
remote node they wish to access, unless installation passwords are used.
This authorization is also done through the netutil or ingnet utility. Use
netutil or ingnet on your local node to define your login authorization to
your account on the remote node. (Alternatively, the system administrator
must define your access to a public guest account on that remote node).

Note: You need to define authorization to your account on a remote node
only once. Your authorization remains until you delete it.

If installation passwords are used, the installation password of a remote
node must be entered with netutil or ingnet.

For additional details, see Define User Authorization to Nodes on the Network
(see page 29).

Introducing Ingres Star 11

Setup for Remote Database Access

Command Syntax for Accessing a Distributed Database

The syntax for accessing a distributed database by means of Ingres Star is:

IngresCommand [vnode: :]distdbname/ server_class
IngresCommand

Is an Ingres command.
vnode

Indicates the name of your distributed database that resides on a remote
node.

/server_class
Indicates the server class.

Always use /star, which signifies that you are accessing a distributed
database through the Star Server. This requirement applies even for
accessing Ingres Enterprise Access databases through Ingres Star.

Examples: Accessing Distributed Databases

To open the Ingres Menu and access a distributed database on your local node,
type the following command:

ingmenu d7stdbnamel/star
The /star parameter signifies the Star server class.

To open the Ingres Menu and access a distributed database on a remote node
whose vhode name is paris, type the following command:

ingmenu paris::distdbname/star

In this case, you must specify both the vhode name of the remote node and
the Star server class.

Whether the distributed database is on your local node or on a remote node,
once you have accessed the database by means of Ingres Star, you can work
on the database as if it were a collection of tables in a single Ingres database.

12 Star User Guide

Chapter 2: Understanding Ingres Star
Architecture

This section contains the following topics:

Distributed Database (see page 13)

System Architecture (see page 16)
Configuration Access Examples (see page 17)
Distributed Transactions (see page 22)
StarView Utility (see page 25)

Query Optimizer (see page 26)

Distributed Database

Ingres Star lets you access data from multiple databases, linking the
information together so that it seems to be in a single database. This single
database is referred to in the rest of this guide as the distributed database.

A distributed database does not reside physically on a disk. The actual data is
contained in the multiple databases accessed by Ingres Star. These databases
are referred to in the rest of this guide as local databases.

A DBMS Server must be running on each computer that has a database you
are accessing.

Setting up a distributed database requires you to:

® Create an empty database

m Register tables

® Populate the database with the tables

m Understand Ingres Star catalogs, object types, and components

Creation of a Distributed Database

To create a distributed database, use the Ingres createdb command described
in Createdb Command (see page 45). This command creates an empty
distributed database.

Understanding Ingres Star Architecture 13

Distributed Database

Registration of Distributed Database Tables

After you create a distributed database, you must decide which tables will
make up the distributed database. These tables can be entire local databases
or a selection of tables from local databases. They are incorporated into the
distributed database by registering them.

Tip: Registration simply describes the logical connection (link) between an
object in the distributed database and an object in a local database. A
registration is not an object in the same way that a table, view, or index is an
object.

When you issue a query to Ingres Star, it generates sub-queries to the local
databases, mapping table and column names occurring in the query into their
corresponding local table and column names. Ingres Star cannot recognize
local table or column names unless they have been registered in the
distributed database.

Population of the Distributed Database

Catalogs

You can populate the distributed database with tables in three ways:

®m By registering tables that exist in local databases. Register the names of
existing tables in your distributed database using the register as link
statement.

®m By creating new tables at the Ingres Star level, which automatically
registers them in your distributed database. When you are connected to
the Star Server and create a new table with the create table statement,
you create a table locally and register its name in your distributed
database.

®m By creating new tables in local databases at the local level and then
registering these new tables in your distributed database.

For discussions of the register and create commands, see the chapter
“Maintaining a Distributed Database with StarView.”

When you create a distributed database, Ingres Star creates catalogs to
coordinate access to all the data. The catalogs are a collection of tables that
store information about the distributed database. They describe every local
database that is a component of the distributed database, as well as the
distributed database’s objects. For a complete description of the catalogs, see
the chapter “Ingres Star Catalogs” and the appendix “Standard Catalog
Interface.”

14 Star User Guide

Distributed Database

Object Types

Although a distributed database connects to data stored in local databases, it
contains its own set of objects. These objects have the same types as those of
a local database:

Tables
Views
Procedures

Indexes

The above description for registering tables includes the registration of views.
You can also register database procedures. Indexes are registered
automatically when you register the tables they belong to.

Ingres Star Components

In Ingres Star, a distributed database is defined by the following components:

A Coordinator Database (CDB)

A coordinator database contains the catalogs that the Star Server uses to
keep track of distributed objects. When a user requires information, the
Star Server accesses the coordinator database and associated local
databases through the local DBMS Server to get the information. (Although
the coordinator database is an Ingres database and can be accessed just
like any other database, it is intended to be used solely by the Star Server,
so it is advisable to access the coordinator database through Ingres Star

only.)
Entries in installation definition catalogs (iidbdb information)

These entries contain information that define each distributed database
and coordinator database in the installation, and show which coordinator
database is associated with which distributed database. They also contain
configuration information that allows Ingres Star to efficiently process
queries.

Optional user-specified links to data in other databases

Optional links to other data are generated by the Register as Link
Statement (see page 47). When you register existing data to a distributed
database, information on the location of the data is added to the Ingres
Star-specific catalogs in the coordinator database.

Understanding Ingres Star Architecture 15

System Architecture

Security

You can register tables and views that are not owned by you. However, even
though you may have registered a table or view in your distributed database,
you still must have the necessary permissions to access those tables and views
before you can access them through your distributed database.

System Architecture

The following diagram shows a simple database access in Ingres:

T

Local DB MS

| LocalDEMS

16 Star User Guide

Configuration Access Examples

The Star Server receives requests for data from multiple clients and passes
those requests for data to a local DBMS Server. (The Star Server never directly
accesses data in a database.) The local DBMS servers can support
simultaneous user access to local databases and queries from the Star Server.
The local DBMS accesses its database and returns the results. The Star Server
returns the results of the distributed query to the application.

Star can also access non-Ingres databases through Enterprise Access products.
The following diagram shows how Ingres Star accesses data on two Ingres
databases and one non-Ingres database linked by means of an Enterprise
Access product:

Ingres
Tools

and

Applications

Locsl DBMS

Entrprise Acoess

Configuration Access Examples

The following examples illustrate various Ingres Star configurations and show:

m Components of a distributed database, including Ingres Net, and the
communication between the components

®m Syntax for entering a distributed database session (which may differ
according to the configuration)

m Definition of distributed objects and how this reflects the underlying
configuration

In the examples that follow, the name of the distributed database is DISTDB.

Understanding Ingres Star Architecture 17

Configuration Access Examples

Example: Single Node Configuration

The following diagram shows the client and the complete Ingres Star
configuration on one node (Node A) and in one installation. The distributed
database DISTDB consists of two local databases, DBLOC_A1 and DBLOC_AZ2,
as well as the coordinator database IIDISTDB. As shown in the following
diagram, Ingres Star’s access to the local databases as well as to its catalog
information in the coordinator database is through a local DBMS:

Node A
Local Local Local
Dalahane Datahase Dahhaea
DELIOC—A1 BT DEDC—AY

To invoke the Terminal Monitor on the distributed database, issue the following
command at the operating system prompt:

sql distdb/star

To incorporate TABLE1 in database DBLOC_A1 into the distributed database,
issue the following statement in an application or an SQL session:

register table tablel as link
with node = node_a,
database = dbloc_al;

When a Ingres Star user requests data from TABLE1, the Star Server passes
the request to the local DBMS, which gets the information from DBLOC_A1.

18 Star User Guide

Configuration Access Examples

Example: Two Node Configuration

In the following diagram, the client and the Star Server are on the same node,
Node A. One of the databases, DBLOC_A1, resides on Node A and the other
database, DBLOC_B1, is on the remote Node B. The coordinator database
resides, as always, on the same node as the Star Server:

Node &

Inares
Tools
and

Anplications

|
(e - &

DBMS

Lacal
DBMS

Understanding Ingres Star Architecture 19

Configuration Access Examples

The configuration requires Ingres Net to be installed on Node A and Node B. In
addition, Ingres Star users on Node A must have access to an account on Node
B and must have supplied Ingres Net with the account information using the
Net utility netutil or must have entered the installation password to Node B on
Node A with netutil. (For further information on netutil requirements in a
distributed environment, see the System Administrator Guide.)

To invoke the Terminal Monitor on the distributed database, issue the following
command at the operating system prompt:

sql distdb/star

To incorporate TABLE2 in database DBLOC_B1 into the distributed database,
issue the following statement in an application or an SQL session:

register table table2 as link
with node = node_b,
database = dbloc_bl;

When an Ingres Star user accesses TABLE2, Ingres Star requires a network
connection to DBLOC_B1 to access TABLE?2.

20 Star User Guide

Configuration Access Examples

Example: Three Node Configuration

The following diagram shows the client on one node, Node A, the Star Server
and the coordinator database on another node, Node B, and a local database,
DBLOC_C1, on a third node, Node C:

Ingres
Tools
and

Applications

Local
DBEMS

Locsl
LaEbss=

IDIETDE
[CDE)

This configuration requires Net on all three nodes and either:

m netutil entries for the user on Node A (authorizing a connection to Node B)
and on Node B (authorizing a connection to Node C), or

® An installation password for Node B on Node A, and an installation
password for node C on Node B

To invoke the Terminal Monitor on the distributed database, you must supply a
node name as follows at the operating system prompt:

sql node_b::distdb/star

To incorporate TABLE3 in database DBLOC_C1 into the distributed database,
issue the following statement in an application or an SQL session:

register table table3 as link
with node = node_c,
database = dbloc_cl;

When an Ingres Star user accesses TABLE3, Ingres Star requires a network
connection to DBLOC_C1 to access TABLE3.

Understanding Ingres Star Architecture 21

Distributed Transactions

Distributed Transactions

A distributed transaction is a transaction that spans more than one local
database. To the Ingres Star user, a distributed transaction looks like a
transaction on a single local database. The user issues a single commit or
rollback statement to end the distributed transaction. But a distributed
transaction may actually involve multiple local transactions. If it does, Ingres
Star coordinates these local transactions so that they behave like a single
transaction. Therefore, either all of the data in a distributed transaction is
committed or none of it is. Ingres Star uses a protocol known as a two-phase
commit to ensure that this is what happens.

22 Star User Guide

Distributed Transactions

Two-Phase Commit

The term two-phase commit comes from the fact that there are two phases to
committing a distributed transaction where two or more databases are
updated. The two phases consist of:

Agreement between all sites to commit

Committing the updates

Star manages these two phases in the following way:

Phase 1

Phase 1 begins when the user issues a commit statement. Ingres Star
sends a prepare-to-commit notice to each database involved in the
distributed transaction. If all databases indicate that they are prepared to
commit, Ingres Star makes the decision to commit the transaction. The
local databases remain in the prepare-to-commit state and wait for Ingres
Star's instruction to commit.

Phase 2

Ingres Star sends a commit to all sites involved in the transaction. Ingres
Star guarantees that all sites will commit.

If the connection to a local database is lost between the time that Ingres
Star decides to commit and the time the local database actually obeys that
instruction, Ingres Star keeps trying to complete the transaction until the
connection is restored and the commit is made. Ingres Star does not
return control to the end user until all nodes have committed.

Notes:

If any part of Phase 1 fails, for example, if Ingres Star loses a network
connection to a node before all databases are prepared to commit, Ingres
Star rolls back the transaction at all sites, including those that are already
prepared to commit.

If any part of Phase 2 fails, Ingres Star still eventually commits the
transaction.

Understanding Ingres Star Architecture 23

Distributed Transactions

When Two-Phase Commit Is Not Used

Not all distributed transactions require two-phase commit. For example, a
transaction that does not update, or that updates only one database, requires
no coordination between databases. In this case, Ingres Star uses a single-
phase commit that consists of sending commit messages to each database.

Sometimes a distributed transaction cannot use the two-phase commit
protocol because one of the databases involved does not support it. For
example, the following do not support two-phase commit:

m Some databases accessed using Enterprise Access products

m Ingres databases on Ingres cluster nodes

Such databases may still participate in a distributed transaction if their data is
not updated, or if the databases are at the only site that is updated in a
transaction. If only one site not capable of two-phase commit is involved in a
multi-site update, Ingres Star will simulate two-phase commit using the
protocol described in the Simulated Two-Phase Commit section.

Simulated Two-Phase Commit

In the case where an update is performed to a site that is not capable of two-
phase commit and where a multi-site update transaction is required, Ingres
Star simulates two-phase commit. It does this by first sending a prepare-to-
commit to all sites that are capable of that protocol, then sending a commit to
the single site not capable of two-phase commit, and finally sending commits
to all other prepared sites. Note that Ingres Star only supports simulated two-
phase commit when a single site not capable of two-phase commit is involved
in @ multi-site update. If more than one site not capable of two-phase commit
is updated, Ingres Star refuses the attempted update.

24 Star User Guide

StarView Utility

StarView Utility

Ingres Star has a distributed database management utility called StarView,
which lets the Ingres Star database administrator:

® Obtain information about the nodes, databases and tables that make up a
distributed database

m Test the network connections between the nodes in the distributed
database

m Register local tables in a distributed database and remove those
registrations

For a thorough explanation of the StarView utility, see the chapter *Managing a
Distributed Database with StarView.”

Many Ingres Star operations can also be performed through the Visual DBA
interface, which can be invoked from Ingres Visual Manager. For more
information, see the online help system.

Understanding Ingres Star Architecture 25

Query Optimizer

Query Optimizer

Ingres uses a query optimizer to develop sophisticated query execution
strategies. The optimizer makes use of the following kinds of information:

® Table size
® Number of rows in a table

m Data-related information such as the amount of duplication in data values
within a column and distribution of data values

m Network costing factor

Ingres Star maintains statistical data in a catalog named iistatistics, and data
about the distribution of data in a table named iihistograms.

Ingres Star supports a distributed query optimizer to choose the most efficient
access or query plan between different databases and between different
nodes.

When developing the query plan, Ingres Star has the ability to move data rows
from one site to another in order to maximize processing resources while
minimizing data movement.

Ingres Star can analyze line cost factors between nodes and remote-node CPU
processing performance and choose whether and where to transfer data for
optimum performance.

For additional information on the Ingres query optimizer, see the Database
Administrator Guide. The detailed steps for viewing query plans can be found
in the online help.

26 Star User Guide

Chapter 3: Preparing to Install Ingres Star

This section contains the following topics:

Installation Requirements (see page 27)
Operating System Requirements (see page 29)
How User Authorization to Nodes Is Established (see page 29)

You have the option of installing Ingres Star during the standard Ingres
installation procedure.

Installation Requirements

The following are requirements for installing Ingres Star:

® The Star Server must reside on the same node as the distributed
database—the createdb distdbname/star command is executed on this
node.

® The iidbdb (the Ingres master database) must be present before you
install a Star Server.

- If you are installing a new system, the iidbdb is created as part of the
installation procedure.

- For upgrading an installation, see the appendix “Release
Compatibility.”

VMS: In a cluster installation, a distributed database is accessible from all
nodes in the installation but Net must be installed. For example, assume there
are three nodes in the installation, Nodes A, B and C. If the distributed
database is created on Node A, Ingres Star requires Net to access the
distributed database from Nodes B and C. ™

Preparing to Install Ingres Star 27

Installation Requirements

Installation Prompts for Ingres Star

During installation you will be prompted for certain information needed by
Ingres Star:

Net connections

Each Ingres Star user session requires one connection for each remote
LDB being referenced while connected to Ingres Star. For example, if a
user needs to connect to ten remote LDBs, you must establish ten
outbound connections on the Ingres Star node, plus one inbound
connection on each of the remote nodes.

If a distributed database has tables registered from 10 remote LDBs and
all 10 remote LDBs are accessed by Ingres Star during the user’s session,
then 10 connections are required. If two users are to access this
distributed database simultaneously, then 20 Net connections are required.

All connections are kept open until the user ends the session.

To specify or modify the number of inbound and outbound connections,
see the System Administrator Guide.

Local Ingres DBMS connections

For each Ingres Star user session, three local sessions (connections) are
required between the Star Server and the local DBMS for Ingres Star
access to the coordinator database. For example, if the Star Server is
configured for five user sessions, the local Ingres DBMS Server must be
configured for at least 15 user sessions.

Star Server Startup
UNIX: The Star Server is a DBMS Server, which is started with the command:
ingstart -iistar
VMS: The Star Server is a DBMS Server, which started with the parameter:

ingstart /star

28 Star User Guide

Operating System Requirements

Operating System Requirements

The following are operating system requirements for Star:

UNIX: The executable setuid must be turned on. Only the user who owns the
installation can start the Star Server. The install sets up the correct protections
(that is, setuid) on the Star Server.

VMS: The Star Server requires the following privileges to run: PRMMBX,
WORLD, READALL (for client/server communication), SYSPRV (to open error
and status logging files), and SHARE (to open terminals for trace output). The
vmesinstal utility installs the Star Server with all of the appropriate permissions.

How User Authorization to Nodes Is Established

Installation passwords can be used to set up authorizations for Ingres Star
access, as discussed in Installation Passwords (see page 29).

You can make authorization entries in the netutil or ingnet utilities for Ingres
Star access.

Installation Passwords

Installation passwords enable Net access between client and server without
requiring each user to make a remote authorization. Additionally, installation
passwords release Ingres Star clients from having to provide both local
authorization (that is, authorization to the Ingres Star node) and remote
authorizations to each remote node of a distributed database.

To use installation passwords, the system administrator gives a password to an
Ingres server installation and enters the installation password on each trusted
client. This then allows all users on the trusted clients to access the server
installation without each having to provide a separate remote private
authorization to the server.

Preparing to Install Ingres Star 29

How User Authorization to Nodes Is Established

How Installation Passwords Are Set Up

Installation passwords are set and entered with the netutil or ingnet utilities.
To set a server’s installation password, the system administrator uses the
special username “*” for the server’s local vhode. On each trusted client, the
system administrator enters the installation password to the server’s vnode,
again using the special username “*”. This enables client access to the server.
There must also be a connection data entry at the trusted client pointing to the
remote installation.

Here is an example of setting and entering an installation password. (This
example uses netutil commands; alternatively, forms-based settings can be
used.)

Nodes london and hongkong define hk_password as *’s installation password:
® On the hongkong node, set the installation password:

create global login hongkong * hk_password
® On the london node, enter the installation password of hongkong:

Note: This is the same command as on the hongkong node

create global login hongkong * hk_password

® On the london node, create the connection data necessary for london’s
Communication Server to locate and connect to hongkong:

create global connection hongkong hongkong tcp_ip fe®

In this command, the first hongkong specifies the vhode to which the
connection is being made. The second hongkong specifies the node name or
network address.

Users on london now have Net access to hongkong without having to define a
private remote authorization.

For full details on using netutil for installation passwords, see the System
Administrator Guide.

30 Star User Guide

How User Authorization to Nodes Is Established

User Authorization Using Netutil and Ingnet

To access remote node connections, all Ingres Star users must run netutil or
ingnet on the Ingres Star node and define their remote user authorizations to
each remote node. To access a local Star Server, all Ingres Star users must
run netutil or ingnet and define their logins to their accounts on their /ocal
node.

Users only need define their authorizations to each remote node and the local
node once. The authorizations remain until the users choose to delete them
with the netutil or ingnet utilities.

If a user’s password is changed on one of the remote nodes, the corresponding
netutil or ingnet authorization must be changed accordingly.

For complete details about the netutil or ingnet utilities, see the System
Administrator Guide and online help.

Global and Private Authorizations

Group Accounts

The authorizations defined in netutil or ingnet can be globally entered by the
Net system administrator and used by all users, or they can be private entries.

As an alternative to allowing each user private authorization to each remote
node, the Net system administrator may define a login to serve as a group
account for each local node and define global access to this account through
netutil or ingnet. Ingres Star will connect to Ingres on the local node using the
group account name and not the Ingres Star user’'s name.

For example, consider the following configuration:

m User dave and the Star Server reside on the london node. On node london,
user dave has made no private authorization entries in netutil or ingnet
other than to authorize his access to the london node.

® netutil or ingnet has a global authorization on london authorizing francis to
access the paris node.

Dave uses Ingres Star on node london to access data from the paris node.
Ingres Star’s session with the database on paris will be in the name of francis;
Dave is able to access only those tables with permissions granted to the francis
login.

Preparing to Install Ingres Star 31

How User Authorization to Nodes Is Established

Private Accounts

In most cases, the individual user will want to define a private authorization to
a node even if the node itself is defined globally. Defining authorizations for
any node makes sense only if the authorized user has access to a login
account on that node.

How User Authorization to the Local Node Is Established

The local vhode name is generated for you automatically when you install
Ingres Star. The name is stored as the configuration parameter local_vnode.
The local_vnode name is viewable through the CBF or Visual CBF utilities. For
details, see the System Administrator Guide.

Authorization in Netutil and Inget for Recovery

For Ingres Star to perform two-phase commit recovery after a failure, there
must be a netutil or ingnet authorization on the node where the Star Server
resides for the owner of the Ingres installation or the Ingres Star installation.
The netutil or ingnet authorization must be defined for every node referenced
in each database accessed by the Star Server.

For example, Ingres Star running on node New York references nodes London,
San Francisco, and Tokyo. On the New York node, there must be netutil or
ingnet entries for the installation owner or the system administrator to all
three remote nodes referenced (London, San Francisco, and Tokyo).

Authorization Examples

This section gives examples of using installation passwords or netutil or ingnet
to define the network configuration of a Ingres Star database.

32 Star User Guide

How User Authorization to Nodes Is Established

Example 1

In the following diagram, client and Ingres Star installation reside on node_A.
Tables in the distributed database, node_A::sales/star, are registered from
databases node_B::b_sales/ingres and Node_C::c_sales/ingres.

® To set installation passwords for node_B and node_C:
- On node_B, set installation password to <b_password>.
- On node_C, set installation password to <c_password>.
® To set installation passwords for node_B and node_C on node_A:
- On node_A, enter <b_password> as installation password for node_B.
- On node_A, enter <c_password> as installation password for node_C.
Users of node_A::sales/star can now access registered tables from
node_B::b_sales/ingres and node_C::c_sales/ingres without each having to

provide private remote authorization from node_A to both node_B and
node_C.

Ingres Tools
and Applications

I~ Local
STAR DEMS
I 3

Ned che
lizzles

Local Local
DBMS DBMS

Preparing to Install Ingres Star 33

How User Authorization to Nodes Is Established

Example 2
In the following diagram, the Ingres Star application and the Star Server both

run on Node A. The Ingres Star distributed database consists of an SQL
Enterprise Access on Node B and an Ingres local DBMS on Node C.

Ingres
Tools
and

Applications

STAR Local

Entrprise . Locsl
ooEss EE,h.l 5

Non—Ingres
Csts

34 Star User Guide

How User Authorization to Nodes Is Established

Example 3

The netutil or ingnet requirements for running the application on Node A are as

follows:

® On Node A:

- There must be an authorization entry for a user on Node A. (Be sure
that you do not overlook this authorization step.) The node name
supplied to netutil or ingnet should be the same as the value of
local_vnode, as described in Defining User Authorization to the Local

Node.

- There must be private or global entries for node definition and user
authorization for Node B and Node C.

® On Node B and Node C:

No netutil or ingnet definitions are required.

In this example, the Ingres Star application runs on Node A and connects to a
Star Server on the remote node, Node B. There is an Ingres local DBMS on

Node C.
MHode &
Ingres Taols
and Applicaton

Mmie H

STAR i Local

DBMS

Local

DEMS

cDB

Preparing to Install Ingres Star 35

How User Authorization to Nodes Is Established

The netutil or ingnet requirements for running the application on Node A are as
follows:

® On Node A:

- There must be a node entry for Node B.

- There must be an authorization entry for a user on Node B.
® On Node B:

- There must be a node entry for Node C.

- There must be an authorization entry for a user on Node C.
Note that netutil or ingnet must be used on both Node A and Node B.
Example 4

In this example, the Ingres Star application, the Star Server, and the local
databases are all on the same installation on one node.

Ingres Tools
and Applications

Local
DEMS

36 Star User Guide

Chapter 4: Maintaining a Distributed
Database

This section contains the following topics:

Distributed Database Maintenance Tasks (see page 38)

VDBA and Distributed Database Maintenance (see page 39)

Commands for Performing Distributed Database Maintenance (see page 39)
Statements for Performing Distributed Database Maintenance (see page 40)
Naming Conventions (see page 40)

Createdb Command (see page 45)

Destroydb Command (see page 46)

Register as Link Statement—Define Database Objects to Ingres Star (see
page 47)

Register as Link with Refresh Statement—Refresh Registration (see page 57)
Using Register with Enterprise Access Products (see page 61)

Remove Statement—Remove Registration (see page 62)

Create Statement (see page 65)

Drop Statement (see page 69)

Table Registration Using StarView (see page 70)

DDL Concurrency Mode (see page 71)

This chapter explains various aspects of maintaining a distributed database. It
describes the statements and commands for creating, naming, and populating
your distributed database.

Maintaining a Distributed Database 37

Distributed Database Maintenance Tasks

Distributed Database Maintenance Tasks

A distributed database can be made up of tables, views, procedures, and
indexes in local Ingres databases, remote Ingres databases, and non-Ingres
databases accessible through Enterprise Access products.

Database maintenance tasks include:

m Creating distributed databases

Note: You are not limited in the humber of databases that you can create.
You can create as many databases as your operating system allows.

m Destroying databases
m Creating tables and views on distributed databases
m Removing tables and views

m Registering (defining to Ingres Star) tables, views, and procedures
(indexes are registered automatically)

m Refreshing registered tables or views

® Removing registrations

38 Star User Guide

VDBA and Distributed Database Maintenance

VDBA and Distributed Database Maintenance

You can use Visual DBA to maintain a distributed database. Use the Databases
branch in the Database Object Manager window.

The following topics in the VDBA online help contain procedures to maintain
distributed databases:

Creating a Database

Note: To create a database, you need the createdb privilege. This subject
privilege is granted by default to the system administrator, who in turn can
grant it to other users, such as database administrators, who need to
create databases. For more information on subject privileges, see the
Database Administrator Guide.

Dropping a Database

Creating a Table on a Distributed Database (choose Creating a Table first)
Creating a View

Dropping a Table

Dropping a View

Registering a Distributed Table or View

Registering a Distributed Procedure

Refreshing Registered Tables and Views

Removing Registrations

Commands for Performing Distributed Database

Maintenance

Distributed databases can also be created and destroyed by the createdb and
destroydb commands, which are executed at the operating system level. For
more information, see Createdb Command (see page 45) and Destroydb
Command (see page 46).

Maintaining a Distributed Database 39

Statements for Performing Distributed Database Maintenance

Statements for Performing Distributed Database

Maintenance

Some tasks can be accomplished using statements, which can be issued from
an interactive session with SQL or ISQL, or from an application.

These statements are as follows:

® The create statement to create new tables and views in the distributed
database and automatically register them

® The drop statement to remove tables and views from the distributed
database

® The register as link statement to define existing tables, views, indexes,
and database procedures as component objects of the distributed database

® The register as link with refresh statement to register local updates to
tables, views, and indexes that are part of the distributed database

® The remove statement to remove the registration of database objects
previously incorporated with the register and create statements

By default, the data definition language (DDL) statements create, drop,
register, and remove are all committed immediately, independently of the
user’s transaction. To learn how to turn off concurrency, see DDL Concurrency
Mode (see page 71).

Naming Conventions

For details on syntax rules regarding names, see object names in the SQL
Reference Guide.

Database Naming Restrictions

Database names must be unique to 24 bytes (or the maximum file length
imposed by your operating system, if less than 24). In addition, the name of
your distributed database must be unique at the coordinator node; a
distributed database and a local database cannot coexist using identical
names.

Check the Enterprise Access documentation specific to your Enterprise Access
for any naming restrictions that apply to the non-Ingres database your
distributed database is accessing.

40 Star User Guide

Naming Conventions

Sizing Attributes

Server Class

Case

Ingres Star allows you flexibility in certain sizing extensions.

If Ingres Star addresses a local DBMS that supports increased sizes of rows
and the varchar data type, it supports these sizes up to a limit of 4096 bytes.

Many of the commands used in creating your database require you to specify
the type of local DBMS that contains the tables or views you are registering or
creating:

® The server_class you specify on the createdb command must be star.

® On the statements for registering and creating tables and views, Ingres
server_classes as well as Enterprise Access server_classes may apply.

For the name of the Enterprise Access server class, see the Enterprise Access
Installation and Operations Guide.

Names that identify database objects may be uppercase, lowercase, or mixed
case. In an Ingres Star database, the case of the object’s name as stored in
the Ingres Star catalogs depends on:

B The case-translation semantics established when the database was created
m How the user specifies the name of the object when it is created

m Whether or not the user delimits the name of the object

Mixed-case names are allowed if the distributed database has been created
specifying mixed-case delimited identifiers. For examples, see Naming
Registration Examples (see page 42). In addition, an object name must be
delimited to preserve case.

Mixed-case names are not allowed if delimited identifiers are not used when
registering an object. The case of the name will be uppercase or lowercase,
depending on the case of regular identifiers specified at installation time.

In general, Ingres Star performs case translation in order to map the name of
a registered object into the name of a local object. However, there are some
restrictions on incorporating objects from mixed-case local databases or
Enterprise Access products into a Ingres Star database that has been created
without mixed-case delimited identifiers. For more information on delimited
identifiers and Ingres Star, see Installation Options (see page 42).

Maintaining a Distributed Database 41

Naming Conventions

Installation Options

Ingres Star object names may be case-significant, depending on an option
specified during installation. The option specifies the rules that the local Ingres
DBMS follows in translating identifiers supplied by the user. (An identifier is the
syntactic component of an SQL statement that represents the name of a
database object.) There are two types of identifiers:

®m A regular identifier is a name or word.

m A delimited identifier is a word or words delimited by double quotes. It
allows extended characters and mixed case.

Option Name Regular Identifiers Delimited Identifiers

Lowercase option Convert to lowercase Convert to lowercase
(Ingres setting)

ISO Entry SQL92 Convert to uppercase Retain case, even if
standard mixed

With the lowercase option (Ingres setting), createdb creates local and
distributed databases whose translation rule is to put into lowercase both
regular and delimited identifiers. To create an object with a mixed-case name,
you must use the ISO Entry SQL92 standard option, and you must use a
delimited identifier to specify the object name.

For a further description of identifiers, see the SQL Reference Guide.

Naming Registration Examples

An Ingres Star database may consist of objects registered from remote
databases whose case-translation rules differ from those of the distributed
database. These examples illustrate those situations. (These naming examples
use the register as link statement. For details on this statement, see Register
as Link Statement (see page 47).

42 Star User Guide

Naming Conventions

Example: Default DDB and ISO-Compliant LDB

Assume that the distributed database was created with the lowercase option
(Ingres setting), which puts both regular and delimited identifiers in lowercase.
Assume that the local database is ISO Entry SQL92-compliant. The local
database, iso_db, was created with case-translation rules of uppercase regular
identifiers and mixed-case delimited identifiers.

In this example iso_db contains a table named PARTS, and the user wishes to
register that table into the distributed database. The following statement
creates a distributed object named parts. It will correctly map all queries
against parts to the table PARTS in the iso_db database:

register parts as link
with node=node_A, database=iso_db;

Assume that table PARTS has columns named PART_NO and PRICE. At
registration time, the Star Server translates the names of these columns
before adding them to the Ingres Star catalog iicolumns as columns part_no
and price. In addition, the following user’s query against the distributed
database will correctly map price and part_no to uppercase names before
querying the PARTS table:

select price from parts where part_no=40754;

Maintaining a Distributed Database 43

Naming Conventions

Example: Mixed-Case Names

Ingres Star employs the mapping rules described in Example: Default DDB and
ISO-Compliant LDB (see page 43) if the local database names are mixed case.
There is, however, a restriction on registering local database tables with
mixed-case names into a distributed database that does not support mixed-
case names. Assume that you wish to register the Low Budgets table from the
iso_db database into your default distributed database. Mixed-case names may
be specified only using a delimited identifier. But the following statement
produces an error:

register low_budgets as link from "Low Budgets"
with node=node_A, database=iso_db;

Because the distributed database translates all identifiers to lowercase, the
Star Server attempts to look up the table low budgets in the catalogs of the
iso_db database. It does not find that table because the mixed-case property
of the table’s name has already been lost. Therefore, Ingres Star rejects any
register statement that delimits the name of the local database object or
owner if the distributed database does not support mixed-case delimited
identifiers but the local database does.

As a workaround to this restriction, the from clause on the register statement
allows you to specify the local owner name and the local table name as a string
constant. The Star Server does not apply case-translation rules to string
constants. Thus the following statement would succeed in registering the table
Low Budgets from a case-sensitive local database into a case-insensitive
distributed database:

register low_budgets as 1ink from “Low Budgets”
with node=node_A, database=iso_db;

44 Star User Guide

Createdb Command

Example: DDB with Mixed-Case Delimited Identifiers

There is no restriction if the distributed database has been created to support
mixed-case delimited identifiers, whether or not the local database supports
them.

Assume that you have a table named corp_dept in a local database lower_db
that supports only lowercase names. Assume that your distributed database
supports mixed-case names and that you wish to register corp_dept as
Corp_Dept in the distributed database. You issue the statement:

register "Corp_Dept" as link
with node=node_A, database=lower_db;

Ingres Star maps the distributed database name Corp_Dept into corp_dept
when it queries the lower_db database. If corp_dept has columns dno, name
and budget, Ingres Star records these in the distributed database’s iicolumns
catalog using the case rules of regular identifiers. If the distributed database
was created specifying uppercase translation for regular identifiers, the column
names of Corp_Dept will appear as DNO, NAME and BUDGET in the distributed
database.

If you wish the registration to have mixed-case column names, you can specify
them in the register statement:

register "Corp_Dept" ("Dno", "Name", "Budget") as link
with node=node_A, database=lower_db;

Createdb Command

You can use the createdb command to create a distributed database as you
would a local database, except that you must add /star to the distributed
database name.

The createdb command does the following:

m Creates an Ingres database and identifies it as the coordinator database
(see Ingres Star Components (see page 15).

m Builds and populates Ingres Star-specific catalogs in the coordinator
database just created

® Generates iidbdb entries to describe the distributed database and the
coordinator database and to associate the two

For flags and full syntax details of the createdb command, see the Command
Reference Guide.

Maintaining a Distributed Database 45

Destroydb Command

Examples: Createdb

The following command creates a distributed database named corporateddb:

createdb corporateddb/star

Because a coordinator database name was not specified, the coordinator
database name defaults to iicorporateddb. When createdb finishes, there will
be a single new database (the coordinator database iicorporateddb) in the
Ingres data location. There will be entries in the iidbdb for the distributed
database and the coordinator database.

Note: There will not be a physical database for the distributed database, but
there will be iidbdb catalog entries associating the coordinator database with
the distributed database.

The following command creates a distributed database named corporateddb
with a coordinator database named corporate that overrides the automatically
generated coordinator database named iicorporateddb:

createdb corporateddb/star corporate

The following command creates a distributed database named corporateddb
with a coordinator database named corporate. It assigns the default data
location to corp_loc and installs the Ingres/Vision client catalogs so that users
can access Vision on the corporateddb distributed database.

createdb -dcorp_loc corporateddb/star corporate -f vision

Destroydb Command

You can use the destroydb command to delete a distributed database, as you
would for a local database.

The destroydb command removes the distributed database, the coordinator
database, and all the Ingres Star objects that make up the distributed
database. Data in underlying tables in non-coordinator local databases
registered in the distributed database are not affected.

For more information on the destroydb command see the Command Reference
Guide.

Example: Destroydb

This command removes a distributed database named corporateddb:

destroydb corporateddb

46 Star User Guide

Register as Link Statement—Define Database Objects to Ingres Star

Register as Link Statement—Define Database Objects to

Ingres Star

The register as link statement defines a distributed database component name
to Ingres Star as an alias of a local or remote table or view. The statement is
stored in the iiregistrations catalog.

Use the register as link statement to define to Ingres Star:
m Data resident in an Ingres local database

m Database procedures resident in an Ingres local database or accessible
through Enterprise Access

m Data accessed by means of Enterprise Access

Note: To register non-SQL data, you first must identify the data to the non-
SQL Enterprise Access with the register as import statement. For information
on how to use this statement, see the guide for your specific Enterprise
Access.

The register as link statement has the following format:

register object type object_name

[(col _name {, col _name})]

as link

[from [local owner_name.] local_object _name]

[with

[node = node_name,
database = database_name)
[, dbms = server _class]]

object_type

Can be table, view or database procedure. For tables or views, the
object_type is optional. However, to register a database procedure, the
keyword procedure must be specified.

object_name

Is the Ingres Star name of the local DBMS table, view, or database
procedure you are registering. It may be delimited with double quotes.

col_name

Is the Ingres Star name of the corresponding column in the local DBMS
table or view. (Do not use when registering procedures.) It may be
delimited with double quotes.

There can be as many column names as Ingres Star allows in a table or
view. This column name is the one used in queries presented to Ingres
Star. All column names must follow the Ingres naming conventions.

Maintaining a Distributed Database 47

Register as Link Statement—Define Database Objects to Ingres Star

This column name must be specified in the order corresponding to its
location in the underlying local DBMS table or view (the nth Ingres Star
column name corresponds to the nth local column name.)

All columns must be named. If column names are not specified, Ingres
Star uses the column names obtained from the local DBMS standard
catalogs for the table or view specified.

as link

Indicates that the register statement will create an Ingres Star registration
linked to a table, view, or database procedure in a local database. This
clause must be specified.

from

Specifies the owner and name of the local table, view, or database
procedure you are registering. You must use this clause if you are
registering an object in your distributed database with a different name
from its name in the local database, or the object name does not follow
Ingres naming conventions, is case sensitive, or is owned by another user.

local_object_name

Is the name of the table, view, or database procedure in the local
database.

It may be delimited with double quotes to preserve case and allow special
characters. However, if the Ingres Star database does not support mixed-
case delimited identifiers and the local DBMS or Enterprise Access product
does support mixed-case delimited identifiers, you should use a single-
guote delimiter in order for Ingres Star to preserve the case.

local_owner_name

Is the name of the owner of the object in the local database. You can
register other user's tables, views, and database procedures, but you must
specify the owner name. If you do not specify an owner name,
local_owner_name defaults first to an object owned by the current user,
second to an object owned by the DBA, and third to an object owned by
$ingres.

It may be delimited with double quotes to preserve case and allow special
characters. However, if the Ingres Star database does not support mixed-
case delimited identifiers and the local DBMS or Enterprise Access product
does support mixed-case delimited identifiers, you should use a single-
guote delimiter for Ingres Star to preserve the case.

Do not forget to include the period at the end of the owner name.

48 Star User Guide

Register as Link Statement—Define Database Objects to Ingres Star

with

Provides additional information about the local database table, view, or
database procedure being registered and its location in relation to Ingres
Star.

node = node_name

Is the Net vnode name (the virtual node name) that holds the object you
are registering. The default is the node that contains the Star Server
processing the command. The node_name may be up to 32 bytes long. It
may be delimited with double quotes.

If you specify the node = clause, you also must specify the database =
clause.

database = database_name

Specifies the name of the local database that contains the object you are
registering. It may be delimited with double quotes.

The database nhame may be up to 256 bytes long provided it is specified in
quotes.

If you specify the database = clause, you must specify the node = clause.
If the database is omitted, the coordinator database is the default.

dbms = server_class
Specifies the type of local DBMS that contains the object being registered.

The server_class must be Ingres or one of the SQL Enterprise Access
products. If you do not specify a server class the default is the value in
default_server_class on the remote installation (Ingres, unless defined
otherwise.) Use the Configure Name Server screen of the CBF or Visual
CBF utilities to view or change this value.

Maintaining a Distributed Database 49

Register as Link Statement—Define Database Objects to Ingres Star

Register Table as Link Statement—Define Table to Ingres Star

The register table as link statement defines an already existing local DBMS
table to Ingres Star. No new table is created. All secondary indexes associated
with the table are registered automatically when you register a table in your
distributed database if the table is in a local database.

The register table as link statement has the following format:

register [table] table name
[(col_name {, col_name})]
as link
[from [local _owner_name.] local_table name)
[with
[node = node_name,
database = database _name]
[, dbms = server_class]]

table

Is an optional object type identifier. Whether or not you specify table,
Ingres Star queries the local DBMS and determines the object type.

If you specify table, Ingres Star issues an error if the local DBMS type is
not a table.

table_name
Is the Ingres Star name of the local DBMS table you are registering.

It may be delimited with double quotes to preserve case and allow special
characters. However, if the Ingres Star database does not support mixed-
case delimited identifiers and the local DBMS or Enterprise Access product
does support mixed-case delimited identifiers, you should use a single-
quote delimiter in order for Ingres Star to preserve the case.

This name must follow Ingres naming conventions. It will appear in the
Ingres Star catalogs as a table. In the table_subtype column of the iitables
standard system catalog, it will have a subtype of L (registered as Link).
For information, see the chapter "Understanding Ingres Star Catalogs."

50 Star User Guide

Register as Link Statement—Define Database Objects to Ingres Star

local_table_name
Is the name of the table in the local DBMS.

It may be delimited with double quotes to preserve case and allow special
characters. However, if the Ingres Star database does not support mixed-
case delimited identifiers and the local DBMS or Enterprise Access product
does support mixed-case delimited identifiers, you should use a single-
guote delimiter in order for Ingres Star to preserve the case.

The default is to use the distributed database table_name you specify as
the name of the local DBMS table that you are registering.

Enter this name if you are registering the table in your distributed
database with a name different from its name in the local DBMS or if the
table name in the local DBMS does not follow naming conventions and/or is
case sensitive or is owned by another user.

Note: This table name must be the actual base table name, not a
synonym.

The elements that are common to all three register as link statements are
described in Register as Link Statement (see page 47).

Maintaining a Distributed Database 51

Register as Link Statement—Define Database Objects to Ingres Star

Examples: Register Table as Link

Consider the following database configurations, used in examples in this and
following sections:

® The distributed database corporateddb resides on the london node with its
coordinator database corporate. The table, prospects, has been created
locally in corporate.

® A remote database pacific is on a node tokyo and contains a table,
customers.

m A second remote database west_usa resides on the node reno and
contains a table, sales and a view, follow_ups. The table, sales belongs to
user john and has columns customer, invoice_number and total.

The following statement issued in a session with the distributed database
corporateddb registers the prospects table from the coordinator database in
corporateddb:

register prospects as link;
This statement registers prospects in corporateddb under the name west_prospects:

register west_prospects as link
from prospects;

This statement registers the table, sales from the database west_usa on the
nod, reno, giving it the name usa_sales and referring to its columns as
customer, inv_no and amount:

register table usa_sales
(customer, inv_no, amount) as link
from john.sales
with node = reno, database = west_usa;

If the distributed database corporateddb is case sensitive and you wish to
create registrations with case-sensitive names, or if you wish to include special
characters in the registration name, you would use a delimited identifier to
specify the registration. The following example shows how you would register a
table named usa sales into corporateddb:

register table "usa sales"
(customer, "inv no", amount) as link
from john.sales
with node = reno, database = west_usa;

If the west_usa database allows mixed-case identifiers, or if the local table
name includes mixed-case or special characters, you would use a delimited
identifier in the from clause. For example, john’s table may be named Sales.

52 Star User Guide

Register as Link Statement—Define Database Objects to Ingres Star

register table usa_sales
(customer, inv_no, amount) as link
from john."Sales"
with node = reno, database = west_usa;

Note: You can use a delimited identifier on the from clause only if the case-
translation semantics of both the distributed database and the local database
are compatible. Ingres Star rejects the above statement if corporateddb does
not support mixed-case identifiers and west_usa does support them. The
reason for this is that the identifier Sales will be case converted by the Star
Server, and any mixed-case characters will have been converted before the
registration is processed. In this instance, you would use single quotes. The
Star Server does not translate singly-quoted strings. For example:

register table usa_sales
(customer, inv_no, amount) as link
from john.”Sales”
with node = reno, database = west_usa;

Register View as Link Statement—Define View to Ingres Star

The register view as link statement defines an already existing local DBMS
view to Ingres Star. No new view is created.

The register view as link statement has the following format:

register [view] view_name
[(col_name {, col_name})]
as link
[from [local owner_name.] local_view_name]
[with
[node =node_name,
database =database_name]
[, dbms = server _class]]

view

An optional object identifier. Whether or not you specify view, Ingres Star
queries the local DBMS and determines the object type.

If you specify view, Ingres Star issues an error if the local DBMS type is
not a view.

Maintaining a Distributed Database 53

Register as Link Statement—Define Database Objects to Ingres Star

view_name
The Ingres Star name of the local DBMS view you are registering.

It may be delimited with double quotes to preserve case and allow special
characters. However, if the Ingres Star database does not support mixed-
case delimited identifiers and the local DBMS or Enterprise Access product
does support mixed-case delimited identifiers, you should use a single-
guote delimiter in order for Ingres Star to preserve the case.

This name must follow Ingres view naming conventions. It will appear in
the Ingres Star catalogs as a view. In the table_subtype column of the
iitables standard system catalog, the Ingres Star view name will have a
table_subtype of L (registered as Link). (For more information on catalogs,
see the chapter "Understanding Ingres Star Catalogs.")

local_view_ name
The name of the view in the local DBMS.

It may be delimited with double quotes to preserve case and allow special
characters. However, if the Ingres Star database does not support mixed-
case delimited identifiers and the local DBMS or Enterprise Access product
does support mixed-case delimited identifiers, you should use a single-
guote delimiter in order for Ingres Star to preserve the case.

The default is to use the distributed database view_name you specify as
the name of the local DBMS view that you are registering.

Enter this name if you are registering the view in your distributed database
with a name different from its name in the local DBMS or if the view name
in the local DBMS does not follow Ingres naming conventions and/or is
case sensitive or is owned by another user.

Note: This hame must be the actual base name, not a synonym.

The elements that are common to all three register as link statements are
described in Register as Link Statement (see page 47).

Example: Register View as Link

This statement registers the view follow_ups from the database west_usa on
the node reno, and gives it the name usa_visits:

register view usa_visits as link
from follow_ups
with node = reno, database = west_usa;

54 Star User Guide

Register as Link Statement—Define Database Objects to Ingres Star

Register Procedure as Link Statement—Define Procedure to Ingres Star

The register procedure as link statement defines an already existing local
DBMS database procedure to Ingres Star. No new database procedure is
created.

The register procedure as link statement has the following format:

register procedure procedure_name

as link
[from [local _owner_name.] local_procedure_name)
[with
[node = node_name,
database = database_name]
[, dbms = server _class]]
procedure

Identifies the object type
procedure_name

The Ingres Star name of the local DBMS database procedure you are
registering.

It may be delimited with double quotes to preserve case and allow special
characters. However, if the Ingres Star database does not support mixed-
case delimited identifiers and the local DBMS or Enterprise Access product
does support mixed-case delimited identifiers, you should use a single-
guote delimiter in order for Ingres Star to preserve the case.

local_procedure_name
The name of the database procedure in the local DBMS.

It may be delimited with double quotes to preserve case and allow special
characters. However, if the Ingres Star database does not support mixed-
case delimited identifiers and the local DBMS or Enterprise Access product
does support mixed-case delimited identifiers, you should use a single-
guote delimiter in order for Ingres Star to preserve the case.

The default is to use the distributed database procedure_name you specify
as the name of the local DBMS database procedure that you are
registering.

Enter this name if you are registering the database procedure in your
distributed database with a name different from its name in the local DBMS
or if the name in the local DBMS does not follow naming conventions, is
case sensitive, or is owned by another user.

The elements that are common to all three register as link statements are
described in Register as Link Statement (see page 47).

Maintaining a Distributed Database 55

Register as Link Statement—Define Database Objects to Ingres Star

Examples: Register Procedure as Link

This statement registers LDB1 procedure p2 (on node node_A) using the same
name in Ingres Star:

register procedure p2 as link
with node=node_A, database=LDB1;

This statement registers LDB1 procedure p3 using the name proc2 in Ingres
Star:

register procedure proc2 as link from p3
with node=node_a, database=LDB1;

Catalogs for the Register Statement

The text for the register as link statement is stored in the iiregistrations
standard catalog.

Execute Immediate Statement--Execute Register as Link Statement
Dynamically

You can execute the register statement through dynamic SQL by the execute
immediate statement.

For example, the following command registers the table customers from the
database pacific on the node tokyo:

exec sql execute immediate
‘register customers as link
with node = tokyo, database = pacific’;

Note: Do not use the prepare statement for executing the register as link
statement. Use execute immediate as described here.

56 Star User Guide

Register as Link with Refresh Statement—Refresh Registration

Register as Link with Refresh Statement—Refresh

Registration

Schema information in local tables can change often. Such information may
relate to storage structure, unique keys, secondary indexes, humber of
columns, and statistics.

When schema or related table information changes in a local database that is
part of a distributed database, the Ingres Star catalogs must be updated.
Except for row and page counts, this is not done automatically. It must be
done with the register as link with refresh statement.

For Ingres Star to take advantage of performance tuning at the local database
level, tables affected should be refreshed using the register as link with refresh
statement. This allows Ingres Star to use the latest table structure and
secondary indexes when determining distributed query execution plans.

The register as link with refresh statement has the following format:

register object name as link with refresh
object_name

Is the registered view or table name whose registration you are refreshing.
It may be delimited with double quotes.

Maintaining a Distributed Database 57

Register as Link with Refresh Statement—Refresh Registration

Register as Link with Refresh Restrictions

Register as link with refresh refreshes all the information about a table or view
in the Ingres Star catalogs with information from the local database.

Views built on top of the table or view are unaffected. The table or view retains
the same table_id or view_id.

The register with refresh statement is not allowed in the following
circumstances (an error message is generated):

m If the local database table has fewer columns than when initially registered

m If the local database table columns have different data types from when
initially registered

m If column name mapping was used when the table was initially registered
and the local database table now has a different number of columns from
when it was initially registered

m If either the distributed database or the local database (but not both)
supports mixed-case delimited identifiers, Ingres Star internally maps
column names. In this case, register with refresh is not allowed if the local
database table now has a different number of columns from when it was
initially registered

Register with refresh may be used on objects registered by the register
statement or implicitly registered by Ingres Star. A table or view refreshed in
this way retains the same table_subtype value in the iitables catalog, that is, it
remains registered native if originally registered native. (A native object means
the object was created through Ingres Star rather than merely registered
through Ingres Star.)

58 Star User Guide

Register as Link with Refresh Statement—Refresh Registration

Effects of Register as Link with Refresh

Several situations may arise that will require you to refresh the registration of
a local DBMS object.

Where the old schema of the local table is identical to, or is a subset of, the
new schema (for example, when a new column is added to the old local table
and the table’s creation time remains unchanged), register as link with refresh
has the following effects:

m All views dependent on the Ingres Star-level table are retained.

m The statistics associated with the registration are left intact if the local
table has no statistics or its statistics cannot be read because of the local
database’s different architecture. Otherwise, statistics from the local
database replace existing Ingres Star-level statistics.

Where the local table has been dropped and recreated (shows a new creation
time) using the same schema, possibly with new columns at the end, register
as link with refresh has the following effect:

m All the views dependent on the Ingres Star-level table are retained.

Where the old schema of the local table is different from the new schema, for
example, a column has been dropped or a column type has been redefined,
then register as link with refresh is not allowed. An error is returned to the
user.

Maintaining a Distributed Database 59

Register as Link with Refresh Statement—Refresh Registration

Example: Register as Link with Refresh

The following example shows the use of register as link with refresh:

register west_prospects as link
from prospects;

create view leads as
select * from west_prospects;
commit;

/* Initiate connection to coordinator database */
direct connect;
drop prospects;

/* recreate with the same schema but with an additional column */
create table prospects;

/* return control to Ingres Star */
direct disconnect;

register west_prospects as link with refresh;

/* view created above */
select * from leads;

The result set from the view selection will show the original schema of the
prospects table. The original target from the view is used for selection, and
that target list contains only information from the old schema. However, a
select on the registered table west_prospects results in a set of rows under the
new schema.

For detailed descriptions of the direct connect/disconnect statements, see
Connecting Directly to a Local Database (see page 73).

60 Star User Guide

Using Register with Enterprise Access Products

Using Register with Enterprise Access Products

To register an SQL Enterprise Access table or view in a distributed database,
use the register as link statement.

Registering a non-SQL Enterprise Access object in a distributed database is a
two step process:

m At the Enterprise Access, you first must use the register as import
statement to register the Enterprise Access object in the non-SQL
Enterprise Access. The Enterprise Access object then has an Ingres object
name and looks exactly like an Ingres object. Then, exit from the
Enterprise Access.

m Accessing the Ingres Star distributed database, you then use the register
as link statement to register those Ingres names in your distributed
database.

For a full explanation of the register as import statement, see the guide for
your specific non-SQL Enterprise Access.

Maintaining a Distributed Database 61

Remove Statement—Remove Registration

Remove Statement—Remove Registration

The remove statement removes registrations of tables, views, and database
procedures from your distributed database. An object that is removed by the
remove statement remains intact in the underlying local database, but is no
longer identified to Ingres Star.

Local objects are registered by you with the register as link statement. You use
the remove statement to remove these registrations. Only the registration is
deleted. The local objects are not affected.

When you use the create table statement at the Ingres Star level, the table is
automatically registered in your distributed database. You can use remove to
delete these automatic registrations also. The underlying table remains.

You can execute the remove statement through dynamic SQL by the
prepare/execute, and execute immediate statements.

The remove statement deletes only the registration residing in the Ingres Star
catalogs. The table or view in the local DBMS is not affected.

You cannot remove an index with the remove statement.

You cannot remove a distributed view with the remove statement. You must
use the drop statement to delete a distributed view.

The remove statement has the following forms:

® remove object_name

® remove table table_name

B remove View view_name

® remove procedure procedure_name

If the type of object is not specified, Ingres Star assumes it is a table or view.
The keyword procedure must be given to remove a procedure name.

62 Star User Guide

Remove Statement—Remove Registration

Remove Table Statement

The remove table statement removes from the Ingres Star catalogs table
definitions that were manually registered using register table as link, or which
were automatically registered using create table at the Ingres Star level.

The local DBMS table itself is not changed, but all the Ingres Star catalog
definitions are deleted, including any related view or index definitions.

The remove table statement has the following format:

remove [tablel table name
table

Is an optional object identifier. If you do not specify table, the registration
of table_name is deleted whether the object is a table or a view. If table is
specified, the object named must be a table.

table_name

Is the registered Ingres Star name of the table. It may be delimited with
double quotes.

Example: Remove Table

To remove the registration of a table named west_prospects from your
distributed database, use the statement:

remove table west_prospects;

To remove the registration named usa sales, delimit the table name. Use
delimited identifiers only if you used them on the corresponding register
statement:

remove table "usa sales";

Maintaining a Distributed Database 63

Remove Statement—Remove Registration

Remove View Statement

The remove view statement removes from the Ingres Star catalogs view
definitions that were registered using register view as link.

The remove view statement has the following format:

remove [view] view_name
view

Is an optional object identifier. Whether or not you specify view, Ingres
Star queries the local DBMS and determines the object type.

If you do not specify view, view_name is deleted whether the object is a
table or a view. If view is specified, the object named must be a view.

view_name
Is the registered Ingres Star name of the view. It may be delimited with
double quotes.

Example: Remove View

To remove the registration of a view named usa_visits from your distributed
database, use the statement:

remove view usa_visits;

Remove Procedure Statement

The remove procedure statement removes from the Ingres Star catalogs
procedure definitions that were manually registered using register procedure
as link.

The local DBMS procedure itself is not changed, but all the Ingres Star catalog
definitions are deleted.

The remove procedure statement has the following format:

remove procedure procedure_name
procedure

Identifies the object as a database procedure
procedure_name

Is the registered Ingres Star name of the database procedure. It may be
delimited with double quotes.

64 Star User Guide

Create Statement

Example: Remove Procedure

To remove the registration of a database procedure named
west_prospects_proc from your distributed database, use the statement:

remove procedure west_prospects_proc;

Create Statement

You use the create statement with Ingres Star to create new tables and views
and add them to your distributed database.

The create table statement creates a local table and registers the table in
your distributed database as native.

If you do not use the create table statement at the Ingres Star level, you
first must create a table locally and then register it in your distributed
database.

The create view statement creates a distributed view.

Create Table Statement

Use the create table statement to create new tables:

create table with with_clause

create table as subselect with with_clause

The create table statement creates an object of type table. The table is stored
in a local database or the coordinator database, depending on the node_name
specified in the with clause. By default, the table is stored in the coordinator
database. The table is automatically registered in the Ingres Star catalogs as a
native object. Tables registered as native are distinguished from tables
registered as links by the value in the table_subtype column in the iitables
catalog.

Create Table With Syntax

The create table with statement has the following format:

create table table name

(col_name format {, col_name format})
[with

[node =node_name,

database = database_name)

[, dbms = server _class]

[, table =local table_namel

[, LDB with clauses]]

Maintaining a Distributed Database 65

Create Statement

Create Table as Subselect With Syntax

The syntax for the create table as subselect with statement is:

create table table name

[(col_name {, col_name})]

as subselect

[with
[node =node_name,
database =database_namel
[, dbms = server_class]
[, table = local table_name]
[, LDB with clauses]]

Create Table Syntax Elements

The col_name, node_name, database_name, server_class, and
local_table_name syntax elements are as described in previous statements.
The remaining syntax elements are described in the table below and in the
following section, LDB With Clauses.

table

The object identifier. This must be specified.

table_name

The name in the distributed database. It may be delimited with double
quotes.

If the local_table_name is not specified the registered table_name is used.
The table names referenced in the subselect clause are Ingres Star-level
objects. They must be registered or created first through Ingres Star
before being called by subselect

format
Formats refer to the data type of the column as well as how unspecified

values (blanks and nulls) should be handled. For a full description of data
formats, see the SQL Reference Guide.

66 Star User Guide

Create Statement

LDB With Clauses

Ingres Star recognizes and processes with clauses for defining node_name,
database _name, server_class, and local_table_name as shown in the syntax
descriptions above.

Other with clauses (LDB with clauses) in the syntax descriptions above) are
not supported or recognized by Ingres Star. For example, Ingres Star is not
responsible for handling location, journaling and duplicates in the with clause.
However, it is Ingres Star’s responsibility to guarantee that these clauses are
properly transmitted to the local DBMS for processing. These options are
received and managed by each local DBMS.

For a complete list of the LDB with clauses, see the with clauses of the create
table description in your query language reference guide.

Maintaining a Distributed Database 67

Create Statement

Examples: Create Table

The following statement creates the table corp_dept in the coordinator
database and registers it in the distributed database:

create table corp_dept
(dno char(8),
name char(10),
budget integer);

Create the table department in the database west_usa on the node reno and
register it in the distributed database corporateddb under the name corp_dept:

create table corp_dept
(dno char(8),
name char (10),
budget integer)
with node = reno,
database = west_usa,
table = department;

A table low_budgets could then be created in the coordinator database and
registered in the distributed database by using a subselect from the table
corp_dept:

create table low_budgets
as select * from corp_dept
where budget < 10000;

The following example shows a create table statement with an LDB with
clause, journaling:

create table corpemployee
(name char(20),
sal money)
with journaling;

Journaling is set at the local DBMS. Ingres Star does not register this attribute
in the Ingres Star catalogs but passes it to the local DBMS to be processed.

If your Star database allows mixed-case delimited identifiers or if you wish
your table or column names to include special characters such as spaces, use a
delimited identifier:

create table "World Wide Sales" ("Region" char(20),
"Gross Sales in Millions" decimal(16,2));

68 Star User Guide

Drop Statement

Create View Statement
The create view statement creates a distributed view.

The created view is not a local database view. It is a distributed view known
only to the distributed database.

Create View Syntax

The create view statement has the following format:

create view view_name
[(col _name {,col _name})] as subselect

view
Refers to the object identifier. This must be specified.
view_name

Defines the name of the view in the distributed database. It can be
delimited with double quotes. This is an Ingres Star-level object as
opposed to an object in a local database. The definition of this view is
entered into the Ingres Star catalogs. The view can reference other tables
and views.

For a description of the subselect and other syntax details of the create view
statement, see the SQL Reference Guide.

Drop Statement

Use the drop statement to remove tables and views from your distributed and
local databases. You may only drop an object (table or view) that was created
in Ingres Star.

Maintaining a Distributed Database 69

Table Registration Using StarView

Drop Table Statement

The drop table statement has the following format:

drop [table] table name

Use this statement on table objects created by the create table statement at
the Ingres Star level. It removes the actual table, its registration, and all its
data, as well as the description of the table in the Ingres Star catalogs.

Important! Use the drop statement with care because this statement destroys
objects. All dependent objects, for example, views and indexes, are also
dropped.

Example: Drop Table

To remove the registration of corp_dept from the distributed database and the
table itself from the local database, west_usa, use the following command:

drop table corp_dept;

To drop the table named World Wide Sales, delimit the table name:

drop table "World Wide Sales";

Drop View Statement

The drop view statement has the following format:

drop [table] view_name

Use this statement to remove a distributed view created by the create view
statement at the Ingres Star level. It removes the description of the view from
the Ingres Star catalog. It does not affect the underlying data on which the
view is defined.

Table Registration Using StarView

As an alternative to registering existing tables and views from the command
line, the StarView utility provides a forms-based interface to carry out this
task.

Simply run StarView to display the tables and views in your existing
databases, and choose the ones you wish to register in your distributed
database.

70 Star User Guide

DDL Concurrency Mode

DDL Concurrency Mode

The data definition language (DDL) statements register, remove, create, and
drop cause updates to occur to the Ingres Star catalogs.

In order to increase multi-user concurrency and reduce the chance of
deadlocks, these DDL statements are all committed immediately,
independently of the user’s transaction. Even if a user’s transaction is
subsequently aborted, the DDL statement is not aborted.

This DDL concurrency mode may be turned off with the set statement:

set ddl_concurrency off

In this case, the DDL statements will be part of the user’s transaction.
However, updates to the Ingres Star catalogs will cause exclusive locks to be
held until the end of the user’s transaction, thereby reducing multi-user
concurrent access and increasing the chance of deadlocks.

Note: Turning off ddl_concurrency may force the transaction into a two-phase
commit transaction if the user’s transaction includes an update or a different
node from the DDL statement. Such cases may be aborted by the server if any
of the participating local databases do not support the slave two-phase commit
protocol.

For a discussion of ddI_concurrency mode and rollback, see Rolling Back
Transactions (see page 88).

Maintaining a Distributed Database 71

Chapter 5: Using a Distributed Database

This section contains the following topics:

Connecting Directly to a Local Database (see page 73)

Unloading and Reloading a Database (see page 81)

Copying Objects Using copydb (see page 83)

Modifying Catalogs Using sysmod (see page 85)

Updating Catalog Information Using verifydb (see page 86)

Rolling Back Transactions (see page 88)

dbmsinfo() Function—Request Information from a Database (see page 88)
help register Statement—Get Help with Objects (see page 91)

You use your distributed database the same way you use a single local
database. There are, however, some statements you can use only with a
distributed database and some statements you cannot use with a distributed
database. For a summary of both types of statements, see the appendix "SQL
Statement Summary.”

Connecting Directly to a Local Database

While using Ingres Star, you can access an Ingres or Enterprise Access local
DBMS directly. This is useful in some processing situations, for example, if you
want to modify a table’s storage structure, create secondary indexes, or grant
other users access to a table.

Once you are in this directly connected or pass-through mode, Ingres Star
merely passes through all statements and returns all responses. Statements
are sent to the local database, whose server accepts or rejects the statement.
When in this pass-through mode, Ingres Star does no syntax checking on the
statement.

You can access a local DBMS directly with either of the following statements:
®m direct connect

m direct execute immediate

Using a Distributed Database 73

Connecting Directly to a Local Database

Direct Connect Statement

The direct connect statement allows you to connect to a local database using
Ingres Star in a pass-through mode. You remain in this pass-through mode
until you issue a direct disconnect statement.

When you issue a direct connect statement, the Communications Server
determines the login account on the remote node connection based on the
netutil entries that have been set up. On a direct connect statement, your
connection to the local DBMS will be made as the user authorized to access the
remote node by netutil. For instance, if user Harry has a private authorization
entry that defines Sally as the user for connections to node Italy, when Harry
establishes a connection to node Italy from a distributed database, the local
user will be Sally. This behavior also occurs when Ingres Star accesses a
remote database’s data or catalogs.

The direct connect does not always require that a new connection be opened
between Ingres Star and the local DBMS. If the session has already caused
Ingres Star to open a connection with the local DBMS, then Ingres Star uses
that same connection for the direct connect.

You can connect to an Ingres or an Enterprise Access local DBMS with this
statement, but not to another Ingres Star DBMS.

If you are within a transaction, you first must commit or rollback your
transaction before you can issue a direct connect.

74 Star User Guide

Connecting Directly to a Local Database

Direct Connect Syntax

The direct connect statement has the following format:

direct connect
[with
[node = node_name,
database = database_name]
[, dbms = server_class]]

node = node_name

Specifies the Net defined vnode name (the virtual node name) of the
remote node that holds the database to which you want to connect. The
default node is the current node. It may be delimited with double quotes.

If you specify the node = clause, you also must specify the database =
clause.

database = database_name

Is the name of the local database to which you want to connect. The
default database is the coordinator database. It may be delimited with
double quotes.

If you specify the database = clause, you also must specify the node =
clause.

The default for database and node is the coordinator database on the
current node.

dbms = server_class

Is the type of local DBMS that contains the local database. It may be
delimited with double quotes.

The server_class must be Ingres or one of the SQL Enterprise Access
products. If you do not specify a server class, the default is the value in
default_server_class on the remote installation (Ingres, unless defined
otherwise.) To view or change this value, use the Configure Name Server
screen of the Configuration-By-Forms utility.

Using a Distributed Database 75

Connecting Directly to a Local Database

Direct Disconnect Statement

The direct disconnect statement enables you to leave the pass-through mode
enabled by your previous direct connect.

If you use direct disconnect before committing an active local DBMS SQL
transaction, Ingres Star commits the transaction and sends the commit to the
local DBMS.

Direct disconnect does not close Ingres Star’s session with the local DBMS. Any
state that you set up while directly connected remains in place and may cause
side effects in Ingres Star’s session with the local DBMS. Therefore, you must
reset any session parameters (such as set statements) established during
direct connect mode before issuing the direct disconnect. For example, if you
issue a set autocommit on statement during a direct connect session, you

must issue a set autocommit off before you issue the direct disconnect.

Direct Disconnect Syntax

The direct disconnect statement has the following format:

direct disconnect

Example: Direct Connect and Direct Disconnect

To place an integrity on an Ingres Star-level table, use the direct connect
statement to define the integrity at the local level since an Ingres Star-level
table actually resides in a local database.

create table employee (name char(100),
dept integer, salary money)

with node=remotel, database=mydb;
commit;
direct connect with node=remotel,
database=mydb;
create integrity on employee is salary>0;
direct disconnect;

76 Star User Guide

Connecting Directly to a Local Database

Direct Execute Immediate Statement

Use the direct execute immediate statement to send a local DBMS-specific
statement to the local DBMS.

Ingres Star assumes that the statement being sent is an update operation to
the local database. Ingres Star uses the two-phase commit protocol if the
transaction involves an update to at least one other site.

The direct execute immediate statement has the following format:

direct execute immediate ’string constant’
[with

[node = node_name,

database = database_name]

[, dbms =server_class]]

node = node_name

The Net defined vnode name (the virtual node name) of the remote node
that holds the local database to which you want to connect. The default
node is the current node. It may be delimited with double quotes.

If you specify the node = clause, you also must specify the database =
clause.

database = database_name

The name of the local database to which you want to connect. The default
database is the coordinator database. It may be delimited with double
quotes.

If you specify the database = clause, you also must specify the node =
clause.

The default for the database and node is the coordinator database on the
current node.

dbms = server_class

The type of local DBMS that contains the local database. It may be
delimited with double quotes.

The server_class must be Ingres or one of the SQL Enterprise Access
products. If you do not specify a server class the default is the value in
default_server_class on the remote installation (Ingres, unless defined
otherwise.) Use the Configure Name Server screen of the CBF utility to
view or change this value.

The with clause enables you to specify the node, database, and type of server
to which you want to connect. No other with clauses are allowed when
presented to Ingres Star.

Using a Distributed Database 77

Connecting Directly to a Local Database

Example: Direct Execute Immediate

The following example illustrates how you send a create integrity statement to
a local DBMS to be executed using direct execute immediate:

create table employee (name char(100),
dept integer, salary money)

with node=remotel, database=mydb;
direct execute immediate ’create integrity
on employee is salary>0’

with node=remotel, database=mydb;

Direct Execute Immediate Statement Process
When the direct execute immediate statement is presented to Ingres Star, it
strips off the direct keyword, the with clauses, and the quotes around the

string_constant and sends the following statement to the local DBMS:

execute immediate string_constant

The local DBMS, possibly an Enterprise Access, strips off the execute
immediate and then parses the query represented by string_constant.

If the query is a legal query for the execute immediate statement, it is
executed. If the query is illegal, an error is returned.

78 Star User Guide

Connecting Directly to a Local Database

Illegal Direct Execute Immediate Statements

The following statements are not allowed for direct execute immediate:

Preprocessor directives:
begin declare section
declare

end declare section
include

whenever

Cursor statements:
open
close
fetch

Row returning statements:

select
endselect

Non-database statements:

call
inquire_sql
set_sql

Transaction statements:
commit

rollback

savepoint

set autocommit on

Other statements:
connect
disconnect
describe

direct connect
direct disconnect
execute

execute immediate
help

prepare

repeat queries
register as link

Using a Distributed Database 79

Connecting Directly to a Local Database

Avoiding Execute Errors During Two-Phase Commit

It has already been pointed out that the transaction statements commit and
rollback are illegal to use for direct execution in an Ingres Star session. These
statements must not be passed through Ingres Star for execution on a remote
non-distributed database or Enterprise Access because these statements can
interfere with two-phase commits. This means that you must not attempt to
implement remotely through Ingres Star:

® A direct execute immediate statement to execute commit or rollback

m A registered procedure, or a direct execute immediate statement to
execute a procedure, that contains commit or rollback

Ingres Star, under the latest release of Ingres, detects such errors and returns
an error message without performing the operation. However, earlier versions
of Ingres serving the remote non-distributed database or Enterprise Access
may not detect such errors.

Important! If a user's commit or rollback statement is passed through Ingres
Star and executed by an earlier release of Ingres during two-phase commit,
the two-phase commit protocol may be disrupted and could corrupt the
database.

Direct Connect and Direct Execute Immediate Compared

Although the direct connect and direct execute immediate statements both
access local DBMSs, they operate in different ways.

The direct connect statement:

®m Is an Ingres Star statement only

®m Can execute queries that return rows (for example, any select query)

® Cannot be issued inside an Ingres Star-level transaction. You must first
commit the transaction

®m Can execute transaction statements, commit, rollback, abort

The direct execute statement:

®m Js an Ingres Star and Enterprise Access statement. It is used by Enterprise
Access products to allow direct access to the underlying DBMS.

® Cannot run queries that return rows. It cannot run a select query.
® Can be run inside an Ingres Star-level transaction

® Cannot execute transaction statements, commit, rollback, abort.

80 Star User Guide

Unloading and Reloading a Database

Unloading and Reloading a Database

Unloaddb creates command files enabling a DBA to completely unload and

reload a database. Unloaddb works in the same way as copydb except that
unloaddb unloads all objects in the database of which you are the DBA, not
just the ones you own.

With unloaddb, you can completely unload a coordinator database and move it
to a different place. Ingres Star catalogs can be replicated so that the
distributed database is always accessible despite node failure. For a full
explanation of unloaddb and all its flags, see the Command Reference Guide.
This section explains how unloaddb functionality changes when used with
Ingres Star.

The unloaddb command does not do the actual unloading but creates SQL
commands in two files in the current directory:

® unload.ing, which contains SQL instructions to read sequentially through
the database copying every table into its own file in the named directory

®m reload.ing, which contains SQL instructions to reload the database with
information contained in the files created by the unload.ing file

When you use unloaddb with a distributed database, you must use the
command twice:

1. You use unloaddb against the distributed database.

This unloads the registrations of locally stored tables and views and
distributed view definitions. Unloaddb does not unload the actual tables
that may be stored anywhere in the distributed environment, only their
registrations. In this respect, the unloaddb command works differently
when used against a distributed database as compared to a local database.
Because of this, you do not need to run unload.ing. You need run only
reload.ing against the newly created distributed database.

2. You use unloaddb against the coordinator database.
This unloads the user tables and data and the front-end object catalogs.

The tables that are unloaded are the tables resulting from a create table
statement at the Ingres Star level when a local database is not specified
for the table's storage and the table is therefore stored in the coordinator
database.

Accordingly, using unloaddb twice, you do not get all the tables that Ingres
Star points to. You get the tables in the coordinator database, the distributed
views in the distributed database, and the registrations in the distributed
database that are linked to all the locally stored tables that make up the
distributed database, and the front-end catalogs.

Using a Distributed Database 81

Unloading and Reloading a Database

Important! Because unloaddb must be run on the distributed database and
the coordinator database separately, be careful not to unload the coordinator
database in the same location as the distributed database in order to prevent
files from being overwritten.

Example: Unloaddb

The following example shows unloaddb used against a distributed database
named distdbname and a coordinator database named iidistdbname:

UNIX:

cd /usr/mydir/iidistdbname
unloaddb iidistdbname
unload.ing

cd /usr/mydir/distdbname
unloaddb distdbname/star

createdb newdistdbname/star

cd /usr/mydir/iidistdbname

Edit reload.ing to replace ‘iidistdbname’ by ‘iinewdistdbname’:
reload.ing

cd /usr/mydir/distdbname

reload.ing

VMS:

set def usr_disk: [mydir.iidistdbname]
unloaddb iidistdbname
@unload.ing

set def usr_disk:[mydir.distdbname]
unloaddb distdbname/star

createdb newdistdbname/star

set def usr_disk: [mydir.iidistdbname]

Edit reload.ing to replace ‘iidistdbname’ by ‘iinewdistdbname’:
@reload.ing

set def usr_disk: [mydir.distdbname]

Edit reload.ing to replace ‘distdbname’ by 'newdistdbname’:

@reload.ing

82 Star User Guide

Copying Objects Using copydb

Copying Objects Using copydb

The command copydb creates command files enabling you to copy objects
owned by you out of a database and restore it. For a full explanation of copydb
and all its flags, see the Command Reference Guide.

The copydb command does not copy the database but creates two SQL
command files in the current directory for doing the actual copying:

® copy.out, which contains SQL instructions to copy all the tables owned by
the user into files owned by the user in the named directory

® copy.in, which contains SQL instructions to copy the files into tables,
create indexes, and perform modifications

The copydb command works slightly differently when you use it against a
distributed database. If you run copydb against a distributed database, it only
copies out registration statements of local tables and views registered in the
distributed database and distributed view definitions.

The SQL instructions in copy.out copy data out into files that can be accessed
by the SQL instructions in copy.in. Because copying the distributed database
involves executing registration statements and not copying data, you need run
only copy.in.

Using a Distributed Database 83

Copying Objects Using copydb

Example: Copydb

The following example shows copydb used against a distributed database
named distdbname and a coordinator database named iidistdbname:

UNIX:

cd /usr/mydir/iidistdbname
copydb iidistdbname

sql iidistdbname <copy.out
cd /usr/mydir/distdbname
copydb distdbname/star

createdb newdistdbname/star

cd /usr/mydir/iidistdbname

Edit copy.in to replace ‘iidistdbname’ by ‘iinewdistdbname’:
sql iinewdistdbname <copy.in

cd /usr/mydir/distdbname

Edit copy.in to replace ‘distdbname’ by 'newdistdbname’:

sql newdistdbname <copy.in

VMS:

set def usr_disk: [mydir.iidistdbname]
copydb iidistdbname
sql iidistdbname <copy.out

set def usr_disk: [mydir.distdbname]
copydb distdbname/star

createdb newdistdbname/star

set def usr_disk: [mydir.iidistdbname]

Edit copy.in to replace ‘iidistdbname’ by ‘iinewdistdbname’:
sql iinewdistdbname <copy.in

set def usr_disk:[mydir.distdbname]

Edit copy.in to replace ‘distdbname’ by 'newdistdbname’:

sql newdistdbname <copy.in

84 Star User Guide

Modifying Catalogs Using sysmod

Modifying Catalogs Using sysmod

The sysmod command is an Ingres utility to modify system catalogs to
predetermined storage structures. Running sysmod can improve performance
by reducing system catalog overflow pages caused by a lot of DDL activity.
Only the DBA or the system administrator can run sysmod.

You may use sysmod on a distributed database. You can specify particular
Ingres Star catalogs as sysmod targets, or default to modifying all system
catalogs.

For flags and full syntax details of the sysmod command, see the Command
Reference Guide.

Example: sysmod

As the database administrator, you modify all system catalogs in distributed
database mystardb. (This is the most common usage of sysmod.) Note that
you do not use the /star suffix on the distributed database name:

sysmod mystardb

As the database administrator, you modify the Ingres Star catalogs
iidbcapabilities, iiddb_tree, and iiddb_objects in distributed database
herstardb:

sysmod herstardb iidbcapabilities iiddb_tree iiddb_objects

As the database administrator, you modify just the catalogs for the Vision
product on database mystardb:

sysmod mystar -f vision

Using a Distributed Database 85

Updating Catalog Information Using verifydb

Updating Catalog Information Using verifydb

The verifydb command is an Ingres utility to provide database management,
supportability, and disaster recovery services.

This section discusses the use of the refresh_ldbs operation of verifydb to
notify Ingres Star of remote database upgrades to which a distributed
database already has registered objects. For a full explanation of verifydb and
all its flags, see the Command Reference Guide.

The refresh_ldbs operation of verifydb allows you to update distributed
database Ingres Star catalog information dealing with the version level of
remote non-distributed databases that are upgraded after the remote non-
distributed databases have been registered with the distributed database. You
want the remote non-distributed database to reflect its latest upgrade version
so that Ingres Star will accept all upgraded features available to the remote
non-distributed database.

The refresh operation is performed by specifying the verifydb command with
the -orefresh_Ildbs parameter. This operation reads the standard catalogs of
each remote database processed and makes sure that the Ingres Star catalog
correctly reflects the iidbcapabilities levels of the various remote non-
distributed databases that contain objects registered to the distributed
database. It does so without changing the contents or semantics of the
standard catalog interface.

It is recommended that you run this operation on a distributed database after
you run upgradedb on any of the remote databases accessed by the
distributed database. For details on running upgradedb, see the appendix
“Release Compatibility.”

86 Star User Guide

Updating Catalog Information Using verifydb

Examples: verifydb

Run verifydb with the refresh_ldbs option on the mystar database to check
whether or not the iiddb_Idb_dbcaps catalog correctly reflects the level of its
registered databases. Log output is to the default verify log file.

verifydb -mreport -sdbname mystar -orefresh_ldbs

Run verifydb with the refresh_ldbs option on the mystar database, correcting
any iiddb_Idb_dbcaps catalog entries that incorrectly reflect the level of its
registered databases. Log output is to the alternate refreshidb.log log file.

verifydb -mrun -sdbname mystar -orefresh_ldbs -1frefreshdb.log

Run verifydb with the refresh_Idbs option on all databases that you own,
correcting any iiddb_Idb_dbcaps catalog entries that incorrectly reflect the
level of its registered databases. Log output is to the alternate refreshldb.log
log file.

verifydb -mrun -sdba -orefresh_ldbs -1frefreshdb.log

Run verifydb with the refresh_ldbs option on all databases that user sue owns,
correcting any iiddb_I|db_dbcaps catalog entries that incorrectly reflect the
level of its registered databases. Log output is to the default verify log file.

verifydb -mrun -sdba -orefresh_ldbs -usue

Using a Distributed Database 87

Rolling Back Transactions

Rolling Back Transactions

The rollback statement rolls back part or all of the current Ingres Star
transaction. Rollback to a savepoint applies only to those Ingres Star
transactions involving Ingres local databases.

If the data definition language (DDL) concurrency mode parameter
ddl_concurrency is set on, and rollback is executed after a:

m create table, the table in the local database is destroyed, but the
registration of the table in the distributed database remains. You should
remove the registration.

m drop table, the table in the local database remains but the registration of
the table in the distributed database has been removed. You should re-
register the table.

If ddl_concurrency is set on, and rollback is executed after a:

m create view is executed within a transaction, the view is not destroyed. You
should drop the view.

m drop view, the view remains destroyed. You should re-create the view.

The ddl_concurrency is on by default. To turn off distributed database
concurrency mode, see DDL Concurrency Mode (see page 71).

For a discussion on distributed transactions, see the chapter “Understanding
Ingres Star Architecture.” For more information on the rollback statement, see
the SQL Reference Guide.

dbmsinfo() Function—Request Information from a

Database

The dbmsinfo() function is an SQL function that is used to request information
from a database.

This function has the following syntax:

dbmsinfo (request_name)

Request names for the dbmsinfo function that are supported by Ingres Star
are shown here:

Request Name Response Description

autocommit_state Returns 1 if autocommit is on; 0 if autocommit is off.

88 Star User Guide

dbmsinfo() Function—Request Information from a Database

Request Name

Response Description

_bintim Returns the current time and date in an internal
format, represented as the number of seconds since
January 1, 1970, 00:00:00 GMT.

_bio_cnt Returns the number of I/Os made by Ingres Star and
all currently connected local DBMSs. Ingres Star
returns “0” for this argument.

_cpu_ms Cpu time for session in milliseconds. Ingres Star
returns O for this argument.

database Returns the database name.

dba User name of the distributed database owner.

dbms_bio Returns the number of buffered I/O requests for all
connected sessions. Ingres Star returns 0 for this
argument.

dbms_cpu Returns the cumulative CPU time for the local DBMS, in
milliseconds, for all connected sessions. Ingres Star
returns O for this argument.

dbms_dio Returns the number of direct I/O requests for all
connected sessions. Ingres Star returns 0 for this
argument.

_dio_cnt Disk I/0 requests made by Ingres Star and all
currently connected local DBMSs. Ingres Star returns 0
for this argument.

_et_sec Returns the elapsed time for session, in seconds.
language Returns the language used in the current session to
display messages and prompts.

_pfault_cnt Page fault count for Ingres Star and all currently

connected local DBMSs. Ingres Star returns 0 for this
argument.

query_language

Returns 'sqgl' or 'quel'.

server_class

Returns the class of local DBMS, for example 'ingres'.

terminal

Returns the terminal address.

transaction_state

Returns 1 if presently in a transaction, 0 if not.

username

User name of the client connected to Ingres Star.

_version

Current version number of the Ingres Star process.

Using a Distributed Database 89

dbmsinfo() Function—Request Information from a Database

These request names are case insensitive. When you run a query against an
Ingres local DBMS, the dbmsinfo() function always returns a varchar(32) as
the result. When you run a query against a Star Server, the dbmsinfo()
function returns a varchar of the length of the response.

The following query returns a variable length string containing the answer, for
example, 1:

select i=dbmsinfo(’transaction_state’);

For more information on dbmsinfo(), see the SQL Reference Guide.

90 Star User Guide

help register Statement—Get Help with Objects

help register Statement—Get Help with Objects

The help register statement gives you information about:
m Registrations in the distributed database catalogs

m Mapping between the registered distributed database object names and
the names of the underlying linked objects

®m linked underlying objects in their respective local databases

This statement is an Interactive SQL Terminal Monitor statement only.
The help register statement returns the following information about the
registered object and its underlying object:

m Registered name

m Owner of the registered name

m Type of object

= Node name

m Database name

®m | ocal object name

m Owner of the local object

®m |ocal DBMS class

m SQL text of the registration

The help register statement has the following format:

help register object_name
object_name
Is a table, view, or database procedure.

For more information on the help register statement, see the SQL Reference
Guide.

Using a Distributed Database 91

Chapter 6: Managing a Distributed
Database with StarView

This section contains the following topics:

StarView Capablilties (see page 93)

Moving Around in StarView (see page 94)

Start StarView (see page 97)

The StarView Main Frame (see page 98)

Node Status and Local Database Types Frame (see page 100)
Distributed Database Contents Frame (see page 106)
The ObjAttr Operation (see page 109)

The Browse Operation (see page 111)

The Remove Operation (see page 113)

The Criteria Operation (see page 114)

Register Tables with StarView (see page 117)

StarView Capablilties

StarView is a simple forms-based utility you can use to manage your
distributed databases.

Using StarView you can:

® Display all your distributed databases

m Display the nodes, databases, and tables registered in a distributed
database

m Display the local database objects that make up a distributed database
m Test the network connections to each node in a distributed database

m Register local tables and views in a distributed database without using the
SQL register as link statement

m Remove database objects that you had previously registered in your
distributed database

In addition, you can query databases from within StarView with direct access

to:

m Ingres Interactive SQL (ISQL)

® The Tables utility

Managing a Distributed Database with StarView 93

Moving Around in StarView

Moving Around in StarView

The StarView utility operates in exactly the same way as Ingres forms-based
tools. A brief summary of how to use forms follows. For a complete explanation
of Ingres forms-based tools, see the Forms-based Application Development
Tools User Guide.

Operations Menus

An operations menu is displayed at the bottom of each frame. The following
figure shows a typical StarView frame:

ptarsUienw - Distributed Database Adwministration Tool
Distributed Database:
Node Mame! hg

"DDBHelp" will list all distributed databases on node specified aboue,
default is current node.

Distributed databases on node HARE

Distributed Database Name Quner Name

+LGo DDEHele Top Bobiom Fiod Helpe Guit

You can cycle through all the menu selections by pressing the menu key
repeatedly. (The key on your keyboard that acts as the menu key depends on
your terminal and the individual key mappings you have chosen.)

To move the cursor from the window to the operations menu, press the menu
key. To return to the window, press the Return key.

Long Operations Menus

Some operations menus are longer than the width of the frame. The presence
of additional menu items is indicated by either a > at the right end of the
menu, a < at the left end, or both.

You can cycle through the entire set of menu options by pressing the menu
key repeatedly.

94 Star User Guide

Moving Around in StarView

Moving Between Operations Menus

When you choose an operation from a menu, you often are presented with
another frame containing a submenu of operations.

To return to the original menu, use the End operation. If you leave a submenu
with the Quit operation, you quit StarView and return to the operating system
prompt.

Options for Selecting an Operation

There are two ways to select an operation from the operations menu:
m Selection by function key

m Selection by name
Select an Operation by Function Key

To select an operation that has a function key (or key combination) mapped to
it, simply press that key. This invokes the operation regardless of where the
cursor is when you press the key. The function key that is mapped to an
operation is shown in parentheses after the operation.

Select an Operation by Name

To select an operation from the menu by name, follow these steps:
1. Press the menu key.
The cursor is moved to the menu.

2. Type either the full name or enough letters to uniquely identify the
operation you want to select, and then press Return.

For example, if the operations Find and Forget are displayed on the same
menu line, you must type at least fi to identify Find and at least fo to
identify Forget.

Managing a Distributed Database with StarView 95

Moving Around in StarView

Context-sensitive Help

Error Messages

Context-sensitive help is available, based on the current task or field with
which you are working.

You can obtain help by placing the cursor on the operations menu line and
typing h for Help. You also can press the Help key to get help at any time.
Sometimes, help is provided on several screens.

What to do

Describes the current screen and the operations menu
Keys

Describes the function and control keys and their current definition
Field

Displays a list of valid values for a field or the display format, data type,
and validation check, if any, for a field

Help
Displays the type of Help available
End

Exits from any Help screen to the previous screen

To make a selection on a Help screen, type at least the first unique characters
of the operation and press Return, or press the key listed in parentheses after
the operation. To move through the Help screens, use the cursor movement
keys specific to your terminal. You can see a list of the keys available by
selecting the Keys operation from the Help menu.

You are provided with context-sensitive error messages that indicate both the
error type and the error code.

Explanations for the errors are also provided. When you receive an error
message, a single-line message is displayed with a prompt that tells you to
press either the End key or the More key.

To see the explanation of the error, press the More key. After reading the
explanation, press Return to return to your work in progress.

To exit the message without reading the explanation, press the End key at the
prompt.

For additional information on error message formats, see the System
Administrator Guide.

96 Star User Guide

Start StarView

Start StarView

To call StarView type starview, or starview and a distributed database name,
at the operating system prompt. You may also include a remote vhode name
to run StarView against a distributed database on a remote node.

The complete syntax for StarView is:

starview [vnode::] [distdbname][/star]

If you invoke StarView with a database name, the Node Status and LDB
Types frame is displayed.

If you invoke StarView without specifying a database name, the opening
StarView main frame is displayed.

StarView Menu Map

The figures below show the menu selections available through the StarView

utility:
=
ECootents
Cetgree
LoDhj —] mem
& e N [T |w
LI Ty Tealiie Al
EHen o0 | aam Help
L op Hep
istifbmted Fnam Emd
Dalalboer —] Holiom g
Fnd
Help
sl

Managing a Distributed Database with StarView 97

The StarView Main Frame

The DDB Contents Map

The following figure shows the menu selections available from the DDB
Contents frame:

tar#liew - Distributed Database RAdministration Tool
Distributed Databazse:
Node Mame: hg

"DDBHelp" will list all distributed databases on node specified aboue,
default is current node.

Distributed databases on node HARE

Distributed Database Hame Ouner Hame

it @

The StarView Main Frame

The StarView main frame is displayed in the following figure:

Starsliew - DMstributed Database Administration Tool
Distributed Database:
Hede Mame: hg
“DOBHelp” will list all distributed databases on node specified above,

default is current node.

Diztributed databazes on node HARE

Diztributed Databaze Hare Duner Hane
carpddb nings
epacstddb Hiz
uestddb nis
centralddb nis

bobddh bok
ddbdavebf davebf
ddbalexc alexc

o DDEHelp Top Eotton Find Help OQuit :

98 Star User Guide

The StarView Main Frame

You can view and choose from a list of distributed databases or type the name
of a distributed database. See Select a Distributed Database (see page 99).
The StarView main frame includes the following operations:

Go

Connects you with the displayed distributed database and displays its
associated nodes and component local databases.

DDBHelp

Lists all distributed databases on the current node so you can select one.
Your selection is automatically entered in the Distributed Database field.

Top, Bottom, Find, Help, Quit

These are the standard menu operations.

Select a Distributed Database

To select a distributed database, either select from a list of distributed
databases or manually enter a distributed database name.

Note: If you specify a distributed database name on the StarView command
line, this menu is skipped.

Select a Distributed Database from a List

To select from a list of distributed databases:
1. Choose DDBHelp.
A list of distributed databases is displayed as shown in the following figure:
Starsllicy - Distributed Database Adrinistration Tool
Diztributed Database:

Hode Mame: hg

"ODBHelp" will list all distributed databases on node specified above,
default iz current node.

Distributed databases on node HARE

Distributed Database Hame Ouner Hane
corpddhb nings
rastddb Hi=m
uestddh Hi=
central ddb ri=

bobddb bok
ddbdauvehbi dauvebl
ddbalexo alexoc

Ga DDBHelp Tep Bottos Find Help OQuit :

Managing a Distributed Database with StarView 99

Node Status and Local Database Types Frame

2. Move the cursor down.

As the cursor moves, successive distributed databases are highlighted.
Choose one.

3. Choose Go.

You are connected to the selected database.

Select a Distributed Database by Entering a Name

To manually enter a distributed database name:

1. Move the cursor to the Distributed Database field and type in the desired
distributed database name.

2. Choose Go.

You are connected to the specified database.

Node Status and Local Database Types Frame

Choosing the Go operation from the StarView main frame displays the Node
Status and Local Database (LDB) Types frame.

The Node Status frame also displays first if you specify the name of a
distributed database as a parameter when you type starview at the operating
system command line.

To connect to another distributed database, you must choose End to call up
the main StarView frame and Select another distributed database.

The following figure shows the Node Status and Local Database Types frame:

Mursltisy — Helr Batum. Lronl] atabaes Do

Bk~ Dimberl bebenll Dobslesss= swepulil

r — Foosed kle

dosan — FAmk xis FMerws' by

B b L

Lamnl Puisbamrs rerlstersd In the dLetribuind Satabess.
Bhah| Mede Heewm Lrral Dohebasr Mear T W
T by] dragrrws
- — e r— Arngrr——
- n— L g Aragrm
- L ——— [y y—— _—

Limtlied LDEWELF TastHelsr IssilD¥ 3L Teklew I Betlan Hele Eml !

100 Star User Guide

Node Status and Local Database Types Frame

The Node Status and Local Database Types frame includes the following
operations. Note that both SQL and Tables selections connect to the selected
distributed database:

ListObj

Lists the objects in the selected distributed database.
LDBAttr

Lists the attributes of the selected local database.
TestNode

Tests whether you can connect to a node. You can test the accessibility
status of a single node or all nodes.

TestLDB

Tests whether you can connect to a local database. You can test
connections to a single database or all databases in the distributed
database.

SQL

Accesses Interactive SQL (ISQL). You can enter and execute SQL
statements at the interactive Terminal Monitor.

Tables

Accesses the Tables utility. You can access, create, destroy, and query all
the tables in the distributed database using the forms-based Tables utility.

Top, Bottom, Find, Help, End

Standard menu operations.

Managing a Distributed Database with StarView 101

Node Status and Local Database Types Frame

ListObj Operation

The ListObj operation displays the Distributed Database Contents frame, which
lists the component objects of the distributed database and the system
catalogs:

Oijects I Hiwtcibated deislmes: corpdih
{3ject Salection Criterie

Hals Fans- =
Databhaee Mawst = Shou HHma{y'nd y
Objert Duwmr: m Shau Tubleclp'ndl y
Tn Rywisn Calwmlrgeipnd: u
Dhjuct Hue O ek Ouma Db Jact l'e.-l

morsmanbax el ULmu

harfliw mleyn ULmu
bul LAlege ourl Tahlx
covpwlitlon L1t] Tahlw
ulngm Takls

DAL oM oarl Takln
Fudearnl mLmtm Tukln
purim oL Taklx
proapenis Hlmgm Tahls
m leulrreoust L1k~] Tahlw

Onyrtir Brouxa Emaws Cribmds Thp Bettom Find Baly Ind ®

You can display all or any combination of these objects by altering the default
settings.

To learn how to restrict the display of this frame to, for example, tables only,
see Distributed Database Contents Frame (see page 106).

LDBAttr Operation

The LDBAttr (local database attributes) operation displays the following frame
showing the attributes of your selected local database:

Fiar=lev — Hodw sisiws. legal Deinbasw Tumes

Etmt: Metributed letebes: corplih
uwp = fonemalhle
Aaum = Rob Mala Mawat by

A | k1w

Local Iwislkoes regloiorsd iz Uw distrlbuted deiskeow.

atat| vote

ja8-

seel Julnbees ix serked sperst Isssl
Daitnlmes Serivires foullshisl lass]l Delsless

102 Star User Guide

Node Status and Local Database Types Frame

The attributes shown include name, date, checkpoints and journaling.

The Accessibility Status field displays one of the following messages:
m Database is marked operational

m Database is being destroyed

m Database is being created

The Database Service Available field displays either Local Database or
Coordinator Database.

SQL Operation

By choosing the SQL operation, you can use Interactive SQL (ISQL) to query
your distributed databases. The following screen is displayed:

Enter SAL Statements Patabase: corpddb’star

lim Rezume Corplele EBlank Edit Flle Blank Edit File OmEreor ¥

For a full explanation of ISQL, see Forms-based Application Development Tools
User Guide.

Managing a Distributed Database with StarView 103

Node Status and Local Database Types Frame

Tables Operation

By choosing the Tables operation, you can use the forms-based Tables utility
to query tables in your distributed databases.

The following screen is displayed:

TRBLES - Tables Catalog

Hari Disnie Type
=alesteans rlng= table
pro,jocts ring= table
departHents Hings table
xkeans Hings index
assignrents Hings whew
AANAgErS Hings rieu

Place cursor on vou ard select desired operation Prom merw.

Create Desiroy Exspine Query Report Find Top Boktom Help Quit :
If you create any tables using the Tables utility, the underlying local tables are
created in the Coordinator database.

For a full explanation of the Tables utility, see Forms-based Application
Development Tools User Guide.

TestNode Operation

By choosing the TestNode operation, you can test the node connections within
your distributed database. When you test a node, the Status field on the frame
changes from a question mark (?) to either up (accessible) or down (not
accessible).

You can test the connections to a single node or to all nodes. The following list
of options is displayed:
SingleNode
Test a single node
AllNodes
Test all the nodes in the distributed database
Help and End

Standard menu operations

104 Star User Guide

Node Status and Local Database Types Frame

TestLDB Operation

By choosing the TestLDB operation, you can test the availability of the local
databases in your distributed database. When you test a database, the Status
field changes from a question mark (?) to either up (accessible) or down (not
accessible).

You can test the connections to a single database or to all databases. After
testing one database, you can then test another database by choosing
NewLDB.

When you choose AlILDBs, StarView goes through each local database and
changes the display of the status to either up or down.
The following list of options is displayed:
SingleLDB
Test a single local database
AlILDBs
Test all the local databases in the distributed database
NewlLDB
Test a new local database
Help and End

Standard menu operations

TestNode versus TestLDB

TestNode allows you to test whether you can connect to a node. TestLDB
allows you to test whether you can connect to a local database.

If you have many local databases and only a few nodes, it is faster to test
connections against the nodes rather than test every local database on the
node.

Managing a Distributed Database with StarView 105

Distributed Database Contents Frame

Distributed Database Contents Frame

To see all the objects in your distributed database, choose the ListObj
operation from the Node Status and Local Database Types frame. The
Distributed Database Contents frame is displayed:

Dijecis ln Himtribated deislmes: orpdih
(3ject Salection Criterie

Hals Faas =
Datahaen Maws: = Fhou MHmatyni y
Objnt Crmr: = Shau Tubleipndl g
Hen Rywisn Calwlrgeipnd: u
Ohjuct Hue Dhjuck. Ounm: ObJact. Tupal

mormmanba ol UL

bl LLw nlwgw Ulma
bul ldlegw ourl Tahlr
covpwtitlon L1k] Tahlw
ulngm Takls

DITLONETR: narl Takln
Fderarnl ' Lmim Tukln
purts mrl Taklx
proupenis Hlmgm Takls
m loulrreoust nlugm Taklw

OhJittr Brouxa Pwasws Cribesis Tap Bettom Find Baly Ind
All the tables, views and indexes in your distributed database are listed by
name, owner and type of object.

Registered indexes will have a nhame determined by Ingres Star at registration
time of the form:

ddx_nnnn_nnnn

For example:

Object Name Object Owner Object Type

ddx_1323_1324 $ingres Index

Note: Ingres Star does not retain any index names created when the index
was created in the local database.

106 Star User Guide

Distributed Database Contents Frame

You can restrict the objects displayed in this frame by choosing the Criteria
menu item. The criteria that control the Distributed Database Contents frame
are described below:

Node Name

The node containing the local database. This can be modified by the
NodeHelp menu item of the Criteria menu.

Database Name

The local database name. This can be modified by the LDBHelp menu item
of the Criteria menu.

Object Owner

The owner of the object in the database. This can be modified by the
OwnerHelp menu item of the Criteria menu.

Show Views

When vy is selected all views in the distributed database are displayed.
Show Tables

When vy is selected all tables in the distributed database are displayed.
Show System Catalogs

When vy is selected all system catalogs are displayed.

When you choose the ListObj operation the first time, the following default
criteria for the display of the objects in the distributed database are set:

Field Default
Show Views %
Show Tables y
Show System Catalogs n

By changing these values, you can restrict or extend the display of the objects
in your distributed database. For example, by setting Show Tables to n, no
tables are displayed.

To change the defaults, you must select the Criteria operation. A pop-up
window is displayed on the DDB Contents frame within which you can amend
the criteria fields. For details, see The Criteria Operation (see page 114).

Managing a Distributed Database with StarView 107

Distributed Database Contents Frame

DDB Contents Frame Operations

The Distributed Database Contents frame includes the following operations:
ObjAttr

Provides attribute information about the objects in the selected distributed
database.

Browse

Allows you to look at a list of nodes and select a node. This list of nodes
includes only those already used in the distributed database selected.

From the selected node, you may look at and select a local database. From
the selected database, you may look at the tables and views in that local
database. You may then select and register a table or view in your
distributed database. (Registering Tables with StarView.)

You cannot use StarView to add a table from a node not yet in that
distributed database (since StarView obtains the information from the
iiregistered_objects catalog).

Remove

Removes the registration of tables or views from the selected distributed
database (it does not drop the underlying table or view from the local
database).

You cannot remove a table or view only a registration. To remove a table
or view, you must exit StarView and use the drop statement.

Criteria

Restricts or extends the display of distributed database objects.

Top, Bottom, Find, Help, End

Standard menu operations.

108 Star User Guide

The ObjAttr Operation

The ObjAttr Operation

To show information about any object displayed in the Distributed Database
Contents frame, select an object and choose the ObjAttr operation. The Object
Atttributes pop-up window is displayed:

Star=ylss — Metcibaied Catsbews Cowtamta

Dijects in ditrideisd dutsbess oerpddh
ObJect Eelwctivm Criterls

Databaen Hwmi = Thou Ulmetyenol g
Ohjuct Dormr] =
Db jurrt Rt et

ObJwol TPl cuis+ons® Tahln

bject burm.: coxtowrs
Dhjmct Hum Object Duaner........." dlogs

Crrats DatS.........] 1955 56 AN ZHIENI 9 WX
morsmnbx . M |
oL iw
bulldlegs
covpetition
caat cantar
it o
Taderrml
ypurts
ml 1 1 1
I

Managing a Distributed Database with StarView 109

The ObjAttr Operation

The following attributes of the chosen table or view are displayed in the pop-up
window:

Object Type

The type of object: table, a view, or an index
Object Name

Name of the object
Owner

Owner of the object
Creation Date

Date the object was created
Alter Date

Date the object was last altered
Object Subtype

The subtype of the object, either Native (created at the Ingres Star level)
or Link (created locally and registered as link)

System/User
Indicates whether the object is user-created or system-created
Local Object Name
Local name of the object
DBMS type
Type of local DBMS
Node Name
Name of the node
Local Database Name
Name of the local database

Depending on the type of object selected, the pop-up window displays
information about a local table, view, or index, or a distributed view.

110 Star User Guide

The Browse Operation

The Browse Operation

To see all the components of a distributed database, use the Browse operation.
You may view the component nodes, the databases on that node, and finally
the objects such as tables and views within any of those databases. When the
objects within a local database are displayed, you may register them in your

distributed database.

Choose the Browse operation from the Distributed Database Contents frame.

The following pop-up window is displayed:

tion Criteria

Show System Catalogs{y/n’: n

Show Views{y/nd: u
Show Tables{y n>: y

ect Ouner

Ohject Type

View
Uiew
Uiew
Uiew
Uiew
View
View
Tahle
Table
Tahle

Starsliew - Distributed Database Contents
Objects in distributed database: corpddb
Hode Name
hg
east
L | | west
_| | rurope
rl
gz
¥l
gs
qs
rl
xC
rl
prospects nings
salesforecast g
nings
Select Top Bottom Find Help End H

All nodes are listed in the pop-up window.

To see all the databases on a particular node, select the desired node.

Move the cursor to the desired node and choose Select. The Local Database

Name pop-up window is displayed:

Starsliew - Distributed Database Contents
Objects in distributed database:corpddb

- jtion Criteri

Node Shou Vieus(ys nd: y
Local Database Hame DBHS type ||hou Tables(ysn): y
hyg n CatalogsC(y/n): n
Ll |east ||sales ingres
| |uest || mwarketing ingres
europ| | finance ingres Object Type
1 inventory db2
Vieuw
View
Uieu
View
Vieuw
View
Uieuw
Table
prospec Table
salesforecast Inlngs Table

Select Top Bottom Find Help End @

Managing a Distributed Database with StarView 111

The Browse Operation

All the databases on your selected node are displayed.

To see all the tables and views in a particular database, select the desired
database.

Move the cursor to the desired database and choose Select. The Object Name
pop-up window is displayed:

Starslien ~ istributed Database Tontents
Objects in distributed database: corpddb
- ption Criteria
. I
Node
Local
hg Object Nawme Ouner Object Type|Systen
L| |east ||sales
| |west || Harket||accounts_ jan Hings Table User
europ| | financ| | accounts_feb mings Table User
invent | | custoners Hings View User
prospec
salesforecast
1 1 1
Register SQL Tables Top Bottom Find Help End

All the objects in your selected database are displayed. From this window, you
can register tables and views in your distributed database. For details on
registering an object in a distributed database, see Register Tables with
StarView (see page 117).

Using the SQL operation, you can access Interactive SQL. Using the Tables
operation, you can access the Tables utility. Both SQL and Tables connect to
the selected local database. For a full explanation of ISQL and the Tables
utility, see Forms-based Application Development Tools User Guide.

112 Star User Guide

The Remove Operation

The Remove Operation

You can delete registrations from your distributed database using the Remove
operation.

Removing the registration of a table removes the registered table name from
the distributed database. It does not remove the underlying table or its data
from the local database.

Removing the registration of a local view removes the registered view name
from the distributed database. The underlying view, tables and data are not
affected.

You may not delete a local table or a local or distributed view displayed in the
list of objects in the distributed database. To delete the actual table or view,
you must exit StarView and use the drop statement.

You may not use the Remove operation against an index or a distributed view.

Remove a Registration

To remove a registration from your distributed database:

1. From the Node Status and Local Database Types frame, choose ListObj
from the menu.

The Distributed Database Contents frame is displayed.

2. Move the cursor to the registered table or view you wish to remove.
The object is highlighted.

3. Choose Remove from the menu.

The table or view is removed from the distributed database.

Managing a Distributed Database with StarView 113

The Criteria Operation

The Criteria Operation

You can restrict or extend the display of the objects in your distributed
database with the Criteria operation. For example, if you change the Show
System Catalogs to y, system catalogs are also displayed.

To set criteria, choose the Criteria operation from the Distributed Database
Contents frame. The following pop-up window is displayed within which you
can amend the criteria fields:

BacWlisy — Distribatsd Detshesy Corteris
Ik Jeot Enlantion Criterln
Hrale Newr! =
Intolosn Hum Show Vimrwin/nd: y
Objeot Oume~: = Zhau Tablmsiy/nd: y
e Dyeian Cotalegelypndl n
L

aunnie our] Vimm
b it ulram ima
balLdInge oarl Takls
oot lblion Al Isblw
crxioonter nlras Inblw
DL oar] Barister
T milerm] mledin Tolalm
parie oar] Iable
proapacts Hinge Iahls
malncForanast HLnge Iakla

Eslpot Halnimlp LFBHaIp ODwmerdinly Help End

The cursor appears on the first field (Show Views). Move to the field you wish
and change the criteria to y or n. After making your selection, choose Select.

The Node Name, Database Name, and Object Owner fields are modified,
respectively, by the Nodehelp, LDBHelp, and OwnerHelp menu items.
The following operations are available from the Criteria pop-up window:
Select

Changes the object selection criteria to current values and returns to the
Distributed Database Contents frame. That frame now displays only the
objects adhering to the newly selected criteria.

NodeHelp

Lists the nodes in the distributed database for selection into the Node
Name field.

LDBHelp

Lists the local databases for selection into the Database Name field.

114 Star User Guide

The Criteria Operation

OwnerHelp
Lists the owners for selection into the Object Owner field.
Help and End

Standard menu operations.

The NodeHelp Operation

To place a node name in the Node Name field, choose the NodeHelp Operation
from the Object Selection Criteria frame.

The following pop-up window displays the nodes registered in your distributed

database:
Sterdiey — Iwkr
Hadws plrewly rewistersd in
Hods Hess| the Disbrikabsd Deiskams
ubakans Hans Thou Mty y
[R, — In-i-nu- Shou Tablmtp'mil g
b Cainlogutyrd: n
H]
oy
Ohjuct M rT.3 Ohjact Iypa|
sk
morsmarka —rop 'L T
el liw Ul
bulldlegs Iabls
covpetition Inbln
caat canter Iakln
Dissk oM By Ik
Faderrml Tukin
purts Tuhlx
proupeais Iable
m lenlforeoust Inklw

Salant Tap Bakta Find Halp EInd

To choose a node name, place the cursor on a node name and choose Select.
The node name is selected and placed in the Node Name field in the Object
Selection Criteria Window.

Managing a Distributed Database with StarView 115

The Criteria Operation

The LDBHelp Operation

To place a database name in the Database Name field, choose the LDBHelp
operation from the Object Selection Criteria frame.

The following pop-up window displays a list of local database names registered
in the distributed database:

Btardtey — Mutribuisd Juotsiees Conterts
b ject Ewln
Hodn Mana: =
Jubahans Hanal = Laoal Detahacs FMmss
Db jeot (amerl =
L]
il
mrket Leg
Dhject Hum MI FLmancs Tupa|
morsmanbax mrl
harfliw ning
bulldlegs marl
conpwlition nina
caat cantar LHL
it owrr ol r
Fndeornl ulod
puris el
proupeais ning
m lealforeount rina
1

Salant Tap Naktad Find Halp End !

To select a database name, place the cursor on a database name and choose
Select. The database name is placed in the Database Name field.

116 Star User Guide

Register Tables with StarView

The OwnerHelp Operation

To place an owner’s name in the Object Owner field, choose the OwnerHelp
operation from the Object Selection Criteria frame.

The following pop-up window displays a list of owners of objects in local
databases in the distributed database:

Btardtioy — Mwiribuisd Jatebsew Conterts
(b ject Ewln
Hodn Maka: =
Jubkahany Makal = L
Dl jucrt (ermer) =
Ll
Flasrew
ulma
earl
il ol
mommanks ol | | georgey
harf L ning|nlegm
bulldlemm marl|jrukln
covpwtition rina| |rapenl
wina| |asputis
Dl o ol |l r
Tadrrul ulni] j Fpung
purin el | jevirn
proupeats nlng| |=iec
mlenlorecust rina
1

SAlant Tap Naktad Find Halp End i

To select an owner name, place the cursor on an owner name and choose
Select. The owner name is placed in the Object Owner field.

Register Tables with StarView

Populate a distributed database with tables that already exist in local
databases by registering those tables in your distributed database. To do this,
use the Register as Link Statement (see page 47). However, StarView provides
an easy way to search for, select, and register local tables in your distributed
database.

StarView also allows you to delete the registration of these tables using the
Remove operation. Removing the registration of a table from your distributed
database does not affect the underlying tables in the local database. To delete
the table from a local database, you must quit StarView and use the drop
statement.

Managing a Distributed Database with StarView 117

Register Tables with StarView

Register Tables in a Distributed Database

To register tables in your distributed database, follow these steps:

1. At the operating system command line, type starview.
The StarView main frame is displayed.

2. Select a distributed database, and then choose the Go operation.
The Node Status and Local Database Types frame is displayed.

As an alternative to Steps 1, 2, and 3, at the operating system command
line type starview distdbname. The Node Status and Local Database
Types frame is displayed.

3. From the Node Status and Local Database Types frame menu, choose the
ListObj operation.

The Distributed Database Contents frame is displayed.

4. From the Distributed Database Contents frame menu, choose the Browse
operation.

A pop-up window listing the nodes is displayed.
5. Highlight your desired node and choose the Select operation.

A pop-up window listing the databases on your selected node is displayed.
6. Highlight your desired database and choose the Select operation.

The pop-up window listing all the objects in your selected database is
displayed:
Starslliew - Diskribubked Datebase Contents

Objects in distributed database: corpddb
jtien Griteria

1
Hodie

Lacal
hg Ob ject Kape Durer Object Tupe|Systen
H |east || sales
uest | |market| |accounts_ jan nings Tahle Usevw
ewrop| | £inane| |accounts_fob Hings Table User

Star=Uiey — Register Object as Link Sunbasel SOLY
REGISTER mcoounts_jan

RE LIHK FROH acoounts_ jan
HITH BEHS = ingres ;
WIDE = kg .

DATABASE = =ales

Frospec i 1 ! L 1

salesforecast

Crpate Help Epd

118 Star User Guide

Register Tables with StarView

7. Highlight your desired table and choose the Register operation.

The following Register Object as Link Syntax pop-up window is displayed:

Sirsils — Nptribated Cuishese Cowiantas

Ohjects inm distribeisd dutsbess orpddh
i Criteris
Hain -
Lacml
Iy Ok ot Humm Durmr [Objert Ty | Sycten
-l |venl | |mlw
|| vt | |rrkt | | secuumts_Jun i Tahln L
mxrap|{Eloanc] | accamis Fub wings Tkl I+]
1w,
StareUlsu = Begisber Dhject mx Link SynbsacCEN1D
FEGISTEN soucastis_Jam
A% LINK FROH sccouxis jem
'] 1] R = ingres 1
ME = g 1
DATHIVEE = omlex
prospEn 1L 1 L 1
mlenlorecunt L : :

Creats Help Esg |

If an object is highlighted when you choose the Register operation, the
REGISTER, FROM, NODE, and DATABASE fields are completed for you

automatically by StarView.

To register a table with a different registered name to its local name, enter the
name in the REGISTER field of the Register Object as Link Syntax window and

choose Create from the menu.

To register a table with a registered name that is the same as its local name,
simply choose Create from the menu.

Register Other Database Objects

To register other types of local database objects such as views in your
distributed database, you follow exactly the same procedure as for registering

tables.

Managing a Distributed Database with StarView 119

Chapter 7: Understanding Ingres Star
Catalogs

This section contains the following topics:

Ingres Star Catalogs (see page 121)
Mapping Ingres Star Objects (see page 128)

Ingres Star Catalogs

Ingres Star catalogs consist of database tables that describe the objects in the
distributed database. They are maintained to keep track of these objects. They
are primarily for Ingres Star’s own use, but you can use them in programs and
applications to access (but not update) information about the distributed
database.

Each catalog has columns—or attributes—with specific database management
functions and rows that reflect different aspects of the database.

There are three types of Ingres Star catalogs:

®m jidbdb catalogs

®m Standard catalogs

m System catalogs

iidbdb Catalogs

Ingres Star uses four catalogs in the iidbdb:
®m jidatabase

® jistar_cdbs

® jistar_cdbinfo

® jiddb_netcost
The iidatabase Catalog

The iidatabase catalog in the iidbdb is used to determine if a given database
exists in the installation. This catalog has a column dbservice that is used to
determine whether or not the given database is distributed, and in the case of
a local database, whether it is a coordinator database.

Understanding Ingres Star Catalogs 121

Ingres Star Catalogs

The iistar_cdbs Catalog

The iistar_cdbs catalog in the iidbdb is used to store the identities and
locations of coordinator databases associated with each distributed database.

This catalog contains an entry for the coordinator database associated with
each distributed database. It is used by Ingres Star to determine the identity
and residence of the associated coordinator database when a distributed
database is invoked.

Column Name Data Type Description

ddb_name char(32) Name of distributed database

ddb_owner char(32) Owner of distributed database

cdb_name char(32) Name of coordinator database

cdb_node char(32) Name of the coordinator database’s
node

cdb_owner char(32) Owner of the coordinator database

cdb_dbms char(32) Server of coordinator database, for
example, INGRES, DB2

schema_desc char(32) Reserved for future use

create_date char(25) Date when coordinator database was
added

original char(8) Reserved for future use

cdb_id integer4 Contains a unique database identifier

corresponding to iidatabase.db_id for
the coordinator database entry

cdb_capability integer 4 Reserved for future use

122 Star User Guide

Ingres Star Catalogs

The iistar_cdbinfo Catalog

The iistar_cdbinfo catalog provides maps between the distributed database and
its underlying coordinator database. It indicates on which node the database
was created, who owns it, and when it was created.

This catalog exists only in the iidbdb, not in all distributed databases. This
catalog is read-only; you cannot update it.

Column Name Data Type Description

ddb_name char(32) Name of distributed database

ddb_owner char(32) Owner of distributed database

cdb_name char(32) Name of coordinator database

cdb_node char(32) Name of the coordinator database’s
node

cdb_owner char(32) Owner of the coordinator database

cdb_dbms char(32) Server of coordinator database, for
example, INGRES, DB2

cdb_create_date char(25) Date when coordinator database was

added

The iiddb_netcost Catalog

The iiddb_netcost catalog in the iidbdb is used to weigh the relative network
costs of a transaction in order to compute the best query execution plan
(QEP). Data in this catalog is used by Ingres Star’s distributed optimizer.

Column Name Data Type Description

net_src char(32) Name of the source node
net_dest char(32) Name of the destination node
net_cost float8 Cost of moving one byte from the

source node to the destination node
as a multiple of 1 DIO (Disk I/O). This
field contains a float that is the cost
of transferring one byte from the
source to the destination site. This
cost should be made in terms of DIO
units. Network costs are added to
DIO costs in order to determine which
plan is cheapest. See the example

Understanding Ingres Star Catalogs 123

Ingres Star Catalogs

Column Name Data Type Description
below.

net_expl float8 Expansion field (should be set to
zero)

net_exp2 float8 Expansion field (should be set to
zero)

All data transfers are made by first transferring the data to the Star Server
from the source site, then transferring data from the Star Server to the
destination site. As a result, the only entries in the iiddb_netcost table that will
be useful are those that include the Star Server node name as one of the sites.

Note: The StarView utility does not allow users to populate the iiddb_netcost
catalog. If your configuration contains greatly differing network costs and you
wish to provide network cost information to Ingres Star, you must do so
manually.

To make inserts and updates into the iiddb_netcosts catalog, you must be a
privileged user and log in as the installation owner. At the operating system
prompt, enter:

UNIX:
sql iidbdb '-u$ingres' +U
VMS:
sql iidbdb -u$ingres "+U"

The Star Server must be restarted for the new iiddb_netcosts values to take
effect.

When you make changes to the iiddb_netcost catalog, you can analyze
differences in query plan strategies by using the set qep statement. The
network or N costs are printed in the last line of each node in the query plan.

For further details on query execution plans, see the Database Administrator
Guide.

124 Star User Guide

Ingres Star Catalogs

Example: Net_cost

Assume that the Star Server is located on a node named sanfrancisco (using
lower case is the default), and that the remote sites are named newyork and
washington.

Some of the entries in iiddb_netcost could be:

net_src char(32) net_dst char(32) net_cost (f8)
sanfrancisco newyork 0.001
sanfrancisco washington 0.002
sanfrancisco sanfrancisco 0.0002

Note that there is an entry in which sanfrancisco is both the source and
destination sites. This represents transfers of data from the Star Server to and
from local databases on the Star Server site (including the coordinator
database), but these costs are relatively low.

Also, typically, the same cost applies for either direction so that if only one row
exists between two nodes, the other direction is assumed to be the same cost.

For example, suppose 10000 bytes is to be transferred from newyork to
washington. The data is routed through sanfrancisco since the Star Server
exists on that node. The cost of transferring from newyork to sanfrancisco is
0.001*10000=10 units, and the cost from sanfrancisco to washington is
0.002*10000=20 units, so the total cost is 30 units. If there were 20 disk I/Os
and 2 CPU units involved, the total cost would be 52 units.

Standard Catalogs

The standard catalogs let you get information from the system catalogs, which
may not be queried directly. For details on the standard catalogs, see the
appendix "Standard Catalog Interface."”

Important! Users and user applications may query the standard catalogs but
may not update them.

The standard catalogs provided with the current release are identical in
specification and function to the Ingres 2.6 standard catalogs, except as noted
in the following table:

Catalog Name Exceptions to Release 2.6 Catalog

iialt_columns None

Understanding Ingres Star Catalogs 125

Ingres Star Catalogs

Catalog Name

Exceptions to Release 2.6 Catalog

iicolumns

None

iidbcapabilities

Has the additional entries: OWNER_NAME,
STANDARD_CATALOG_LEVEL, OPEN/SQL_LEVEL,
DB_DELIMITED_CASE, and DB_REAL_USER_CASE.

iidbconstants Has the added column system_owner
iihistograms None
iiindexes None
iiindex_columns None

iiintegrities
iimulti_locations

iipermits

Not used. Ingres Star does not support permits or
integrities. For multiple locations, partitioning across
several locations is managed by the autonomous
local database server.

You may query these catalogs, but Ingres Star
never populates them with data, so your answer will
always be a null set of rows. If you want permit,
integrity or location information about a registered
object, do a direct connect to the appropriate local
database and query the local database’s standard
catalogs.

iiphysical_tables None
iiprocedures None
iiregistrations None

iiregistered_objects

An Ingres Star-only standard catalog

iistats

Has the added columns: column_domain,
is_complete, stat_version, hist_data_length.

iitables

Column location name is 32 bytes long, not 24.

iiviews

None

126 Star User Guide

Ingres Star Catalogs

System Catalogs

System catalogs store specific information for Ingres Star. These catalogs are
used to get the information needed to operate on distributed objects in the
database. Users may not query these catalogs directly. The standard catalog
interface described in the appendix, "Standard Catalog Interface" lets you
access data from the system catalogs.

The table names of some Ingres Star system catalogs can be used as
arguments to the sysmod command, but these tables are not supported for
any other use. The following Ingres Star system catalogs are legal targets for
sysmod:

Catalog Description
iiddb_dbdepends Dependency tree for a distributed view
iiddb_ldbids Contains information about each local database

known to the distributed database

iiddb_Idb_columns Map of local table’s column names if the table is
registered with user-supplied aliases to the
column names

iiddb_ldb_dbcaps Contains capability data on each local database
known to the distributed database

iiddb_long_ldbnames Contains the full local database name (if it
exceeds 32 bytes) and the alias to Ingres Star’s
32-byte name

iiddb_object_base Used to generate a unique identifier

iiddb_objects Describes distributed objects known to the
distributed database

iiddb_tableinfo Data on the underlying (local database) objects
for distributed objects

iiddb_tree Used to store Ingres Star-generated trees, such
as view definitions

Understanding Ingres Star Catalogs 127

Mapping Ingres Star Objects

The following Ingres Star system catalogs exist in a distributed database, but
these catalogs are not legal targets for sysmod:

Catalog Description

iiddb_dxldbs List of local databases involved in a Ingres Star
two-PC transaction

iiddb_dxlog Log of an Ingres Star two-PC transaction

iiddb_xdxlog Secondary index on iiddb_dxlog

Mapping Ingres Star Objects

Ingres Star recognizes and manages three types of queryable objects: tables,
views, and indexes. It also maps procedures, which are not queryable but may
be executed.

Registered Names and Related Catalogs

The basic function of a registered name is to allow a local queryable object to
be given the status of a queryable object in the distributed database. The
register as link statement does this by registering a name in the distributed
database to denote a queryable object in a local database. This allows you to
use a registered name to denote its underlying object.

To support registered name transparency, it is necessary for Ingres Star to
promote the complete information about the local object from the local
database catalogs into Ingres Star’s equivalent catalogs and classify the
information under the registered name and the owner of the registered name.

Tables and Related Catalogs

A table’s local catalog information is promoted into the Ingres Star catalogs as
follows:

® From the local database’s iitables to Ingres Star’s iitables
® From the local database’s iicolumns to Ingres Star’s iicolumns

® From the local database’s iiphysical_tables to Ingres Star’s
iiphysical_tables

® From the local database’s iiindex_columns to Ingres Star’s iiindex_columns

® From the local database’s iialt_columns to Ingres Star’s iiialt_columns

128 Star User Guide

Mapping Ingres Star Objects

Index Mapping

Each index of a local table introduced by a register is promoted as an index
and given a registered name composed of the prefix ddx, the base, and the
index of the object id, separated by the special character, _, for example,
ddx_2002_2003.

Indexes are automatically mapped during the register statement to iiindexes
and iiindex_columns. You cannot create secondary indexes with Ingres Star.

Table and Column Mapping
If no column mapping is specified during the register as link statement, data is
promoted from the local database’s iicolumns to Ingres Star’s iicolumns.

® The local information is stored in the Ingres Star-specific catalog
iiddb_Idb_columns. The representation in iiddb_ldb_columns is used
exclusively by Ingres Star.

® The column information of the registered name is stored in Ingres Star’s
iicolumns standard catalog.

Ingres Star provides column mapping if either the distributed database or the
local database (but not both) support mixed-case delimited identifiers.

Physical Information and Statistics Mapping
If the local object is an index or table (not a view), more relevant information
is transferred:
® from the local database’s iihistograms to Ingres Star’s iihistograms
® from the local database’s iistats to Ingres Star’s iistats
This is promoted only if the environments are compatible, that is, the

hardware and operating system are the same on the local database’s node as
on the distributed database’s node.

Statistics information is not promoted if the local database and distributed

database are in heterogeneous environments. To obtain statistics in such an
environment, you must run optimizedb.

Local Tables Index Information

If the local table is in an Ingres database, each index is also registered. Note
that Enterprise Access indexes might not be promoted to Ingres Star.

Understanding Ingres Star Catalogs 129

Mapping Ingres Star Objects

Views and Related Catalogs
When a view is created, its information is stored in several Ingres Star
catalogs that include the following standard catalogs:
= jicolumns
= jitables
= jiviews

®m jiphysical_tables

Registered Procedures and Related Catalogs

When Ingres Star registers procedures, it maps a local procedure and local

owner name to a distributed procedure and distributed owner name. It does
not map procedure parameters; it merely passes those through to the local
DBMS when the procedure is executed.

Registered procedures are stored in the following standard catalogs:

® jiregistrations

® jiprocedures

Note: Registered procedures are not stored in the iitables standard catalog.

130 Star User Guide

Appendix A: Release Compatibility

This section contains the following topics:

Utilities for Updating a Release 6.4 Star Database (see page 131)
How You Determine Local and Remote RDBMS Server Releases (see page
134)

This appendix discusses the compatibilities of various releases of Ingres with
the current release.

Note: All nodes accessed by Ingres Star must be running Release 6.4 or
higher.

Utilities for Updating a Release 6.4 Star Database

Use the upgradedb and upgradefe utilities to update a Release 6.4 Star
database to the current release.

m Upgradedb is a utility to reformat catalogs from Release 6.4 versions to
the correct format for the current release. It upgrades DBMS, Standard,
Ingres tools and Star catalogs to the current release. User tables are not
affected by upgradedb.

®m Upgradefe is a utility that will upgrade Ingres tools catalogs to the format
required by the current release. It may also be used to install new tools
clients. (Upgradedb uses upgradefe to update tools catalogs.)

The following sections discuss Ingres Star-specific usage of these conversion
utilities. For complete details on using upgradedb and upgradefe, see the
Migration Guide.

Ingres Star and Upgradedb

Upgradedb converts distributed databases. You can specify the distributed
database name with or without the /star flag.

You can run upgradedb regardless of whether the Star Server is running.
However, if you use upgradedb without a Star Server, all tools catalog
upgrades are skipped, and you must later run upgradefe through a Star Server
to upgrade the tools catalogs.

Upgradedb cannot be used on coordinator databases.

Release Compatibility 131

Utilities for Updating a Release 6.4 Star Database

Upgradedb Command—Update a Distributed Database

The upgradedb command for distributed databases has the following format:

upgradedb distdbname [/star] | -all [-f product {product}]
distdbname

Specifies the name of the distributed database to be converted.
/star

(Optional) Designates the database as distributed. This parameter cannot
be used if -all is used instead of a distdbname.

Specifies that all databases that have not been converted to the current
release are to be upgraded.

(Optional) Indicates that one or more Ingres tools catalog product names
are specified. A product name must be specified after -f.

Default: No -f flag, which means that all authorized Ingres tools catalogs
that are legal for this installation are upgraded (if they exist) or created (if
they do not exist). These are the products that the authorization string
indicates the installation supports.

The -f flag options are as follows:
-f flag with products

Specifies to upgrade (if they exist) or create (if they do not exist) the
specified product tools catalogs. Product names are identical to those
used with the createdb command.

-f nofeclients

Bypasses upgradefe processing (that is, no tools catalogs are
upgraded). This special hame cannot be used with any other product
name.

product

Specifies one or more product names. Names may include:

Ingres

= Ingres/dbd
= vision

= windows_4gl

m The special name nofeclients

132 Star User Guide

Utilities for Updating a Release 6.4 Star Database

Examples: Upgradedb

This command upgrades distributed database mystardb and assures that all
legal tools catalogs are upgraded (or created if they do not already exist). This
is the most common use of upgradedb.

upgradedb mystardb
or
upgradedb mystardb/star

This command upgrades distributed database mystardb and bypasses upgrade
operations on any tools catalogs that may exist in the database:

upgradedb mystardb -f nofeclients
or

upgradedb mystardb/star -f nofeclients

This command upgrades all databases in the installation, including any
distributed databases that may reside in the installation. It upgrades only the
core product tools catalogs (or creates them if they do not exist):

upgradedb -all -f Ingres

This command upgrades all databases in the installation, including any
distributed databases that may reside in the installation. It upgrades or creates
the tools catalogs for all products that this installation is authorized to use:

upgradedb -all

Ingres Star and Upgradefe

Upgradefe converts or creates tools catalogs for any of the distributed Ingres
products. These include Ingres, Ingres/DBD, and Ingres Vision. You may
invoke upgradefe directly, using the command syntax described below.
Upgradefe is also invoked indirectly by upgradedb.

A Star Server must be running in order to run upgradefe on a distributed
database.

Upgradefe cannot be used on coordinator databases.

Release Compatibility 133

How You Determine Local

and Remote RDBMS Server Releases

Upgradefe Command

Examples: Upgradefe

—Update Tools Catalogs

The upgradefe command for distributed databases has the following format:

upgradefe distdbname/star {product}
distdbname

Specifies the name of a distributed database.
/star

Indicates that the database requires a Star Server because it is a
distributed database.

product
Specifies one or more product names. Names may include:
= Ingres
= Ingres/dbd
= Vvision

= windows_4gl

upgradefe mystardb/star

Assure that the tools catalogs required for the OpenROAD product for
distributed database mystardb are upgraded (or created if they do not already
exist):

upgradefe mystardb/star windows_4gl

How You Determine Local and Remote RDBMS Server

Releases

To determine the Ingres release at the local and remote nodes, follow these
steps:

1. Invoke the Terminal Monitor over the network.

The release number in the Terminal Monitor’s start-up banner shows the
release on the local node.

2. Retrieve the value of the _version() system constant.
The Ingres release at the remote node is shown.

For more information about system constants, see the SQL Reference
Guide.

134 Star User Guide

Appendix B: SQL Statement Summary

This section contains the following topics:

Statements Supported by Ingres Star (see page 135)
SQL Statements Not Supported by Ingres Star (see page 143)
Terminal Monitor Statements Not Supported by Ingres Star (see page 145)

For statement syntax information, see the SQL Reference Guide. For syntax
information for Enterprise Access statements, see the OpenSQL Reference
Guide.

Statements Supported by Ingres Star

Ingres Star supports the following statements.

The tables referred to in these statements are Ingres Star-level objects. Ingres
Stars group and role name processing (the -G and -R flags).

Begin Declare Section

Call

Commit

The Begin Declare Section begins a program section that declares host
variables to embedded SQL. This is a preprocessor directive.

This Call statement calls the operating system or an Ingres subsystem.

An Ingres Star transaction allows reads to any number of local databases. It
allows any updates to any number of local databases providing the local
databases updated are managed by non-cluster Ingres DBMSs. If cluster
installation Ingres or Enterprise Access products are updating, only one local
database can be updated in an Ingres Star transaction.

Ingres Star uses a timeout mechanism to detect any deadlock that may occur
between Ingres Star transactions. You must specifically set timeouts to have
timeouts of distributed deadlocks.

SQL Statement Summary 135

Statements Supported by Ingres Star

Connect

Copy

Create Link

Create Table

Create View

Connects the application to a database and, optionally, to a specified
distributed transaction.

The copy statement copies data from a file to a table or vice versa. You may
not copy an index or view. Also some Enterprise Access products may not
support the copy statement.

The create link statement is provided for compatibility with earlier versions of
Ingres Star. The register statement is the preferred method for registering
local database objects in a distributed database.

The create table statement simultaneously creates new tables in a local
database and registers them in the distributed database. The table is deleted
with the drop statement.

The create view statement creates a Ingres Star-level distributed view. The
view may be defined on other Ingres Star-level objects. Views created with
create view are deleted with the drop statement.

Cursor Statements

The Ingres Stars these cursor statements:

®m close

m declare
m delete
m fetch

= open

® update

136 Star User Guide

Statements Supported by Ingres Star

Declare Table

Delete

Direct Connect

Direct Disconnect

The declare table statement describes the structure of a database table. This is
a preprocessor directive.

The delete statement deletes rows from a table or a view.

The direct connect statement enables you to connect to an Ingres local DBMS
or Enterprise Access directly using Ingres Star in pass-through mode.

The direct disconnect statement enables you to leave the pass-through mode
enabled by a previous direct connect statement.

Direct Execute Immediate

Disconnect

Drop

The direct execute immediate statement sends a local DBMS-specific
statement to a local DBMS.

The disconnect statement terminates access to the database.

The drop statement removes objects from the distributed database. Only
objects created through Ingres Star can be dropped.

Whenever you use the drop statement, you always drop the registration and
the underlying locally-stored object. For example, if you use the drop table
statement, the underlying table and its data are destroyed. When an Ingres
Star-level object is deleted with the drop statement, all views on it also are
recursively dropped.

SQL Statement Summary 137

Statements Supported by Ingres Star

Drop Link
The drop link statement is provided for compatibility with earlier versions of
Ingres Star.

Drop Table
The drop table statement removes tables from the distributed database. Any
underlying table in a local database also is dropped.

Drop View
The drop view statement removes Ingres Star-level views from the distributed
database.

Dynamic SQL

Dynamic SQL compiles and executes SQL queries at run time.
The following statements are supported in the Ingres Star:
Note: You must embed these statements in an application program; you
cannot use them interactively.
m declare
® prepare
Readies a dynamically constructed command string for later execution.
m describe

Retrieves type, length, and name information about a prepared select
statement.

® execute

Executes a previously prepared dynamic SQL statement.

End Declare Section

The end declare section ends declaration of host variables. This is a
preprocessor directive.

Endselect

The Endselect statement terminates a select loop.

138 Star User Guide

Statements Supported by Ingres Star

Execute Immediate

The execute immediate statement executes an SQL statement specified as a
string literal or in a host language variable.

Execute Procedure

Help

Include

Inquire_sql

Insert

The execute procedure statement invokes a database procedure.

A Terminal Monitor statement that displays information about SQL, about the
help function itself, or about objects in a database. This statement has these
variants:

help [[owner.]lobjectname {, [owner.]lobjectname}]
help comment column [owner.]table columnname {, columnname}
help comment table [owner.]table {, [owner.]table }
help default [owner.] tablename
help help
help index [owner.] indexname {, [owner.] indexname}
help procedure [owner.]procedure_name

{, [owner.]procedure_name}
help register [owner.]objectname
help sql [sql_statement]
help table [owner.] tablename {, [owner.] tablename}
help view [owner.]lviewname {, [owner.]viewname}

The include statement includes an external file in source code.

The Inquire_sql statement provides runtime information.

The insert statement Inserts rows into a table or view in the distributed
database.

The column names specified in the statement are the Ingres Star-level column
names. The Ingres Star-level column names may be different than the column
names in the local DBMS.

SQL Statement Summary 139

Statements Supported by Ingres Star

Register As Link

The register As link statement registers existing local database tables, views,
and database procedures in a distributed database.

Register As Link With Refresh

Remove

Repeat Queries

Rollback

The Register As Link with Refresh statement updates Ingres Star catalogs
when schema or related table information changes in a local table that is part
of a distributed database.

The remove statement removes registrations of tables, views, and procedures
from the distributed database previously registered with the register as link
statement.

Removes registrations of tables created with the create table statement at the
Ingres Star level. When registration of an Ingres Star object is removed with
the remove statement, all views on it also are recursively dropped.

The repeat queries statement compiles a query for repeated execution during a
session.

Note: Repeat queries are accepted syntactically by a Star Server but may not
result in enhanced performance. If more than one local database is involved,
performance will even be degraded. For this reason, repeat should be used

sparingly.

The rollback statement rolls back part or all of the current Ingres Star
transaction. Rollback to a savepoint is applicable only to an Ingres Star
transaction that involves only Ingres local databases.

140 Star User Guide

Statements Supported by Ingres Star

Savepoint

Select

Set

The savepoint statement declares a savepoint within a transaction.

This statement only applies to transactions that only involve Ingres local
databases. Note that some Enterprise Access products do not support the
savepoint statement.

The select statement retrieves data from one or more tables, views, or
indexes.

The set statement sets an option for the Ingres session, or sets an option for
the tables in the distributed database.

If the set option is on a session, the option is sent to each local DBMS
currently connected to Ingres Star. Ingres Star also saves the option and
sends it to any local DBMS subsequently connected to Ingres Star. Note that
the session option cannot be used in a Ingres Star database to alter the
lockmode, other than to set the lock timeout. Statements such as "SET
LOCKMODE SESSION WHERE READLOCK=NOLOCK" are not supported.

If the set option is on a table, the option is sent to the local DBMS that holds
the underlying table.

The set statement has these variants supported by Ingres Star:

m set autocommit on|off

This statement is not sent to the local DBMS. Ingres Star simply sends a
commit statement to each local DBMS when it has completed processing
the user’s query.

m set ddl_concurrency on|off
m set joinop [no]timeout

®m set lockmode

m set [no]optimizeonly

m set [no]printgry

m set [no] gep

® set result_structure

m set update_rowcount changed|qualified

SQL Statement Summary 141

Statements Supported by Ingres Star

Set_sql
The set_sql statement sets a variety of session characteristics.
Update
The update statement updates the values of columns in a table or a view in the
distributed database.
Only table names or view names may be specified with this statement.
Whenever

The whenever statement performs an action when a specified condition
becomes true. This is a preprocessor directive.

142 Star User Guide

SQL Statements Not Supported by Ingres Star

SQL Statements Not Supported by Ingres Star

Currently, you cannot use the following statements against a distributed
database (although most can be executed within a direct connect or a direct
execute immediate statement).

The unsupported SQL statements are:

create|alter|drop location
declare]alter table
create|alter|drop user

Events:

create dbevent
drop dbevent
get dbevent
raise dbevent
register dbevent
remove dbevent
raise error

Groups:
alter group
create group
drop group

comment on
message

create index

declare global temporary table

SQL Statement Summary 143

SQL Statements Not Supported by Ingres Star

m Integrities and permits:
create integrity
drop integrity

drop permit
revoke

" grant

= modify

® Procedures:
create procedure
drop procedure

® Roles:
alter role
create role
drop role

® Rules:
create rule
drop rule

® Schema:
create schema
drop synonym

m Security alarms/audit:
create security alarm
drop security_alarm
enable security_audit
disable security_audit

B Synonyms:
create synonym
drop synonym

The indexes, integrities, and permits of each underlying local DBMS are
enforced by the respective local DBMS.

144 Star User Guide

Terminal Monitor Statements Not Supported by Ingres Star

Terminal Monitor Statements Not Supported by Ingres

Star

Ingres Star does not support the following terminal monitor statements:

help constraint
help dbevent
help integrity
help permit

help rule

Inside a direct connect, these statements provide help on permits and
integrities in the local database. Outside of a direct connect, these statements
return an error message that no permits or integrities exist.

SQL Statement Summary 145

Appendix C: Standard Catalog Interface

This section contains the following topics:

Standard Catalog Interface and Ingres Star (see page 147)

Catalog Formats (see page 147)

Catalogs (see page 148)

Standard Catalog Interface and Ingres Star

The standard catalog interface lets you get information from the Ingres Star
system catalogs, which cannot be queried directly. This interface can be used
in programs to access (but not update) information about the system.

Catalog Formats

Database users may read the standard catalogs, but may not update them.

To display them, use the interactive query language help table or help view

statement, as appropriate, or use Visual DBA.

Unless otherwise noted, values in system catalogs are left justified, and
columns are non-nullable.

The length of char fields, as listed in the Data Type column, is a maximum

length; the actual length of the field is installation-dependent. When
developing applications that access these catalogs, you should allocate
storage on the basis of the length as shown in the Data Type column.

All dates stored in system catalogs have the following format, with
underscores and colons required:

yyyy_mm_dd hh:mm:ss GMT

where:

yyyy is the year (for example, 2000)

mm is the month (for example, 11)

dd is the day of the month (for example, 21)
hh is the military hour (for example, 13)
mm is the minute (for example, 43)

ss is the second (for example, 32)

GMT is Greenwich Mean Time

Standard Catalog Interface 147

Catalogs

Catalogs

The formats of the Standard Catalog Interface for Ingres Star are described in
detail in tables in the following sections. All database users can read the
Standard Catalog Interface, but users should never update the catalogs.

The iialt_columns Catalog

For each alternate key, any columns defined as part of the key have an entry
in iialt_columns.

Column Name Data Description
Type

table_name char(32) The table to which column_name
belongs

table_owner char(32) The table owner

key_id integer The number of the alternate key for
this table

column_name char(32) The name of the column

key_sequence smallint Sequence of column within the key,

numbered from 1

The iicolumns Catalog

For each querytable object in the iitables catalog, there are one or more
entries in the iicolumns catalog. Each row in iicolumns contains the logical
information on a column of the query object. The iicolumns catalog is used by
user interfaces and user programs to perform dictionary operations and
dynamic queries.

Column Name Data Description
Type

table_name char(32) The name of the table. Must be a
valid name.

table_owner char(32) The owner of the table. Must be a
valid username.

column_name char(32) The column’s name. Must be a valid
name.

column_datatype char(32) The column’s data type name

148 Star User Guide

Catalogs

Column Name Data Description
Type
returned to users and applications:
integer
smallint
int
float
real
double precision
char
character
varchar
C
text
date
money
decimal
user data types (UDTs)
For details on UDTs, see the Object
Management Extension User Guide.
column_length integer The length of the column returned to
users and applications. If a data type
contains two length specifiers, this
column uses the first length. Set to
zero for the data types which are
specified without length (money and
date). This length is not the actual
length of the column’s internal
storage.
column_scale smallint The second number in a two-part
user length specification; for
typename (lenl, len2) it will be len2.
column_nulls char(8) Y if the column can contain null
values, N if not.
column_defaults char(8) Y if the column is given a default
value when a row is inserted. N if not.
column_sequence smallint The number of this column in the
corresponding table’s create
statement, numbered from 1.
key_sequence smallint The order of this column in the

primary key, numbered from 1. For a
table, this indicates the column’s

order in the primary storage structure
key. If 0, then this column is not part

Standard Catalog Interface 149

Catalogs

Column Name Data Description
Type

of the primary key. This is unique if
the unique_rule column for the table’s
corresponding entry in iitables is set
to U.

Sort_direction char(8) Defaults to A for ascending when
key_sequence is greater than 0.
Otherwise, this value is a blank.

Column_ingdatatype smallint Contains a value that indicates the
data type of the column. If the value
is positive then the column is not
nullable; if the value is negative, then
the column is nullable. The data types
and their corresponding values are:

integer -30/30

float -31/31
C -32/32
text -37/37
date -3/3
money -5/5
char -20/20

varchar-21/21
decimal-10/10

The iidbcapabilities Catalog

The iidbcapabilities catalog contains information about the capabilities provided
by the DBMS. The following table describes the columns in the iidbcapabilities

catalog:

Column Name Data Type Description

cap_capability char(32) Contains one of the values listed in
the Capability column of the following
table. If the cap_capability has a
value, it will be activated by the value
in the cap_value column.

Cap_value char(32) Set to the value of the capability. This

is usually the string Y or N. See the

150 Star User Guide

Catalogs

Column Name Data Type Description

Values column in the following table
for possible values of each capability.

The cap_capability column in the iidbcapabilities catalog contains one or more
of the following values:

Capability Value

OPEN/SQL_LEVEL Version of OpenSQL supported by the
DBMS. Use this name in preference to
the older COMMON/SQL_LEVEL. Default
setting is 00605.

COMMON/SQL_LEVEL Version of OPEN/SQL support provided
by the DBMS. Maintained for backward
compatibility. (Use OPEN/SQL_LEVEL
instead.) Examples:

00600 Version 6.0
00601 Version 6.1
00602 Version 6.2

Default is 00600.

DB_NAME_CASE Case mapping semantics of the
database with respect to regular
identifiers for database objects:

LOWER for lowercase is the Ingres
setting.

UPPER for uppercase is set for an ISO
Entry SQL92 compliant installation.

DB_DELIMITED_CASE Case mapping semantics of the
database with respect to delimited
identifiers for database objects:

LOWER for lowercase is the Ingres
setting. MIXED for mixed case is set for
an ISO Entry SQL92 compliant
installation.

If the value is MIXED, an identifier must
be enclosed in double quotes to
maintain case as originally defined.
Otherwise it is treated as a regular
identifier (converted to uppercase).

DB_REAL_USER_CASE Case mapping of user names as
retrieved by the operating system:

LOWER for lowercase is the Ingres

Standard Catalog Interface 151

Catalogs

Capability

Value

setting. MIXED for mixed case or UPPER
for uppercase is set as specified during
installation.

DBMS_TYPE

The type of DBMS the application is
communicating with. For a Star Server,
the value is always STAR.

DISTRIBUTED

Y since the DBMS is distributed.

INGRES

Set to Y if the DBMS supports in all
respects 100 percent of Ingres Release
6. Otherwise N. For Ingres Star this is
set to N since it does not support QUEL.

INGRES/SQL_LEVEL

Version of SQL supported by the DBMS.
These include:

00600 Version 6.0

00601 Version 6.1

00602 Version 6.2

00603 Version 6.3

00604 Version 6.4

00605 Ingres

00000 DBMS does not support SQL

Default is 00600.

INGRES/QUEL_LEVEL

Version of QUEL supported by the
DBMS. These include:

00600 Version 6.0

00601 Version 6.1

00602 Version 6.2

00603 Version 6.3

00604 Version 6.4

00605 Ingres

00000 DBMS does not support QUEL

Default is 00600.

OWNER_NAME

Contains N if schema.table table name
format is not supported. Contains Y if
schema.table format is supported;
contains QUOTED if schema.table is
supported with optional quotes
(“schema”.table). The default is
QUOTED.

PHYSICAL_SOURCE

T indicates that both iitables and
iiphysical_tables contain physical table
information.

152 Star User Guide

Catalogs

Capability Value
P indicates that only iiphysical_tables
contains the physical table information.
SAVEPOINTS Y if savepoints behave exactly as in

Ingres, else N. Defaultis Y.

STANDARD_CATALOG _LEVEL

Version of the standard catalog interface
supported by this database. Should be
00602 (the default) for Ingres Star.

UNIQUE_KEY_REQ

Set to Y if the database service requires
that some or all tables have a unique
key. Set to N or not present if the
database service allows tables without
unique keys.

The iidbconstants Catalog

The iidbconstants catalog contains values required by the Ingres tools. The
following table describes the columns in the iidbconstants catalog:

Column Name Data Type Description

user_name varchar(32) The name of the current user.
dba_name varchar(32) The name of the db’s owner.
system_owner varchar(32) The name of the catalog owner (for

example, $ingres).

The iihistograms Catalog

The iihistograms table contains histogram information used by the optimizer:

Column Name Data Type Description

table_name char(32) The table for the histogram. Must be a
valid name.

table_owner char(32) The table owner. Must be a valid name.

column_name char(32) The name of the column. Must be a
valid name.

text_sequence Integer The sequence number for the

histogram, numbered from 1. There
may be several rows in this table, used

Standard Catalog Interface 153

Catalogs

Column Name Data Type Description

to order the optdata data when
histogram is read into memory.

text_segment char(228) The encoded histogram data, created
by optimizedb.

The ilindex_columns Catalog

For indexes, any columns that are defined as part of the primary index key will
have an entry in iiindex_columns. For a full list of all columns in the index, use
the iicolumns catalog.

Column Name Data Type Description

index_name char(32) The index containing column_name.
Must be a valid name.

index_owner char(32) The index owner. Must be a valid
username.

column_name char(32) The name of the column. Must be a
valid name.

key_sequence smallint Sequence of column within the key,

numbered from 1.

sort_direction char(8) Defaults to A for ascending.

The iiindexes Catalog

Each table with a table_type of I in the iitables table has an entry in iiindexes.
All indexes also have an entry in iiphysical_tables.

Column Name Data Type Description

index_name char(32) The index name. Must be a valid name.

index_owner char(32) The index owner. Must be a valid
username.

create_date char(25) Creation date of index. This is a date
field.

base_name char(32) The base table name. Must be a valid
name.

base_owner char(32) The base table owner. Must be a valid

154 Star User Guide

Catalogs

Column Name Data Type Description
username.
storage_structure char(16) The storage structure for the index:

heap, hash, isam, or B-tree. Set to
blank if unknown.

is_compressed char(8) Y if the table is stored in compressed
format, N if the table is uncompressed,
blank if unknown.

unique_rule char(8) U if the index is unique, D if duplicate
key values are allowed, or blank if
unknown.

The iiintegrities Catalog

Tiintegrities contains one or more entries for each integrity defined on a table.
Because the text of the integrity definition can contain more than 240
characters, iiintegrities may contain more than one row for a single integrity.
The text may contain newlines and may be broken mid-word across rows.

Note: Ingres Star does not support integrities, so there are no rows in this
catalog.

This table is keyed on table_name and table_owner:

Column Name Data Type Description

table_name char(32) The table name. Must be a valid name.

table_owner char(32) The table owner. Must be a valid name.

create_date char(25) The integrity’s creation date. This is a
date field.

integrity_number smallint The number of this integrity.

text_sequence smallint The sequence number for the text,
numbered from 1.

text_segment varchar The text of the integrity definition.

(240)

Standard Catalog Interface 155

Catalogs

The iimulti_locations Catalog
For tables located on multiple volumes, this table contains an entry for each
additional location on which a table resides. The first location for a table can be
found in the iitables catalog.

Note: Ingres Star does not currently populate this table.

This table is keyed on table_name and table_owner:

Column Name Data Type Description

table_name char(32) The table name. Must be a valid name.

table_owner char(32) The table’s owner. Must be a valid
username.

sequence integer The sequence of this location in the list

of locations, as specified in the modify
statement. This is numbered from 1.

location_name char(32) The name of the location.

The iipermits Catalog

The iipermits catalog contains one or more entries for each permit defined.
Because the permit definition can contain more than 240 characters, iipermits
can contain more than one row for a single permit. The text may contain
newlines and may be broken mid-word across rows.

Note: Ingres Star does not currently support permits, so there are no rows in
this catalog.

This table is keyed on object_name and object_owner:

Column Name Data Type Description

object_name char(32) The table or procedure name. Must be
a valid name.

object_owner char(32) The owner of the table or procedure.
Must be a valid name.

object_type char(8) The type of the object: T for a table or
view; P for a database procedure.

create_date char(25) The permit’s creation date. This is a
date field.

156 Star User Guide

Catalogs

Column Name Data Type Description

permit_user char(32) The username to which this permit
applies.

permit_number smallint The number of this permit.

text_sequence smallint The sequence number for the text,
numbered from 1.

text-segment varchar The text of the permission definition.

(240)

The iiphysical_tables Catalog

The information in the iiphysical_tables catalog overlaps with some of the
information in iitables. You can query the physical_source column in
iidbcapabilities to determine whether you must query iiphysical_tables. If you
do not want to make this check, then you must always query iiphysical_tables
to be sure of getting the correct information.

If a queryable object is type T (table), then it is a physical table and may have
an entry in iiphysical_tables as well as iitables.

Column Name

Data Type

Description

table_name

char(32)

The table name. This is an name.

table_owner

char(32)

The table owner’s username.

table_stats

char(8)

Y if this object has entries in the iistats
table, N if it does not. If blank, it is
undetermined if the object has entries in
iistats and you should check iistats
directly.

table_indexes

char(8)

Y if this object has entries in the
iiindexes table that refer to this as a
base table, N if not. If blank, it is
undetermined if the object has entries in
the iiindexes table that refer to it as a
base table, and you should check
iiindexes directly. This field is only used
for optimization for Ingres databases, as
other Enterprise Access products cannot
automatically supply this information.

is_readonly

char(8)

Y if updates are physically allowed on
this object, N if not. The field is blank if
this is unknown. This is used for tables

Standard Catalog Interface 157

Catalogs

Column Name

Data Type

Description

that are defined to the Enterprise Access
for retrieval. If this field is set to Y,
updates will not be allowed regardless of
what permissions might be set for the
table.

NnuUM_rows

integer

The estimated number of rows in the
table. Set to -1 if unknown.

storage_structure

char(16)

The storage structure of the table.
Possible values are: heap, B-tree, isam,
or hash. Set to blank if the structure is
unknown.

is_compressed

char(8)

Indicates if the table is stored in
compressed format. Y if it is
compressed, N if not compressed, blank
if unknown.

duplicate_rows

char(8)

Indicates if duplicate rows are allowed in
the table. Set to U if rows must be
unique, D if duplicates are allowed, or
blank if unknown.

unique_rule

char(8)

Indicates if the storage structure key is
unique. Set to U if the storage structure
is unique, D if duplicates are allowed,
blank if unknown or inapplicable.

number_pages

integer

The estimated number of physical pages
in the table. Set to -1 if unknown.

overflow_pages

integer

The estimated number of overflow pages
in the table. Set to -1 if unknown.

row_width

integer

The size (in bytes) of the uncompressed
binary value for a row in the object for
Ingres. Set to -1 if this is unknown.

158 Star User Guide

Catalogs

The iiprocedures Catalog

The iiprocedures catalog contains one or more entries for each procedure
defined. Because the procedure definition can contain more than 240
characters, iiprocedures can contain more than one row for a single procedure.
The text may contain newlines and may be broken mid-word across rows. The
text segment contains the procedure registration text, not the actual
procedure definition text.

This table is keyed on procedure_name and procedure_owner:

Column Name Data Type Description

procedure_name char(32) The table or procedure name. Must be
a valid name.

procedure_owner char(32) The owner of the table or procedure.
Must be a valid name.

create_date char(25) The permit’s creation date. This is a
date field.
proc_subtype varchar(1) The type of procedure, which is one of

the following values:

N (native) = the database supports
standard Ingres database procedures

I (import) = for Enterprise Access
products, the database supports host
DBMS procedures

E (external) = for Enterprise Access
products, the database supports
procedures external to the database

L (link) = a Ingres Star registered

procedure
text_sequence integer The sequence number for the text,
numbered from 1.
text-segment varchar The text of the procedure definition.
(240)

Standard Catalog Interface 159

Catalogs

The iiregistered_ objects Catalog

The iiregistered_objects catalog is an Ingres Star-only catalog. It resides in all

distributed databases, but is not available in local databases. This catalog ties

registered objects that Ingres Star may acquire when the user registers a table

to the underlying objects in the local database. The registered objects are
tables, views, secondary indexes, and procedures.

Column Name

Data Type Description

ddb_object_name char(32) The name of the Ingres Star-registered
object. Must be a valid name.

ddb_object_owner char(32) The name of the owner of the Ingres
Star-registered object. Must be a valid
username.

register_date char(25) The date the object was registered. This
is a date field.

Idb_database char(32) The name of the local database in which
the registered object resides.

Idb_node char(32) The node on which the Idb_database
resides.

Idb_dbmstype char(32) The type of the Idb_database. These are
the same types used by iinamu
(INGRES, RMS, DB2, RDB, and so on).

Idb_object_name char(32) The name that the local database uses
for the registered object.

Idb_object_owner char(32) The name of the owner of the registered
object in the local database.

Idb_object_type char(8) The type of local object. The values are

T if the object is a table, V if it is a view,
I if the object is an index, or P if the
object is a procedure.

The iiregistrations Catalog

The iiregistrations catalog contains the text of register statements.

Column Name

Data Type

Description

object_name

char(32)

The name of the registered table, view,
or index.

160 Star User Guide

Catalogs

Column Name

Data Type

Description

object_owner

char(32)

The name of the owner of the table,
view, or index.

object_dml

char(8)

The language used in the registration
statement. S for SQL.

object_type

char(8)

Describes the object type of
object_name. The values are T if the
object is a table, V if it is a view, I if
the object is an index, or P if the object
is a registered procedure.

object_subtype

char(8)

Describes the type of table or view
created by the register statement. For
Ingres Star, this will be L for a link.

text_sequence

integer

The sequence number of the text field,
numbered from 1.

Text_segment

varchar(240)

The text of the register statement.

The iistats Catalog

The iistats catalog contains the following information.

Column Name Data Description
Type

table_name char(32) The name of the table. Must be a valid
name.

table_owner char(32) The table owner. Must be a valid
username.

column_name char(32) The column name to which the statistics
apply. Must be a valid name.

create_date char(25) The date on which statistics were gathered.
This is a date field.

num_unique float4 The number of unique values in the
column.

rept_factor float4 The repetition factor, or the inverse of the
number of unique values (number of rows/
number of unique values).

has_unique char(8) Y if the column has unique values, N

otherwise.

Standard Catalog Interface 161

Catalogs

Column Name Data Description
Type
pct_nulls float4 The percentage (fraction of 1.0) of the
table which contains NULL for the column.
num_cells smallint The number of cells in the histogram.
column_domain smallint A user-specified humber signifying the

domain from which the column draws its
values; default is 0.

is_complete char(8) Y if the column contains all possible values
in the domain, N otherwise.

stat_version char(8) The version of the statistics for this
column.

hist_data_length smallint The length of the histogram boundary
values, either the user-specified length or
optimizedb’s computed length.

The iitables Catalog

The iitables catalog contains an entry for each queryable object in the
database (table, view, or index). To find out which tables, views, and indexes
are owned by you or the DBA, you can query this catalog; for example:

select * from iitables
where (table_owner = user
or table_owner = dba())

Column Data Description

Name Type

table_name char(32) The object’s name. Must be a valid name.
table_owner char(32) The object’s owner. Must be a valid

username. Generally, the creator of the
object is the owner.

create_date char(25) The object’s creation date. Blank if unknown.
This is a date field.

alter_date char(25) The last time this table was altered. This date
is updated whenever the logical structure of
the table changes, either through changes to
the columns in the table or changes to the
primary key. Physical changes to the table,
such as changes to data, secondary indexes,
or physical keys, do not change this date.

162 Star User Guide

Catalogs

Column Data Description
Name Type

Blank if unknown. This is a date field.

table_type char(8) Type of the query object:

T table
V view
I index

Further information about tables can be found
in iiphysical_tables; further information about
views can be found in iiviews.

table_subtype char(8) Specifies the type of table or view. Possible
values are:

N (native) for Ingres Star-level table (created
by create table or create view statement
issued from Ingres Star)

L (links) for Ingres Star

" " (blank) if unknown

table_version char(8) Version of the object; enables the tools to
determine where additional information about
this particular object is stored. This reflects
the database type, as well as the version of
an object within a given database. For tables,
the value for this field is ING6.0.

system_use char(8) Contains S if the object is a system object, U
if user object, or blank if unknown. Used by
utilities to determine which tables need
reloading. If the value is unknown, the
utilities will use the naming convention of ii
for tables in order to distinguish between
system and user catalogs. Also, any table
beginning with ii_ is assumed to be a tool
object, rather than a DBMS system object.
The system catalogs themselves must be
included in the iitables catalog and are
considered system tables.

The following information may also be present in iiphysical_tables but not
present in this catalog:

Column Name Data Type Description

table_stats char(8) Y if this object has entries in the iistats
table, N if this object does not have

Standard Catalog Interface 163

Catalogs

Column Name

Data Type

Description

entries. If this field is blank, then you
must query iistats to determine if
statistics exist. This column is used only
for optimization of databases.

table_indexes

char(8)

Y if this object has entries in the iiindexes
table that refer to this as a base table, or
N if this object does not have entries. If
the field is blank, then you must query
iiindexes on the base_table column. This
field is used only for optimization of
databases.

is_readonly

char(8)

N if updates are physically allowed, Y if
no updates are allowed, or blank if
unknown. Used for tables that are
defined to the Enterprise Access only for
retrieval, such as tables in hierarchical
database systems. If this field is set to Y
then no updates will work, independent
of what permissions might be set. If it is
set to N, updates may be allowed,
depending on whether the permissions
allow it or not.

nuM_rows

integer

The estimated number of rows in the
table. Set to -1 if unknown.

storage_structure

char(16)

The storage structure for the table: heap,
hash, B-tree, or isam. Blank if the table
structure is unknown.

is_compressed

char(8)

Y if the table is stored in compressed
format, N if the table is uncompressed,
blank if unknown.

duplicate_rows

char(8)

D if the table allows duplicate rows, U if
the table does not allow duplicate rows,
blank if unknown. The table storage
structure (unique vs. non-unique keys)
can override this setting.

unique_rule

char(8)

The value may be U (unique key), D
(duplicate key) or blank if unknown or
does not apply.

D indicates that duplicate physical
storage structure keys are allowed. (A
unique alternate key may exist in
iialt_columns and any storage structure
keys may be listed in iicolumns.)

164 Star User Guide

Catalogs

Column Name

Data Type

Description

U: If the object is an Ingres object,
indicates that the object has a unique
storage structure key(s); if the object is
not an Ingres object, then it indicates
that the object has a unique key,
described in either iicolumns or
iialt_columns.

number_pages

integer

The estimated number of physical pages
in the table. Set to -1 if unknown.

overflow_pages

integer

The estimated number of overflow pages
in the table. Set to -1 if unknown.

row_width

integer

The size, in bytes, of the uncompressed
binary value for a row of this query
object.

The information in the following table is not duplicated in iiphysical_tables:

Column Name

Data Type

Description

expire_date

integer

Expiration date of table. This is a
_bintime date.

modify_date

char(25)

The date on which the last physical
modification to the storage structure of
the table occurred. Blank if unknown or
inapplicable. This is a date field.

location_name

char(32)

The first location of the table. If there are
additional locations for a table, they will
be shown in the iimulti_locations table
and multi_locations will be set to Y.

table_integrities

char(8)

Y if this object has Ingres-style
integrities. If the value is blank, you must
query the iiintegrities table to determine
if integrities exist.

table_permits

char(8)

Y if this object has Ingres-style
permissions.

all_to_all

char(8)

Y if this object has permit all to all, N if
not.

ret_to_all

char(8)

Y if this object has permit retrieve to all,
N if not.

is_journalled

char(8)

Y if journaling is enabled on this object, N
if not. Set to C if journaling will be

Standard Catalog Interface 165

Catalogs

Column Name Data Type Description
enabled at the next checkpoint. This will
be blank if journaling does not apply.
view_base char(8) Y if object is a base for a view definition,
N if not, or blank if unknown.
multi_locations char(8) Y if the table is in multiple locations, N if

not.

table_ifillpct

smallint

Fill factor for the index pages used on the
last modify statement in the nonleaffill
clause, expressed as a percentage (0 to
100). Used for

B-tree structures in order to rerun the
last modify statement.

table_dfillpct

smallint

Fill factor for the data pages used on the
last modify statement in the fillfactor
clause, expressed as a percentage (0 to
100). Used for

B-tree, hash, and isam structures in
order to rerun the last modify statement.

table_lfillpct

smallint

Fill factor for the leaf pages used on the
last modify statement in the leaffill
clause, expressed as a percentage (0 to
100). Used for

B-tree structures in order to rerun the
last modify statement.

table_minpages

integer

Minpages parameter from the last
execution of the modify statement. Used
for hash structures only.

table_maxpages

integer

Maxpages parameter from the last
execution of the modify statement. Used
for hash structures only.

table_relstamp1

integer

High part of last create or modify
timestamp for the table.

table_relstamp2

integer

Low part of last create or modify
timestamp for the table.

table_reltid

integer

The first part of the internal relation ID.

table_reltidx

integer

The second part of the internal relation
ID.

166 Star User Guide

Catalogs

The iiviews Catalog

The iiviews catalog contains one or more entries for each view in the database.
(Views are indicated in iitables by table type = V.) Because the text_segment
column is limited to 256 characters per row, a single view can require more
than one row to contain all its text; in this case, the text will be broken in mid-
word across the sequenced rows. The text column is text and may contain

newline characters.

Column Name Data Type

Description

table_name char(32) The view name. Must be a valid Ingres
name.

table_owner char(32) The view owner’s Ingres username.

view_dml char(8) The language in which the view was
created: S (for SQL).

check_option char(8) Y if the check option was specified in the
create view statement, or N if not. Set
to blank if unknown.

text_sequence integer The sequence number for the text field,
starting with 1.

text_segment varchar(256) The text of the view definition.

Standard Catalog Interface 167

Index

Database Object Manager window e 38

/ database See also distributed databases ¢ 13
dates o 88, 147

/star server class o 12, 45, 132 dbmsinfo (function) 88

A DDL » 71, 88

DDL statements o 40

declare (statement) 138
declare table (statement) o 137
delete (statement) o 137
delimited identifiers e 41

accounts e 31
altering databases o 38
authorization ¢ 31

B describe (statement) o 138
destroydb (command) e 46
begin declare section (statement) o 135 destroying objects ¢ 38
bottom operation 100, 108 direct connect (statement) o 74, 80, 137
browse operation « 108, 111 direct disconnect (statement) ¢ 76, 137
direct execute immediate (statement) ¢ 77, 80,
C 137
disconnect (statement) e 137
catalogs e 14, 121, 147 Distributed Database Contents frame » 106
classes ¢ 41 distributed databases
classesofcatalogs 121 accessing o 21
closing sessions ¢ 76 catalogs ¢ 121
cluster e 24, 27 commands e 73
column mapping e 129 contents e 14, 15
committing transactions ¢ 76 copying e 83
concurrency DDL statements e 71 creating o 13, 37
coordinator database ¢ 15 creating tables o 65
copy (statement) ¢ 136 creating views ¢ 65
copydb (command) ¢ 83 deleting ¢ 46
create (statement) e 40, 65 displaying owners 117
create link (statement) ¢ 136 dropping tables ¢ 69
create table (statement) o 14, 65, 88, 136 listing local databases 116
create view (statement) e 65, 88, 136 listing objects » 102, 106
createdb (command) e 13, 45, 46 maintaining e 38
creating distributed databases ¢ 37 managing with StarView utility e 25
criteria operation 108, 114 naming e 40
cursor statements o 136 objects e 15, 38
D registering objects ¢ 65, 111

registering tables e 117

removing registrations e 113

retrieving information ¢ 100

StarView access ¢ 93

testing node connections ¢ 104

transactions e 22

version number ¢ 134
distributed optimizer e 123

Data Definition Language (DDL) » 71, 88
database

accesstoe 11, 14

number of ¢ 38

objects ¢ 15, 38

procedures ¢ 55, 62

Index 169

drop (statement) e 40, 69, 137
drop link (statement) e 138
drop table (statement) « 88, 138
drop view (statement) « 88, 138
dropping objects ¢ 38

dynamic SQL « 56, 62, 138

E

end declare section (statement) e 138
end operation « 100, 108, 114

endselect (statement) o 138

Enterprise Access products e 40, 61
execute (statement) o 138

execute immediate (statement) o 78, 139
execute procedure (statement) e 139

F

-f flag e 132
find operation « 100, 108

G

group identifiers e 135
H

help (statement) » 91, 139
help operation e« 100, 108, 114

I

identifiers ¢ 42

iialt_columns catalog 148
iicolumns catalog 148

iidatabase catalog 121
iidbcapabilities catalog 150, 157
iidbconstants catalog e 153

iidbdb catalogs e 15, 27, 121

iiddb catalogs » 123, 127
iihistograms catalog e 153
iiindexes catalog 154

iiindexes catalogs « 154
iiintegrities catalog e 155
iimulti_locations catalog ¢ 156
iipermits catalog ¢ 156
iiphysical_tables catalog e 157, 162
iiprocedures catalog e 159
iiregistered_objects catalog ¢ 160
iiregistrations catalog ¢ 47, 56, 160

iistar_cdbinfo catalog 123
iistar_cdbs catalog e 122
iistats catalog « 161

iitables catalog 65, 157, 162
iiviews catalog 167

include (statement) o 139
indexes ¢ 129

inquire_sql (statement) ¢ 139
insert (statement) e 139

L

LDBALttr operation e 102
LDBHelp operation e 116
ListObj operation e 102, 106
local databases
connections e 28
displaying attributes e 102
listing » 116
testing connections e 105

naming conventions e 40
Net
connections ¢ 28
remote database access ¢ 11
netutil (utility)
defining remote nodes ¢ 11
installation passwords e 30
Node Status and Local Database Types frame e
100
NodeHelp operation e 115
nodes
accessing remote o 11
testing connections « 104

(o)

ObjAttr operation e 108
Object Selection Criteria pop-up frame o 114
objects
destroying/dropping ¢ 38
distributed databases o 15, 38
listing e 116
native e 58
opening sessions ¢ 74
optimizer o 123
OwnerHelp operation e 117

170 Star User Guide

P S

pass-through mode « 76 savepoint (statement) o 141
passwords e 21, 29 select (statement) o 141
permissions ¢ 39 select operation « 114
prepare (statement) 138 server

classes e 12,41, 132
Q releases ¢ 134

specifying for Ingres Star ¢ 41
QUEL 9 Star e 27, 28
guery execution plan (QEP) ¢ 123 set (statement) o 141
R set ddl_concurrency « 71, 88

set_sqgl (statement) o 142
sizing attributes ¢ 41
SQL
dynamic e 56, 62
language with Star ¢ 9
column mapping 129 stateme.nts * 135
described o 47 SQL operation e 1.03, 111
dynamic SQL « 56 standard catalog interface e 167
standard catalogs « 147
StarView (utility) e 70, 93
statements
data definition language (DDL) ¢ 71
supported in Ingres Star e 135
unsupported in Ingres Star e 143
syntax e 12
sysmod (command) e 127
system catalogs e 127

recovery e 32
register as import (statement) ¢ 47, 61
register as link (statement)

catalogs « 56

Ingres Star examples ¢ 42, 52

issuing « 18

operation ¢ 128

StarView and « 117

syntax ¢ 50

tables o 14

use ¢ 15, 40, 61

use with Ingres Star e 140

with refresh ¢ 40, 57, 140
register operation ¢ 111 T
register procedure as link (statement) ¢ 55
register table as link (statement) e 50
register view as link (statement) ¢ 53
registration

defined o 14

help with e 91

objects ¢ 47, 61

purpose ¢ 128 removing ¢ 62

removing ¢ 113 tables operation ¢ 111

secondary indexes ¢ 50 TestLDB operation ¢ 105

using StarView 70, 111, 117 TestNode operation s 104
remote databases o 11 time » 88
remove (statement) ¢ 40, 62, 140
remove operation ¢ 108, 113
remove procedure (statement) o 64
remove table (statement) ¢ 63
remove view (statement) 64
role identifiers o 135
rollback (statement) « 88, 140

tables
and Ingres Star ¢ 128
dropping ¢ 69
in Ingres Star databases o 14
native e 65
registering e 47, 117

top operation e 100, 108

transactions, distributed o 22, 77

two phase commit
direct execute immediate (statement) e 77
distributed transactions e 23
netutil authorizations e 32

Index 171

U

UDTs (user-defined data types) o 148
update (statement) o 142

upgradedb (utility) e 131

upgradefe (utility) o 131

\'/

VAX e 27
verifydb (command) « 86
views
and Ingres Star catalogs ¢ 130
dropping ¢ 69
registering e 47
removing ¢ 62, 64

W

whenever (statement) o 142
with (clause) e 67

172 Star User Guide

	Bookshelf
	Ingres Star User Guide
	Contents
	1: Introducing Ingres Star
	Ingres Star
	Audience
	Query Languages
	Installation Considerations
	Setup for Remote Database Access
	Command Syntax for Accessing a Distributed Database
	Examples: Accessing Distributed Databases

	2: Understanding Ingres Star Architecture
	Distributed Database
	Creation of a Distributed Database
	Registration of Distributed Database Tables
	Population of the Distributed Database
	Catalogs
	Object Types
	Ingres Star Components
	Security

	System Architecture
	Configuration Access Examples
	Example: Single Node Configuration
	Example: Two Node Configuration
	Example: Three Node Configuration

	Distributed Transactions
	Two-Phase Commit
	When Two-Phase Commit Is Not Used
	Simulated Two-Phase Commit

	StarView Utility
	Query Optimizer

	3: Preparing to Install Ingres Star
	Installation Requirements
	Installation Prompts for Ingres Star
	Star Server Startup

	Operating System Requirements
	How User Authorization to Nodes Is Established
	Installation Passwords
	How Installation Passwords Are Set Up

	User Authorization Using Netutil and Ingnet
	Global and Private Authorizations
	Group Accounts
	Private Accounts

	How User Authorization to the Local Node Is Established
	Authorization in Netutil and Inget for Recovery
	Authorization Examples
	Example 1
	Example 2
	Example 3
	Example 4

	4: Maintaining a Distributed Database
	Distributed Database Maintenance Tasks
	VDBA and Distributed Database Maintenance
	Commands for Performing Distributed Database Maintenance
	Statements for Performing Distributed Database Maintenance
	Naming Conventions
	Database Naming Restrictions
	Sizing Attributes
	Server Class
	Case
	Installation Options
	Naming Registration Examples
	Example: Default DDB and ISO-Compliant LDB
	Example: Mixed-Case Names
	Example: DDB with Mixed-Case Delimited Identifiers

	Createdb Command
	Examples: Createdb

	Destroydb Command
	Example: Destroydb

	Register as Link Statement--Define Database Objects to Ingres Star
	Register Table as Link Statement--Define Table to Ingres Star
	Examples: Register Table as Link

	Register View as Link Statement--Define View to Ingres Star
	Example: Register View as Link

	Register Procedure as Link Statement--Define Procedure to Ingres Star
	Examples: Register Procedure as Link

	Catalogs for the Register Statement
	Execute Immediate Statement--Execute Register as Link Statement Dynamically

	Register as Link with Refresh Statement--Refresh Registration
	Register as Link with Refresh Restrictions
	Effects of Register as Link with Refresh
	Example: Register as Link with Refresh

	Using Register with Enterprise Access Products
	Remove Statement--Remove Registration
	Remove Table Statement
	Example: Remove Table

	Remove View Statement
	Example: Remove View

	Remove Procedure Statement
	Example: Remove Procedure

	Create Statement
	Create Table Statement
	Create Table With Syntax
	Create Table as Subselect With Syntax
	Create Table Syntax Elements
	LDB With Clauses
	Examples: Create Table

	Create View Statement
	Create View Syntax

	Drop Statement
	Drop Table Statement
	Example: Drop Table
	Drop View Statement

	Table Registration Using StarView
	DDL Concurrency Mode

	5: Using a Distributed Database
	Connecting Directly to a Local Database
	Direct Connect Statement
	Direct Connect Syntax

	Direct Disconnect Statement
	Direct Disconnect Syntax
	Example: Direct Connect and Direct Disconnect

	Direct Execute Immediate Statement
	Example: Direct Execute Immediate
	Direct Execute Immediate Statement Process
	Illegal Direct Execute Immediate Statements
	Avoiding Execute Errors During Two-Phase Commit

	Direct Connect and Direct Execute Immediate Compared

	Unloading and Reloading a Database
	Example: Unloaddb

	Copying Objects Using copydb
	Example: Copydb

	Modifying Catalogs Using sysmod
	Example: sysmod

	Updating Catalog Information Using verifydb
	Examples: verifydb

	Rolling Back Transactions
	dbmsinfo() Function--Request Information from a Database
	help register Statement--Get Help with Objects

	6: Managing a Distributed Database with StarView
	StarView Capablilties
	Moving Around in StarView
	Operations Menus
	Long Operations Menus
	Moving Between Operations Menus

	Options for Selecting an Operation
	Select an Operation by Function Key
	Select an Operation by Name

	Context-sensitive Help
	Error Messages

	Start StarView
	StarView Menu Map
	The DDB Contents Map

	The StarView Main Frame
	Select a Distributed Database
	Select a Distributed Database from a List
	Select a Distributed Database by Entering a Name

	Node Status and Local Database Types Frame
	ListObj Operation
	LDBAttr Operation
	SQL Operation
	Tables Operation
	TestNode Operation
	TestLDB Operation
	TestNode versus TestLDB

	Distributed Database Contents Frame
	DDB Contents Frame Operations

	The ObjAttr Operation
	The Browse Operation
	The Remove Operation
	Remove a Registration

	The Criteria Operation
	The NodeHelp Operation
	The LDBHelp Operation
	The OwnerHelp Operation

	Register Tables with StarView
	Register Tables in a Distributed Database
	Register Other Database Objects

	7: Understanding Ingres Star Catalogs
	Ingres Star Catalogs
	iidbdb Catalogs
	The iidatabase Catalog
	The iistar_cdbs Catalog
	The iistar_cdbinfo Catalog
	The iiddb_netcost Catalog
	Example: Net_cost

	Standard Catalogs
	System Catalogs

	Mapping Ingres Star Objects
	Registered Names and Related Catalogs
	Tables and Related Catalogs
	Index Mapping
	Table and Column Mapping
	Physical Information and Statistics Mapping
	Local Tables Index Information
	Views and Related Catalogs
	Registered Procedures and Related Catalogs

	A: Release Compatibility
	Utilities for Updating a Release 6.4 Star Database
	Ingres Star and Upgradedb
	Upgradedb Command--Update a Distributed Database
	Examples: Upgradedb

	Ingres Star and Upgradefe
	Upgradefe Command--Update Tools Catalogs
	Examples: Upgradefe

	How You Determine Local and Remote RDBMS Server Releases

	B: SQL Statement Summary
	Statements Supported by Ingres Star
	Begin Declare Section
	Call
	Commit
	Connect
	Copy
	Create Link
	Create Table
	Create View
	Cursor Statements
	Declare Table
	Delete
	Direct Connect
	Direct Disconnect
	Direct Execute Immediate
	Disconnect
	Drop
	Drop Link
	Drop Table
	Drop View

	Dynamic SQL
	End Declare Section
	Endselect
	Execute Immediate
	Execute Procedure
	Help
	Include
	Inquire_sql
	Insert
	Register As Link
	Register As Link With Refresh
	Remove
	Repeat Queries
	Rollback
	Savepoint
	Select
	Set
	Set_sql
	Update
	Whenever

	SQL Statements Not Supported by Ingres Star
	Terminal Monitor Statements Not Supported by Ingres Star

	C: Standard Catalog Interface
	Standard Catalog Interface and Ingres Star
	Catalog Formats
	Catalogs
	The iialt_columns Catalog
	The iicolumns Catalog
	The iidbcapabilities Catalog
	The iidbconstants Catalog
	The iihistograms Catalog
	The iiindex_columns Catalog
	The iiindexes Catalog
	The iiintegrities Catalog
	The iimulti_locations Catalog
	The iipermits Catalog
	The iiphysical_tables Catalog
	The iiprocedures Catalog
	The iiregistered_objects Catalog
	The iiregistrations Catalog
	The iistats Catalog
	The iitables Catalog
	The iiviews Catalog

	Index

