
  

     

Web Deployment Option User Guide 
 

 

February 2007 

Ingres®   2006 Release 2



  

     

 

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for 
the end user’s informational purposes only and is subject to change or withdrawal by Ingres Corporation (“Ingres”) 
at any time. 

This Documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part, 
without the prior written consent of Ingres. This Documentation is proprietary information of Ingres and protected 
by the copyright laws of the United States and international treaties. 

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this Documentation for 
their own internal use, provided that all Ingres copyright notices and legends are affixed to each reproduced copy. 
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of 
the license for the software are permitted to have access to such copies. 

This right to print copies is limited to the period during which the license for the product remains in full force and 
effect. The user consents to Ingres obtaining injunctive relief precluding any unauthorized use of the 
Documentation. Should the license terminate for any reason, it shall be the user’s responsibility to return to Ingres 
the reproduced copies or to certify to Ingres that same have been destroyed. 

To the extent permitted by applicable law, INGRES PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT 
WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IN NO EVENT WILL INGRES BE LIABLE TO THE 
END USER OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS 
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR 
LOST DATA, EVEN IF INGRES IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE. 

The use of any product referenced in this Documentation and this Documentation is governed by the end user’s 
applicable license agreement. 

The manufacturer of this Documentation is Ingres Corporation. 

For government users, the Documentation is delivered with “Restricted Rights” as set forth in 48 C.F.R. Section 
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor 
provisions. 

Copyright © 2007 Ingres Corporation. 

All Rights Reserved. 

Ingres, OpenROAD, and EDBC are registered trademarks of Ingres Corporation. All other trademarks, trade names, 
service marks, and logos referenced herein belong to their respective companies. 



  

Contents    iii 

Contents 
 

Chapter 1: Introduction 

What You Need to Know ...................................................................... 1-1 
Where to Go from Here ....................................................................... 1-1 

Chapter 2: Getting Started 

Installing the HTTP Server .................................................................... 2-1 
Configuring the HTTP Server .................................................................. 2-1 

What the Web Server Needs to Know ...................................................... 2-2 
Adding Virtual Directories ................................................................. 2-2 
Enabling the Native HTTP Server Extensions ................................................ 2-3 
Rebooting Windows ....................................................................... 2-3 

Microsoft Internet Information Server (IIS)..................................................... 2-3 
Environment (IIS) ........................................................................ 2-4 
Virtual Directories (IIS) ................................................................... 2-8 
ICE File Type (IIS) .......................................................................2-11 
Using Your Web Server as a Windows Service..............................................2-11 

Apache Web Server..........................................................................2-11 
Environment (Apache) ...................................................................2-12 
Virtual Directories (Apache) ..............................................................2-12 
ICE File Type (Apache) ...................................................................2-12 
Using Your Web Server as a Windows Service..............................................2-14 

Setting Up Your ICE Server...................................................................2-14 
Web Server Document Directory ..........................................................2-15 

Chapter 3: Understanding the Web Deployment Option 

Overview .................................................................................... 3-1 
Users ........................................................................................ 3-2 
Architecture .................................................................................. 3-3 

Web Site Components..................................................................... 3-4 
Web Browser ............................................................................. 3-5 
Web Deployment Option Client ............................................................ 3-5 
ICE Server ............................................................................... 3-6 
Information Systems...................................................................... 3-6 



  

iv     Web Deployment Option User Guide 

Chapter 4: Managing the Web Deployment Option 

Accessing Web Deployment Option Information ................................................ 4-1 
Managing Security ........................................................................... 4-3 

Web Users ............................................................................... 4-3 
Database Users .......................................................................... 4-5 
Database Connections .................................................................... 4-6 
Roles .................................................................................... 4-7 
Profiles .................................................................................. 4-8 

Managing Server Information ................................................................. 4-9 
Session Groups .......................................................................... 4-9 
Locations ............................................................................... 4-10 
ICE Server Variables..................................................................... 4-11 

Managing Business Units .................................................................... 4-13 
Business Units .......................................................................... 4-13 
Documents, Pages, and Facets ........................................................... 4-15 
Role Access Definitions .................................................................. 4-16 
Web User Access Definitions ............................................................. 4-17 
Associating a Location with a Business Unit ............................................... 4-18 

Monitoring Web Deployment Option Information .............................................. 4-19 
Shutting Down.............................................................................. 4-19 

Chapter 5: Using the Macro Language 

Web Deployment Option XML Tag Set ......................................................... 5-1 
Web Deployment Option XML Macro Tag Format............................................ 5-2 
Web Deployment Option Macro Tags....................................................... 5-2 
Tag Hierarchy ............................................................................ 5-3 

Macro Tags .................................................................................. 5-4 
<i3ce_commit> Tag...................................................................... 5-4 
<i3ce_declare> Tag ...................................................................... 5-4 
<i3ce_extend> Tag ...................................................................... 5-6 
<i3ce_function> Tag ..................................................................... 5-8 
<i3ce_if> Tag............................................................................ 5-9 
<i3ce_include> Tag ..................................................................... 5-11 
<i3ce_query> Tag ...................................................................... 5-13 
<i3ce_rollback> Tag .................................................................... 5-19 
<i3ce_switch> Tag ...................................................................... 5-19 
<i3ce_var> Tag......................................................................... 5-20 

Macro Statements........................................................................... 5-21 
Macro Statement Format ................................................................ 5-21 
Macro Keywords......................................................................... 5-22 



  

Contents    v 

Macro Keywords .............................................................................5-22 
COMMIT Keyword........................................................................5-22 
DECLARE Keyword .......................................................................5-23 
FUNCTION Keyword......................................................................5-25 
IF Keyword ..............................................................................5-27 
INCLUDE Keyword .......................................................................5-28 
ROLLBACK Keyword......................................................................5-30 
SQL Keyword ............................................................................5-31 
SWITCH Keyword ........................................................................5-39 
VAR Keyword............................................................................5-41 

Chapter 6: Creating Web Applications: An Example 

Before You Begin ............................................................................. 6-2 
A Tour of the Plays Application ................................................................ 6-2 

Plays Welcome Page ...................................................................... 6-3 
Plays Login Page.......................................................................... 6-4 
Automatic Declaration Page ............................................................... 6-5 
Plays Home Page ......................................................................... 6-6 
Plays View Options........................................................................ 6-7 
Globe Boutique ..........................................................................6-10 

Creating Application Directories...............................................................6-12 
Creating Directories for Non-Web Deployment Option Registered Files.......................6-12 
Creating Directories for Web Deployment Option-Registered Files ...........................6-13 

Creating Application Files ....................................................................6-13 
Creating the Starting Application Page ....................................................6-14 
Creating the Welcome Page and Facets....................................................6-15 
Creating the Remaining Pages and Facets .................................................6-16 
Using Style Sheets .......................................................................6-17 

Gaining Access to Web Deployment Option Information ........................................6-18 
Registering Your Files and Location ...........................................................6-18 

Creating a Session Group.................................................................6-18 
Setting Up Public Files....................................................................6-19 
Creating a Server Location for Secured Pages..............................................6-19 
Creating a Business Unit .................................................................6-20 
Associating the Server Location with the Business Unit .....................................6-21 
Associating Pages with the Business Unit ..................................................6-21 
Associating Facets with the Business Unit..................................................6-22 
Creating a Database Connection ..........................................................6-24 
Creating a Profile ........................................................................6-24 
Creating a Role ..........................................................................6-25 
Associating a Role with a Profile ..........................................................6-26 



  

vi     Web Deployment Option User Guide 

Associating a Database Connection with a Profile .......................................... 6-27 
Associating a Role with a Business Unit ................................................... 6-27 

Designing a Data Browsing Application ....................................................... 6-28 
Creating a Welcome Page ................................................................ 6-28 
Creating a Login Page ................................................................... 6-29 
Creating a Home Page ................................................................... 6-31 
Creating a User Account Automatically.................................................... 6-32 
Displaying All Table Rows ................................................................ 6-33 
Displaying All Table Rows with Wrapping.................................................. 6-40 
Creating an Automatically-Generated Selector Control ..................................... 6-43 
Displaying a Subset of Table Rows by Selector ............................................ 6-45 
Creating Automatically-Generated Hyperlinks ............................................. 6-47 
Displaying a Subset of Table Rows by Hyperlink ........................................... 6-48 
Creating Graphical Hyperlinks ............................................................ 6-50 
Creating Switch Image Links ............................................................. 6-52 

Designing an Internet Shopping Application................................................... 6-54 
The Globe Boutique Home Page .......................................................... 6-54 
Creating the Tables for the Globe Boutique Application..................................... 6-54 
Creating the New Order Procedure........................................................ 6-55 
Creating the New Order Extension Header File............................................. 6-55 
Creating the New Order Extension........................................................ 6-56 
Building the New Order Extension ........................................................ 6-58 
Displaying an Item Description ........................................................... 6-62 
Adding an Item to the Shopping Bag ..................................................... 6-64 
Displaying Shopping Bag Contents........................................................ 6-67 
Confirming an Order..................................................................... 6-70 
Rolling Back a Transaction ............................................................... 6-72 

Plays Tutorial Application Data ............................................................... 6-73 

Chapter 7: Using the C API 
Web Deployment Option C API Reference ...................................................... 7-1 

ICE_C_Close() Function................................................................... 7-1 
ICE_C_Connect() Function ................................................................ 7-2 
ICE_C_Disconnect() Function ............................................................. 7-3 
ICE_C_Execute() Function ................................................................ 7-3 
ICE_C_Fetch() Function................................................................... 7-5 
ICE_C_GetAttribute() Function ............................................................ 7-6 
ICE_C_Initialize() Function................................................................ 7-7 
ICE_C_LastError() Function ............................................................... 7-8 
ICE_STATUS Data Type................................................................... 7-8 
ICE_C_CLIENT Structure.................................................................. 7-9 



  

Contents    vii 

ICE_C_PARAMS Structure ................................................................. 7-9 
Sample C API for Web Deployment Option ....................................................7-11 

Chapter 8: Writing ICE Server Extension Functions 

Defining an Initialization Function.............................................................. 8-1 
Providing a Function Description ............................................................... 8-2 
Defining Your Extension Function .............................................................. 8-3 
Calling an Extension Function from a Web Page................................................. 8-4 
Sample Extension Library ..................................................................... 8-5 

Plays Example ............................................................................ 8-5 

Appendix A: XML Primer 

XML Overview ................................................................................A-1 
Extensible ................................................................................A-1 
Complementary with HTML ................................................................A-2 

XML Syntax ..................................................................................A-2 
All Elements Have A Closing Tag ...........................................................A-2 
XML Tags Are Case Sensitive ..............................................................A-2 
XML Elements Must Be Properly Nested ....................................................A-2 
XML Documents Must Have a Root Tag .....................................................A-3 
Attribute Values Must Always Be In Quotation Marks ........................................A-3 

XML Example.................................................................................A-3 
XML and Web Deployment Option Queries......................................................A-4 

Appendix B: HTML Primer 

The Development of HTML ....................................................................B-1 
Anatomy of an HTML Document ...............................................................B-1 
Elements Used by Web Deployment Option.....................................................B-5 
Elements Generated by Web Deployment Option ...............................................B-7 
Accessing Web Deployment Option Pages ......................................................B-7 

Appendix C: Reserved Words 

Reserved Words ..............................................................................C-1 



  

viii     Web Deployment Option User Guide 

Appendix D: ICE Server Functions 

Security Functions ........................................................................... D-1 
DBUser() Function........................................................................ D-1 
Database() Function...................................................................... D-2 
Role() Function........................................................................... D-2 
User() Function .......................................................................... D-2 
User_Role() Function ..................................................................... D-3 
User_Database() Function ................................................................ D-4 
Profile() Function......................................................................... D-4 
Profile_Role() Function.................................................................... D-5 
Profile_Database() Function............................................................... D-5 

Business Unit Functions ...................................................................... D-6 
Unit() Function ........................................................................... D-6 
Unit_Role() Function...................................................................... D-6 
Unit_User() Function ..................................................................... D-7 
Unit_Location() Function.................................................................. D-7 
Unit_Copy() Function ..................................................................... D-8 
Document() Function ..................................................................... D-8 
Document_Role() Function................................................................ D-9 
Document_User() Function............................................................... D-10 
Session_Grp() Function .................................................................. D-11 

Server Function ............................................................................. D-11 
ICE_Locations() Function ................................................................ D-11 

Monitoring Functions ........................................................................ D-12 
Active_Users() Function ................................................................. D-12 
ICE_Users() Function .................................................................... D-13 
ICE_User_Transactions() Function........................................................ D-13 
ICE_User_Cursors() Function............................................................. D-14 
ICE_Cache() Function ................................................................... D-14 
ICE_Connect_Info() Function............................................................. D-15 

Additional Functions......................................................................... D-16 
TagToString() Function .................................................................. D-16 
Dir() Function ........................................................................... D-16 
GetVariables() Function.................................................................. D-16 

Appendix E: Using an XML Authoring Tool 
Starting XMetaL.............................................................................. E-1 
Creating a New Document .................................................................... E-2 
Building Macro Elements...................................................................... E-4 

Using the XMetaL Environment ............................................................ E-4 



  

Contents    ix 

Index 
 





  

Chapter 1: Introduction    1–1 

Chapter 1: Introduction 
 

Ingres® Web Deployment Option provides the foundation for Internet-based 
electronic commerce. It allows developers to build World Wide Web (Web) 
applications that can access enterprise-wide corporate data. 

This guide provides information on how to configure and manage your Web 
Deployment Option environment. It also walks you through the development 
of a sample application, from start to finish.  

What You Need to Know 
If you are a Web Deployment Option application developer, this guide assumes 
that you are familiar with: 

 Basic HTML/XML form development concepts 

 Embedded SQL for setting up queries on a Web page 

 SQL for executing SQL statements from a Web page 

 C/C++ programming language 

If you are a Web Deployment Option administrator, you should be familiar with 
the following: 

 Ingres network administration 

 Ingres system administration 

 Web server administration 

 Database administration 

In addition, you should be familiar with Windows, including terminology, 
navigational techniques, and working with standard items, such as menus and 
dialogs. Some knowledge of networking concepts and the Web is also 
assumed. 

Where to Go from Here 
To gain a better understanding of the Web Deployment Option, all users—both 
novice and advanced—should read the remainder of this guide, including  
“Chapter 6: Creating Web Applications: An Example,” which shows you how to 
design Web applications that interact with Ingres databases.  





  

 

Chapter 2: Getting Started    2–1 

Chapter 2: Getting Started 
 

This chapter describes post-installation steps for Web Deployment Option. It 
shows you how to set up your Web (HTTP) server and your Web Deployment 
Option application environment. 

Note: You should already have installed Web Deployment Option as part of 
your Ingres installation, and started the ICE Server. For more information 
about starting servers, see the chapter “Managing Your System and Monitoring 
Performance” in the System Administrator Guide. 

HTTP Server 
Before you can run a Web Deployment Option application, you must have one 
of the following Web (HTTP) servers installed: 

 Microsoft Internet Information Server 

 Apache Web Server 

For installation instructions, see the documentation for your particular server. 

After testing to see that the web server is working properly, you must 
configure the web server to work with Web Deployment Option. 

Configuring the HTTP Server 
You must configure your web server so that it will communicate with the Web 
Deployment Option client. Many of the Web Deployment Option client files—
including the binary file and images files used in your applications—are located 
under the II_SYSTEM directory structure. To enable the referencing of these 
files, you must include additional virtual directories in the web server 
configuration. 



Configuring the HTTP Server 

2–2     Web Deployment Option User Guide 

What the Web Server Needs to Know 

Your web server must know how to locate and invoke the Web Deployment 
Option custom extension appropriate for it. You must provide the following two 
pieces of information to the server so that it can invoke the Web Deployment 
Option system: 

 Location of the extension file (Dynamic Link Library or Shared Object) 

 Location of the public files (Web Deployment Option picture directory) 

In addition, it may be necessary on some systems to ensure that the 
environment is correctly set and passed on. You should ensure that the web 
server process can access the environment variable II_SYSTEM and that the 
appropriate additions have been made to your operating system search paths 
for programs and shared or dynamic libraries. 

Adding Virtual Directories 

To let the web server know the location of the above files, the following virtual 
directory aliases must be added to your web server configuration: 

 /ice-bin 

 /iceimages 

The virtual directories are mapped to the actual directories where the files 
reside. 

Directory /ice-bin 

The Web Deployment Option client binaries (extension files) are located in the 
following directory: 

Windows
 %II_SYSTEM%\ingres\ice\bin\<web server directory>  

UNIX
 $II_SYSTEM/ingres/ice/bin/<web server directory>  

where <web server directory> is the name of the subdirectory where the server 
extension is located. For the supported server extensions, the possible 
subdirectories are microsoft and apache. 

The HTTP server invokes the requested binary when it is specified in the URL 
or from a Web page. For more information on the Web Deployment Option 
client, see “Chapter 3: Understanding the Web Deployment Option.” 



Microsoft Internet Information Server (IIS) 

Chapter 2: Getting Started    2–3 

Directory /iceimages 

The public image files are located in the following directory: 

Windows
 %II_SYSTEM%\ingres\ice\images  

UNIX
 $II_SYSTEM/ingres/ice/images  

This directory is used for the non-secured, initial images presented in the 
sample Plays tutorial application, in addition to the My_Plays application that 
you will create. 

Enabling the Native HTTP Server Extensions 

In addition to the virtual directories, you must configure your web server to 
enable use of the Web Deployment Option native HTTP server extensions. 
Instructions are in the following sections. 

Rebooting Windows 

Important! After you have installed and configured the web server, you must 
reboot Windows systems. This ensures that Ingres is included in the path for 
the Windows Service Control Manager. 

Value of II_System 

This chapter uses the notation <II_SYSTEM>, which refers to the value of the 
II_SYSTEM environment variable for your Ingres installation. You must know 
this value to complete certain configuration tasks.  

To learn this value, enter the following at a command prompt: 

ingprenv II_SYSTEM 

Microsoft Internet Information Server (IIS) 
To configure IIS to work with Web Deployment Option, complete the following 
tasks: 

1. Create a user for Web Deployment Option 

2. Configure IIS 

3. Reboot 



Microsoft Internet Information Server (IIS) 

2–4     Web Deployment Option User Guide 

Environment (IIS) 

Windows systems allow a global environment to be set for all processes on the 
machine.  

The Web Deployment Option installation should have set the following 
environment variables, which allow IIS to connect to the ICE Server:  

 II_SYSTEM 

 PATH  

The PATH variable should include entries for Ingres binary and dynamic link 
library directories.   

Create a User for Web Deployment Option 

A user must be created that has both anonymous Web site and anonymous 
application access.  

To create a local operating system user for Web Deployment Option 

1. Start the Computer Management Console (CMC) by selecting Start, Run. 
Type the command:  

mmc C:\WINDOWS\system32\compmgmt.msc  
a. Create a new user. IIS Web Deployment Option extensions and 

application pool will be identified by this user.  

b. Give this user a password that cannot be changed and never expires.  

c. Make this user a member of the Guests and IIS_WPG groups.  

2. Start the Local Security Console (LSC) by selecting Start, Run. Type the 
command: 

mmc C:\WINDOWS\system32\secpol.msc  
a. Under Local Policies, User Rights Assignments, add the previously 

created user to the rights "Replace process-level token" and "Adjust 
memory quotas for a process."  



Microsoft Internet Information Server (IIS) 

Chapter 2: Getting Started    2–5 

How You Configure IIS for Web Deployment Option 

Windows  
You configure the Microsoft Internet Information Server from the Internet 
Service Manager.  

Both the CGI and ISAPI standards are supported for IIS. 

The overall procedure is as follows: 

1. Create a named application pool and assign WDO user to identity.  

2. Create a separate web site.  

3. Add ice_index.html to Documents property for the web site.  

4. Add virtual directories for ice-bin and iceimages.  Set application settings 
for the ice-bin directory.  

5. Create new Web services extensions oiice.exe and oiice.dll.  

To create a named application pool and assign Web Deployment 
Option user to identity 

1. Start Internet Information Services (IIS) Manager from the Administrative 
Tools folder.  

2. Right click on Application Pools and select New, Application Pool, as shown 
here:  

 

3. Enter a name for this pool (which you will use later) and accept the “Use 
default settings for new application pool.”  



Microsoft Internet Information Server (IIS) 

2–6     Web Deployment Option User Guide 

Application pool identity property uses the identity of the operating sytem 
user created previously. 

 

To create a new Web site 

1. Right click on Web Sites, and select New, Web Site, as shown here:  

 



Microsoft Internet Information Server (IIS) 

Chapter 2: Getting Started    2–7 

2. Follow the instructions displayed by the Web Site Wizard. Choose a port 
other than 80. For example: 

 

To add ice_index.html to Documents property for the web site  

Update the default documents properties to include ice_index.html. For 
example:  

 



Microsoft Internet Information Server (IIS) 

2–8     Web Deployment Option User Guide 

To add virtual directories 

1. Add virtual directories, as described in Virtual Directories (IIS).  

When configuring the ice-bin directory, set Executable permissions to 
Scripts and Executables, and set Application pool to the name you entered 
previously.  

 

To create new Web services extensions 

1. Right click Web Service Extensions and select Add a new Web service 
extension. Enter a name for the extension. Add required files, namely 
oiice.dll and oiice.exe. Check the box “Set extension status to allowed.”  

2. Reboot the machine. 

Virtual Directories (IIS) 

To add virtual directories, follow these steps: 

1. Click Start on the Windows taskbar, and then choose Settings, Control 
Panel, Administrative Tools, Internet Services Manager. 

The Internet Information Services window appears. 

2. Expand the branch of the server you want to configure. 



Microsoft Internet Information Server (IIS) 

Chapter 2: Getting Started    2–9 

3. Right-click the Default Web Site branch. 

4. Choose New, Virtual Directory. 

The Welcome to the Virtual Directory Creation Wizard window appears. 

5. Click Next. 

The Virtual Directory Alias dialog appears: 

 

6. In the Alias field, enter ice-bin and click Next. 

The Web Site Content Directory dialog appears. 



Microsoft Internet Information Server (IIS) 

2–10     Web Deployment Option User Guide 

7. In the Directory field, enter the name of the directory where the server 
extension resides. For example: 

 

8. Click Next. 

The Access Permissions dialog appears: 

 

9. Keep the default values, and then select the Execute check box. 

10. Click Next. 



Apache Web Server 

Chapter 2: Getting Started    2–11 

11. Click Finish. 

These directories are added to the list under the Default Web Site. 

12. Repeat steps 3–11, creating the following directory for the /iceimages 
alias: 

drive:\<II_SYSTEM>\ingres\ice\images 

Note: Do not select the Execute check box when creating this directory.  

ICE File Type (IIS) 

The Web path name indicates the ICE file type. 

Using Your Web Server as a Windows Service 

If you are using your web server as a service, you should restart Windows to 
ensure that the Services manager incorporates all settings. 

Apache Web Server 
To configure the Apache Web Server, edit the httpd.conf file in the Apache 
conf/ directory.  

Note: After you update the configuration file you must restart the Apache Web 
Server. 

 

  
Tip: The Apache Web Server supports an include directive that lets 
multiple configuration files be included in the server configuration. You can 
keep configuration information either in the httpd.conf file or in one that 
is included by it. This feature allows web server administrators to store 
changes for particular services in individual conf files.  

 An example include conf file for the ICE Server is on the distribution media 
in <II_SYSTEM>/ingres/ice/bin/apache/ice.conf. This file uses the virtual 
server capability of the Apache Web Server, which listens on a different 
port. You can use this file as an example to set up your Apache Web 
Server as quickly as possible. 
 



Apache Web Server 

2–12     Web Deployment Option User Guide 

Environment (Apache) 

Windows  
See Environment (IIS) in this chapter.  

UNIX  
The following environment variables are required for the Apache Web Server 
to connect to the ICE Server: 

 II_SYSTEM 

 LD_LIBRARY_PATH  

You must make sure that the process that starts the web server has the usual 
Ingres environment variables set either for the process or in the server startup 
script. 

If you intend to use the CGI interface, in addition to having these environment 
variables available to the Apache Web Server process, you must insert the 
following directive in the httpd.conf file to explicitly instruct Apache to pass 
them on: 

PassEnv II_SYSTEM LD_LIBRARY_PATH  

Virtual Directories (Apache) 

To add virtual directories for the Apache Web Server, edit the httpd.conf file.  

You must add virtual directories for ice-bin and iceimages using the Alias 
directive (there is an Alias section in the configuration file). For example: 

Windows
 

Alias /ice-bin/ “C:/IngresII/ingres/ice/bin”  
Alias /iceimages/ "C:/IngresII/ingres/ice/images"  

UNIX
 

Alias /ice-bin/ "/IngresII/ingres/ice/bin"  
Alias /iceimages/ "/IngresII/ingres/ice/images"  

ICE File Type (Apache) 

You must register the ICE module with the Apache Web Server by loading the 
ICE module and setting a handler for a particular location. Permissions are 
assigned using the Directory element. The ICE extension is loaded using the 
LoadModule directive. The handler is specified in a Location element as 
illustrated below. 

Note: Modules in the form of shared libraries or dynamic link libraries should 
be identified by absolute path name, for example: 

<II_SYSTEM>/ingres/ice/bin/apache 

where <II_SYSTEM> represents the value of the environment variable 
II_SYSTEM for your installation. 



Apache Web Server 

Chapter 2: Getting Started    2–13 

 

Windows
 

# Add the ICE extension module. 
LoadModule ice_module <II_SYSTEM>/ingres/ice/bin/apache/oiice.dll 

 

#Locations 

<Location /ice-bin> 

    SetHandler ice-ext 

</Location> 

 

<Directory <II_SYSTEM>/ingres/ice/bin/apache> 

    AllowOverride None 

    Options None 

</Directory>  

 

UNIX
 

# Add the ICE extension module. 

LoadModule ice_module <II_SYSTEM>/ingres/ice/bin/apache/oiice.1.so 

 

# Enable the apapi module: 

AddModule apapi.c 

 

# Locations 

<Location /ice-bin> 

    SetHandler ice-ext 

</Location>  

 

<Directory <II_SYSTEM>/ingres/ice/bin/apache> 

    AllowOverride None 

    Options None 

</Directory> 

 

# Environment variables 

PassEnv II_SYSTEM LD_LIBRARY_PATH 



Setting Up Your ICE Server 

2–14     Web Deployment Option User Guide 

Automatic Recognition of File Type 

The Apache Web Server lets you create “virtual servers.” A virtual server can 
process pages automatically with the ICE Server. An example of how to do this 
is presented in the ice.conf file, located in the following directory: 

Windows
 %II_SYSTEM%\ingres\ice\bin\apache  

UNIX
 $II_SYSTEM/ingres/ice/bin/apache  

Using Your Web Server as a Windows Service 

Windows  
If you are using your web server as a service, you should restart Windows to 
ensure that the Services manager incorporates all settings.  

Setting Up Your ICE Server 
The ICE Server and its supporting library files are installed in the following 
directory:  

Windows
 %II_SYSTEM%\ingres\ice\bin  

UNIX
 $II_SYSTEM/ingres/ice/bin  

It is not necessary to configure the ICE Server files. You can, however, set up 
your own default system parameters for Internet Communication in the 
Configuration Manager.  

To access Configuration Manager, do the following: 

 On Windows, click Start on the taskbar, and then choose Programs, 
Ingres, Configuration Manager.  

 On UNIX, enter vcbf at the command line. (For information on the vcbf 
command, see the Command Reference Guide.) 



Setting Up Your ICE Server 

Chapter 2: Getting Started    2–15 

The Configuration Manager is invoked, as shown next. Select the Internet 
Communication component in the left pane of the window. The configurable 
parameters for the ICE Server are displayed in the right pane. 

 

For information on the individual parameters, see the online help by pressing 
F1 while the Internet Communication component and the Parameters tab are 
selected. Also see the Using the Configuration Manager topic in the Procedures 
section. 

Web Server Document Directory 

If you did not set the Web Server Document Root Directory at Web 
Deployment Option install time, you must set this parameter now. A valid 
value is essential for communication with your Ingres database. The 
parameter name is html_home, and the value is the full path to the primary 
HTML document directory of your web server. 





  

Chapter 3: Understanding the Web Deployment Option    3–1 

Chapter 3: Understanding the Web 
Deployment Option 
 

This chapter provides an overview of the Web Deployment Option, including its 
powerful database web server and the facilities it provides for managing a 
web/client/server environment. 

Overview 
The Web Deployment Option provides a host of features that allow the 
application developer to create dynamic web-based applications that are 
independent of the web user’s browser and the data sources with which they 
communicate. Essentially, applications can be developed with only HTML code. 

The Web Deployment Option also offers solutions to important problems 
currently encountered by web application developers today. These include the 
flexibility to deliver solutions through dynamic HTML pages, while protecting 
and managing access to their enterprise’s data. 

The main features of the Web Deployment Option include: 

 Session capability 

Web access is usually stateless, starting new connections with the request 
of each HTML page. When developing applications for the Web, it is 
desirable that state information is maintained between pages. Using 
session management, it is possible to maintain a session context by using 
a unique cookie identifier. A cookie is the unique data that identifies a 
remote user. 

 Security management 

Since the volume of users in a web environment can become very large, 
creating a system or database account for each potential client on the 
operating system is unrealistic. Therefore, a logical user or “web user” is 
created for the Web Deployment Option, enforcing user authentication 
before a session to the Web Deployment Option is opened. User rights can 
be established in the system and access to HTML pages can be assigned. 



Users 

3–2     Web Deployment Option User Guide 

 Transaction processing 

The Web Deployment Option allows HTML developers to open, commit, 
and roll back transactions through the Web Deployment Option macro 
language. A named transaction allows the handling of query operations 
performed by a user (for example, browsing or selecting items from a list) 
over many HTML pages, and then the committal of the transaction only 
when the user is finished. 

 Macro language 

The Web Deployment Option provides an extensive macro language that 
allows the web author to embed Web Deployment Option macros in HTML 
documents to execute SQL statements and automatically format the result 
sets. In addition, a connection protocol is used that authenticates a user 
before establishing a Web Deployment Option session. 

 Document caching 

When dealing with web documents, it is possible for a single HTML page to 
reference many different facets; each facet may vary in size and 
complexity. Using the ICE Server, there can be many facets stored within 
the database and extracted each time they are needed. Adding a 
document to the cache reduces the number of database accesses. 

 Administration and management tools 

Visual DBA enables you to administer your Web Deployment Option 
system, including security, business unit, and server information. You can 
also monitor various entities, such as connected and active users, cached 
pages, HTTP and database connections, transactions, and cursors. 

Users 
The users of Web Deployment Option fall into three major categories including 
the roles of administrator, web author, or web user. 

These roles are defined as follows: 

 Web Deployment Option administrator 

There are several types of administrators in the Web Deployment Option, 
including: 

– Privileged user 

Has all permissions and privileges on the ICE Server. This user is 
equivalent to the Ingres administrator (installation owner) or the root 
user on UNIX. 

– Server administrator 

Manages session groups, locations, and server variables. 



Architecture 

Chapter 3: Understanding the Web Deployment Option    3–3 

– Security administrator 

Manages all security components, including web users, database 
users, roles, profiles, and database connections. 

– Business unit manager 

Creates and manages a business unit—which entails defining the list of 
locations available through this business unit, declaring authorizations, 
and managing the unit’s backup. 

– Monitor 

Views and keeps track of Web Deployment Option system information. 

 Web author 

Someone who is responsible for analyzing user and enterprise 
requirements, as well as designing and implementing Web Deployment 
Option application programs to meet those requirements. The web author 
is also responsible for validating that the application programs meet those 
requirements, and for handing them over to the Web Deployment Option 
business unit manager for installation. 

Web authors can also be given authorization to manage security, projects, 
HTML pages, and multimedia documents in the system. 

 Web user 

Any user declared in the Web Deployment Option repository and who is 
permitted to request documents from the ICE Server. This includes 
administrators, developers, and end-users of applications. 

Note:  A default database user alias is associated with each web user, 
which determines the data source the user accesses. Through database 
connections, a web user can also be associated with other database users 
and data sources. 

Architecture 
ICE Server architecture is based on the Ingres DBMS Server architecture and 
allows multiple users access to databases through connections to one or more 
ICE Server processes. The ICE Server is also a multi-threaded daemon process 
that generates dynamic page content and manages resource pooling with data 
sources (such as Ingres). 

The ICE Server architecture provides a separate application layer that can pass 
information to any web browser. The browser is then responsible for 
interpreting the information for the web user. Web Deployment Option is 
designed to enforce security in the web environment, allow scalability for more 
users, integrate with emerging products, and leverage existing business logic. 



Architecture 

3–4     Web Deployment Option User Guide 

Web Site Components 

The primary components of a Web Deployment Option web site are: 

 Browser 

 HTTP server and Web Deployment Option client 

 ICE Server 

 Information systems 

The figure below illustrates a Web Deployment Option web site: 

 



Architecture 

Chapter 3: Understanding the Web Deployment Option    3–5 

Web Browser 

A web browser allows a user to interact with a web application. It also allows 
any web user with the proper privileges to configure and manage the Web 
Deployment Option. The Web Deployment Option allows the development of 
web applications with essentially only HTML code. Therefore, the browser is 
independent of the web application. 

Web Deployment Option Client 

The web server executes programs in response to browser requests. CGI is the 
standard protocol that defines the way the server executes the programs. The 
communication between the HTTP server and the ICE Server can occur 
through a CGI external executable or an internal native HTTP server extension. 
CGI and native drivers act as “communications pipes” sending requests to and 
receiving results from the ICE Server. 

CGI Extensions The Web Deployment Option is supplied as a CGI-compliant executable file 
and should support any web server that also supports CGI. In addition, the 
Web Deployment Option client is also supplied as a native extension to some 
of the more common HTTP servers. 

Native Extensions There are a number of limitations to the CGI approach, and for this reason, 
web server vendors have defined their own methods for extending the 
capabilities of their products. The Web Deployment Option is also supplied in a 
form compatible with three of the most widely supported web server native 
API driver interfaces, including: 

 ISAPI—Microsoft Internet Server API 

 Apache API—Apache Server API 

 

Windows  
In Windows environments, Web Deployment Option components written to 
these interfaces are supplied in the form of a Windows Dynamic Link Library 
(DLL).  

UNIX  
In UNIX, Web Deployment Option components written to these interfaces are 
supplied in the form of a UNIX shared library.  

These interfaces are otherwise functionally identical to the CGI executable. 
They provide performance benefits and allow HTML developers freedom to 
develop standard Web Deployment Option web applications or pages without 
providing a separate interface for each environment. 



Architecture 

3–6     Web Deployment Option User Guide 

When you create a Web Deployment Option application, you need to refer to 
the CGI client or native extension in your HTML. Typically, this will be in the 
Uniform Resource Identifier (URI) you supply in the FORM ACTION tag. The 
name of the executable to which you refer depends on the web server 
interface you have chosen. 

The following table lists the possible interfaces for the supported web servers: 

 

Web Server Interface Windows File Name UNIX File Name 

CGI application oiice.exe oiice 

Microsoft ISAPI library oiice.dll Not available 

Apache oiice.dll oiice.1 

ICE Server 

The multi-threading ICE Server communicates with the HTTP server either by 
using a CGI executable or a server extension. It communicates with the data 
source passing requests to the source and returning the results to the 
browser. 

The ICE Server manages all connections, session information, and security for 
those areas of the web site under its control. It maintains a list of users, their 
privileges, and roles (used for simplifying the maintenance of the privileges for 
a group of users). 

The documents that can be viewed by users fall into a three-layer hierarchy: 
the documents themselves, business units (which are a collection of active 
pages and facets), and session groups (which are a logical grouping of 
business units). 

In addition to the powerful Web Deployment Option macro language, support 
for running Ingres reports, database procedures, and user written applications, 
the ICE Server offers built-in functions, a C API, and user-defined functions. 

The ICE Server maintains all of this information in a repository, which is 
maintained by the ICE Server administrator. 

Information Systems 

The Web Deployment Option supports Ingres databases and all Enterprise 
Access products (gateways), which provide access to other data sources such 
as Microsoft SQL Server, Sybase, Informix, Oracle, CA-IDMS, CA-Datacom, 
among others.



  

Chapter 4: Managing the Web Deployment Option    4–1 

Chapter 4: Managing the Web 
Deployment Option 
 

This chapter describes the Web Deployment Option objects that you can 
manage, including security, business unit, and server objects. The following 
topics are discussed: 

 Accessing Web Deployment Option information 

 Managing database users, database connections, roles, profiles, and Web 
users 

 Managing user and role access for a business unit, pages, facets, and 
associations to locations 

 Managing session groups, locations, and server variables 

 Monitoring Web Deployment Option information 

The server administrator, security administrator, and business unit 
administrator will be managing the various objects in the Web Deployment 
Option system. A user with the monitor privilege can monitor the Web 
Deployment Option system. 

Accessing Web Deployment Option Information 
Visual DBA allows you to view and manage your Web Deployment Option 
objects. On Windows, you start Visual DBA by clicking Start on the taskbar, 
and then choosing Programs, Ingres, Visual DBA. On UNIX, enter vdba at the 
command prompt. 

 
To open a Database Object Manager window, expand the Nodes branch and 
select a virtual node. Then, click the Connect DOM toolbar button. 



Accessing Web Deployment Option Information 

4–2     Web Deployment Option User Guide 

To access the Web Deployment Option objects on your installation, you 
expand the ICE root branch in the Database Object Manager. This reveals the 
following sub-branches, which represent Web Deployment Option object 
categories: 

 

If you expand one of the sub-branches further, you either see other object 
categories or you are prompted with the following dialog: 

 

Enter the name and password associated with the Web Deployment Option 
privileged user. This user is the installation owner set up during installation 
(default ID is ingres), and must be defined as an operating system user. When 
you are finished, click OK. 

Note: The Web Deployment Option privileged user is defined in the config.dat 
file and can be changed to another Ingres administrator using the 
Configuration Manager utility. 

The objects appear under the branch, provided you have access privileges to 
the information. The section Managing Security describes how Web users are 
granted privileges to resources once they are defined. 



Managing Security 

Chapter 4: Managing the Web Deployment Option    4–3 

Managing Security 
The Web Deployment Option provides a variety of mechanisms for managing 
Web resources and granting access to them. It also allows for the security of 
the data sources in the installation. 

If you are a Web Deployment Option privileged user or a security 
administrator, you can create the following: 

 Web users 

 Database users 

 Database connections 

 Roles 

 Profiles 

Web Users 

A Web user is any user declared in the Web Deployment Option repository and 
is permitted to request documents from the ICE Server. The user may be an 
administrator, developer, or end user of an application. The security 
administrator manages Web users and their associations to roles and database 
connections. 

There are two different ways in which Web users can be created. A security 
administrator can manually create a Web user definition through Visual DBA. 
Web users can also be automatically defined through a series of “auto 
declaration” statements defined in a Web page. A new Web user is instructed 
by an application to enter a user name and password—resulting in the user 
being auto-declared through a profile created by the security administrator 
that defines the user type and attributes. 

Working with Web User Objects 

In Visual DBA, Web users are implemented using Web user objects. A Web 
user object specifies the user’s name, password, the type of user, and several 
other attributes. 

Using the Web Users branch in the Database Object Manager window, you 
can: 

 Create and alter Web user objects 

 View existing Web user objects, including the detailed properties of 
individual objects 

 Drop Web user objects 



Managing Security 

4–4     Web Deployment Option User Guide 

 Associate role objects with Web user objects 

 Associate database connection objects with Web user objects 

The detailed steps for performing these procedures can be found in the 
Procedures section of the online help. See the following topics: 

 Creating a Web User 

 Altering a Web User 

 Viewing Object Properties 

 Associating a Role with a Web User 

 Associating a Database Connection with a Web User 

 Dropping Objects 

How Web Users Are Used 

Once a Web user is created, you can associate several types of objects with it. 
The associations define which data sources the user can access and what 
access permissions the user has to Web resources. The following types of 
objects can be associated with a Web user: 

 Role 

A role can be associated with a Web user and privileges associated with it 
for a business unit. 

 Database connection 

One or more database connections can also be associated with a Web user 
to identify which database connections the user can use. 

 Business unit 

A business unit can also be associated with a Web user, which gives the 
user access to the pages and facets in the business unit. 

 Pages and facets 

To provide a finer granularity of security based on the page or facet the 
user is trying to access, individual pages and facets can be associated with 
a Web user. 

For details on how to create associations between these types of objects and a 
Web user, see Role Access Definitions in this chapter. 



Managing Security 

Chapter 4: Managing the Web Deployment Option    4–5 

Database Users 

When accessing the information system, the Web Deployment Option uses a 
database user definition. A database user is a user alias that maps to an actual 
user (such as “ingres”), for which a database administrator grants 
permissions. 

One default database user can be used by a large number of Web users (or 
profiles) to access a data source. This allows the number of users known to 
the data source to be minimized, while the number of Web users can be quite 
large. 

The database user is aliased by the Web Deployment Option to an Ingres 
database user. The user can be specified in a Web Deployment Option macro 
for public access—although this is not recommended. (This is provided for Web 
Deployment Option (formerly Ingres/ICE) Version 2.0 compatibility, however 
the use of the features in versions 2.5 and higher is preferred.) 

Working with Database User Objects 

In Visual DBA, Web Deployment Option database users are defined using 
database user objects. A database user object specifies the user’s alias, name, 
password, and an optional comment. 

Using the Database Users branch in the Database Object Manager window, 
you can: 

 Create and alter database user objects 

 View existing database user objects, including the detailed properties of 
individual objects 

 Drop database user objects 

The detailed steps for performing these procedures can be found in the 
Procedures section of the online help. See the following topics: 

 Creating a Database User 

 Altering a Database User 

 Viewing Object Properties 

 Dropping Objects 



Managing Security 

4–6     Web Deployment Option User Guide 

How Database Users Are Used 

Once a database user is created, you can assign it as the default database 
user when creating a new Web user or profile. This instructs the Web 
Deployment Option to use the user name and password defined in the 
database user definition by default when connecting to a data source. This is 
how the Web Deployment Option administrator arranges for multiple Web 
users to access the data source using one user name for that source. 

One or more database connections can also be associated with a database 
user. For more information, see Database Connections in this chapter. 

Database Connections 

A database connection allows the Web author to use an alias for a database 
and a database user. A Web user is associated with a database user for the 
purpose of convenience and to abstract internal names. 

Working with Database Connections 

In Visual DBA, database connections are defined using database connection 
objects. A database connection object specifies the database connection’s 
name, virtual node, database, database user, and an optional comment. 

Using the Database Connections branch (beneath the ICE Security sub-branch) 
in the Database Object Manager window, you can: 

 Create and alter database connection objects 

 View existing database connection objects, including the detailed 
properties of individual objects 

 Drop database connection objects 

The detailed steps for performing these procedures can be found in the 
Procedures section of the online help. See the following topics: 

 Creating a Database Connection 

 Altering a Database Connection 

 Viewing Object Properties 

 Dropping Objects 



Managing Security 

Chapter 4: Managing the Web Deployment Option    4–7 

How Database Connections Are Used 

Database connections are used to control access to the database and to make 
the database location and user transparent, thus concealing the true names of 
the database and the database user from the Web. In addition to providing 
abstraction, database connections allow for simpler code since a developer 
needs only to reference a database connection in a page. 

For each Web user, you can define the database connections the user will be 
able to use. A Web user is defined with a default database connection with 
which to use if none is specified. 

Roles 

You can streamline the user authorization process using roles. A Web 
Deployment Option role is a logical entity that allows a security administrator 
to give authority to a set of Web users. 

You can define a set of permissions for the role on the business unit, page, or 
facet level. 

Working with Role Objects 

In Visual DBA, Web Deployment Option roles are defined using role objects. A 
role object specifies the role’s name and an optional comment. 

Using the Roles branch (under the ICE Security sub-branch) in the Database 
Object Manager window, you can: 

 Create and alter role objects 

 View existing role objects, including the detailed properties of individual 
objects 

 Drop role objects 

The detailed steps for performing these procedures can be found in the 
Procedures section of the online help. See the following topics: 

 Creating a Role 

 Altering a Role 

 Viewing Object Properties 

 Dropping Objects 



Managing Security 

4–8     Web Deployment Option User Guide 

How Role Objects Are Used 

Once a role is created, a role can be associated with many existing Web users 
instead of defining and updating the security privileges individually for each 
user. A set of predefined permissions can be defined for a role through a role 
access definition for a particular business unit, page, or facet. 

Business units define which sort of permissions are to be allowed on a per-role 
or per-user basis. A user associated with a role will therefore automatically be 
assigned the permissions of that role. A user can be granted other permissions 
individually. 

For more information, see Role Access Definitions in this chapter. 

Note: When defining a role, the security administrator typically works with the 
Web author, so that they can agree on the identifier and the permissions the 
role has for specific applications. 

Profiles 

A profile is used to set up a default level of access to a business unit for a Web 
user. It does this by associating the Web user with a role. The business unit 
then defines the level of access for that role. Profiles allow for simpler user 
management—predefining Web user definitions. 

Working with Profile Objects 

In Visual DBA, profiles are implemented using profile objects. A profile object 
specifies the profile’s name, default database user, type of user, and time-out 
duration between requests from the server. 

Using the Profiles branch in the Database Object Manager window, you can: 

 Create and alter profile objects 

 View existing profile objects, including the detailed properties of individual 
objects 

 Drop profile objects 

 Associate a role object with a profile object 

 Associate a database connection object with a profile object 

The detailed steps for performing these procedures can be found in the 
Procedures section of the online help. See the following topics: 

 Creating a Profile 

 Altering a Profile 



Managing Server Information 

Chapter 4: Managing the Web Deployment Option    4–9 

 Viewing Object Properties 

 Associating a Role with a Profile 

 Associating a Database Connection with a Profile 

 Dropping Objects 

How Profiles Are Used 

Once a profile is defined, a role or database connection can be associated with 
it. With a role, permissions for a business unit or specific Web resource can be 
defined. Database connections allow you to control which data sources can be 
accessed for a profile. 

For more information on these objects, see Roles and Database Connections in 
this chapter. 

Managing Server Information 
Several entities relate to the ICE Server and provide the ability to group 
document elements together logically, specify server locations that can be 
used to store pages and facets, and store server variables that can be 
referenced in documents. 

Session Groups 

A session group defines a logical group of business units. Each business unit 
must belong to a session group. No additional security or access permissions 
are associated with a session group. A session group identifies a unique cookie 
for a session. 

Working with Session Groups 

In Visual DBA, session groups are defined using session group objects. A 
session group object specifies the name of the session group. 

Using the Session Groups branch (beneath the ICE Security sub-branch) in the 
Database Object Manager window, you can: 

 Create and alter session group objects 

 View existing session group objects, including the detailed properties of 
individual objects 

 Drop session group objects 



Managing Server Information 

4–10     Web Deployment Option User Guide 

The detailed steps for performing these procedures can be found in the 
Procedures section of the online help. See the following topics: 

 Creating a Session Group 

 Viewing Object Properties 

 Dropping Objects 

How Session Groups Are Used 

A session group specifies a set of Web Deployment Option documents. It is 
used in the generation of a Web Deployment Option session cookie. Using a 
session group enables a client to open multiple session groups on the same 
client with multiple instances of the browser. 

The Web Deployment Option uses sessions to manage connections. For a 
secured site, each user has to identify himself by opening a connection on the 
ICE Server. This named connection allows the server to keep track of multiple 
session contexts from a single client running different Web applications 
concurrently. When a user logs in to the Web Deployment Option, a cookie is 
assigned. The session group then becomes valid. 

To work with session groups, you need to be a Web Deployment Option 
privileged user or server administrator. The privileged user can create a 
location for use by a business unit manager or owner for Ingres II 2.0 
compatibility access. For more information, see Managing Security in this 
chapter. 

After you have created a session group object, you can use the new session 
group to reference a page mapped to a location through a Web Deployment 
Option address. For the syntax of this address, see “Appendix B: HTML 
Primer.”  

Note: Login and auto-declare pages are public and should not specify session 
groups whereas secure pages should. 

Locations 

The ICE Server references each active web resource, whether it is a page or 
facet, using a location. There are two main types of locations: an HTTP-visible 
location, and a Web Deployment Option location, which is invisible to HTTP. A 
location that is controlled by the Web Deployment Option is invisible to the 
HTTP server. 

In addition, locations can be marked public (anyone can view their contents), 
or not public, in which case only those users who have logged in can view their 
contents. 



Managing Server Information 

Chapter 4: Managing the Web Deployment Option    4–11 

Working with Locations 

In Visual DBA, locations are defined using location objects. A location object 
specifies the location’s name, path, location type, extension priorities, a 
comment, and whether it is public. 

Using the Locations sub-branch under the ICE Server branch in the Database 
Object Manager window, you can: 

 Create and alter Web Deployment Option location objects 

 View existing Web Deployment Option location objects, including the 
detailed properties of individual objects 

 Drop Web Deployment Option location objects 

The detailed steps for performing these procedures can be found in the 
Procedures section of the online help. See the following topics: 

 Creating a Web Deployment Option Location 

 Altering a Web Deployment Option Location 

 Viewing Object Properties 

 Dropping Objects 

To work with Web Deployment Option locations, you need to be a Web 
Deployment Option privileged user or a server administrator. The privileged 
user can grant the privilege to a Web user by associating the administrator 
profile, through profile or Web user definitions. For more information, see 
Managing Security in this chapter. 

How Locations Are Used 

Locations allow you to group related resources into specific directories and 
abstract the file system through aliasing. Files held in these directories can be 
accessed by the Web Deployment Option or by the HTTP server. 

After you have set up the path and mapped it to a location by creating a 
location object, you can use the new location to reference a page mapped to a 
location through a Web Deployment Option address. For the syntax of this 
address, see “Appendix B: HTML Primer.” 

ICE Server Variables 

A server variable is a reference value associated with the ICE Server and is 
held internally by the ICE Server. 



Managing Server Information 

4–12     Web Deployment Option User Guide 

Working with ICE Server Variables 

In Visual DBA, server variables are defined using server variable objects. A 
server variable object specifies the variable’s name and value. 

Using the Server Variables branch in the Database Object Manager window, 
you can: 

 Create and alter server variable objects 

 View existing server variable objects, including the detailed properties of 
individual objects 

 Drop server variable objects 

The detailed steps for performing these procedures can be found in the 
Procedures section of the online help. See the following topics: 

 Creating a Server Variable 

 Altering a Server Variable 

 Viewing Object Properties 

 Dropping Objects 

To work with ICE Server variables, you need to be a Web Deployment Option 
privileged user or a server administrator. The privileged user can create a 
server variable that is accessible through the document content, or a 
developer may allow a server variable to be set from a Web page. For more 
information, see Managing Security in this chapter. 

How Server Variable Objects Are Used 

Server variables are used by the Web Deployment Option to hold static 
information concerned with the installation (such as contact information, this 
month’s include file name, browser type, or possibly the date). The variable is 
loaded when the ICE Server starts and persists as long as the repository 
database is not deleted. A reference to a variable is replaced by the actual text 
when Web Deployment Option parses the file. 

Session variables are used to pass values between pages, and page variables 
are used in a page. All server, session, and page variables share the same 
name space. 

Important!  Since all server, session, and HTML variables share the same 
name space, you should not create a server variable with the same name as a 
session or page variable. We recommend that your site adopt a convention 
similar to that in the Web Deployment Option Plays tutorial, discussed in the 
chapter “Creating Web Applications: An Example.” 



Managing Business Units 

Chapter 4: Managing the Web Deployment Option    4–13 

Managing Business Units 
The Web Deployment Option uses business units to manage Web resources, 
including pages and facets, and to simplify the management of security 
associated with them.  

Business Units 

A business unit is a group of pages and facets that provide a similar function. 
For a business unit, a set of locations is defined, which is used to reference 
and hold the page and facet files. Defining business units enables simpler 
document management. 

Each file must belong to a business unit to reference it in URIs or your HTML 
code. You can think of the business unit as being like an operating system 
directory (that contains files like pages, facets, or both). 

Working with Business Units 

In Visual DBA, business units are defined using business unit objects. A 
business unit object specifies the name of the business unit. 

Using the Business Units branch in the Database Object Manager window, you 
can: 

 Create and alter business unit objects 

 View existing business unit objects, including the detailed properties of 
individual objects 

 Drop business unit objects 

 Create and alter role access definitions for a business unit 

 Create and alter user access definitions for a business unit 

 Associate page or facet objects with business unit objects 

 Back up business unit objects 

The detailed steps for performing these procedures can be found in the 
Procedures section of the online help. See the following topics: 

 Creating a Business Unit 

 Viewing Object Properties 

 Dropping Objects 

 Creating a Role Access Definition for a Business Unit 

 Altering a Role Access Definition for a Business Unit 



Managing Business Units 

4–14     Web Deployment Option User Guide 

 Creating a User Access Definition for a Business Unit 

 Altering a User Access Definition for a Business Unit 

 Associating a Page with a Business Unit 

 Associating a Facet with a Business Unit 

 Backing Up a Business Unit 

Adding Multiple Files to a Business Unit 

When first creating a business unit, you may want to register many files to a 
business unit simultaneously. The Web Deployment Option provides a 
command line utility, regdocs, to do this and a companion utility, deregdocs, 
to deregister the documents from a business unit. Using these commands 
makes it unnecessary to add or remove files individually using Visual DBA. 

For the syntax of the regdocs and deregdocs commands, see the Command 
Reference Guide. 

How Business Units Are Used 

Once a business unit is identified, the business unit administrator can apply 
security to the business unit as a whole, or to its individual pages or facets. 
Roles and users can be associated with business units, pages, or facets. 

For example, a company might have an accounting business unit to identify 
the accounting department Web resources as a whole, and a payroll business 
unit to identify the payroll department Web resources as a whole. To define 
these business units, the business unit administrator would create them, and 
then add all the pages and facets for the associated department. The business 
units could then be easily maintained by adding and dropping resources as 
they are needed or not needed by the departments. 

After you have set up the path for a page file, and mapped it to a location by 
creating a location object, you can use the new location to reference the page 
through a Web Deployment Option address. For the syntax of this address, see 
“Appendix B: HTML Primer.” 

Note: Pages or facets that are kept as files in the file system can be included in 
more than one business unit. This is not true for objects that are held in the 
database. 



Managing Business Units 

Chapter 4: Managing the Web Deployment Option    4–15 

Documents, Pages, and Facets 

A document is comprised of pages and their related objects, called facets. 
Pages and facets are managed by Web Deployment Option to produce the 
document the end user sees in a browser. The pages and facets can be stored 
directly on the file system or in Ingres. 

A page is a text file containing Web application language statements (for 
instance, HTML statements) and copy. A facet is any other type of object that 
is used on a page (such as an image, style sheet, audio, or multimedia 
object). 

 

  
Tip: The Web Deployment Option processes pages, not facets. Therefore, if 
a style sheet needs to be parsed, it should be treated as a page rather 
than as a facet. 
 

The Web author creates page and facet objects for use in an application. 

Working with Page and Facet Objects 

In Visual DBA, Web Deployment Option pages and facets are defined using 
facet objects and page objects. A page or facet object specifies the name of 
the page or facet, path to the file, storage type, and caching method. 

Using the Pages and Facets branches in the Database Object Manager window, 
you can: 

 Create and alter page and facet objects for business units 

 Create and alter role access definitions for page objects 

 Create and alter user access definitions for facet objects 

 View existing page and facet objects, including the detailed properties of 
individual objects 

 Drop page and facet objects 

The detailed steps for performing these procedures can be found in the 
Procedures section of the online help. See the following topics: 

 Creating a Page for a Business Unit 

 Altering a Page for a Business Unit 

 Creating a Facet for a Business Unit 

 Altering a Facet for a Business Unit 

 Creating a Role Access Definition for a Page 



Managing Business Units 

4–16     Web Deployment Option User Guide 

 Altering a Role Access Definition for a Page 

 Creating a User Access Definition for a Page 

 Altering a User Access Definition for a Page 

 Creating a Role Access Definition for a Facet 

 Altering a Role Access Definition for a Facet 

 Creating a User Access Definition for a Facet 

 Altering a User Access Definition for a Facet 

 Viewing Object Properties 

 Dropping Objects 

How Pages and Facets Are Used 

Once created, you can reference page and facet objects from within a page. 

After you have created a page or facet, you can reference the new page or 
facet through a Web Deployment Option address. For the syntax of this 
address, see “Appendix B: HTML Primer.” 

Role Access Definitions 

Role access definitions can be created that define the permissions that are 
associated with the role for an entire business unit, or an individual page or 
facet in a business unit. 

Working with Role Access Definitions 

In Visual DBA, role access definitions are defined using role access definition 
objects. These definitions specify the role’s name and the permissions 
associated with the role. 

Using the Roles branches (under the Business Units Security sub-branch, or 
the Pages and Facets branches) in the Database Object Manager window, you 
can: 

 Create and alter role access definition objects for business units 

 Create and alter role access definition objects for pages and facets 

 View existing role access definition objects, including the detailed 
properties of individual objects 

 Drop role access definition objects 



Managing Business Units 

Chapter 4: Managing the Web Deployment Option    4–17 

The detailed steps for performing these procedures can be found in the 
Procedures section of the online help. See the following topics: 

 Creating a Role Access Definition for a Business Unit 

 Altering a Role Access Definition for a Business Unit 

 Creating a Role Access Definition for a Page or Facet 

 Altering a Role Access Definition for a Page or Facet 

 Viewing Object Properties 

 Dropping Objects 

How Role Access Definitions Are Used 

For a particular business unit, page, or facet, a role access definition can be 
created that associates permissions with a role. This provides the flexibility to 
assign different permissions to a role used in different business units. 

The object permissions that are applied to the role for a business unit include 
the ability to create, read, and execute documents. Those permissions for a 
facet or page include the ability to create, read, update, or delete. 

Web User Access Definitions 

Web user access definitions can be created that define the permissions that 
are associated with a Web user for an entire business unit, or an individual 
page or facet in a business unit. 

Working with Web User Access Definitions 

In Visual DBA, user access definitions are defined using user access definition 
objects. These definitions specify the user’s name and the permissions 
associated with the user. 

Using the Users branch (under the Business Units Security sub-branch) in the 
Database Object Manager window, you can: 

 Create and alter user access definition objects for business units 

 Create and alter user access definition objects for pages and facets 

 View existing user access definition objects, including the detailed 
properties of individual objects 

 Drop user access definition objects 



Managing Business Units 

4–18     Web Deployment Option User Guide 

The detailed steps for performing these procedures can be found in the 
Procedures section of the online help. See the following topics: 

 Creating a User Access Definition for a Business Unit 

 Altering a User Access Definition for a Business Unit 

 Creating a User Access Definition for a Page or Facet 

 Altering a User Access Definition for a Page or Facet 

 Viewing Object Properties 

 Dropping Objects 

How Web User Access Definitions Are Used 

For a particular business unit, page, or facet, an access definition can be 
created for the Web user that associates permissions with the user. These 
permissions, set directly at the Web user level, override any access definition 
settings at the role level. 

The object permissions that are applied to the Web user for a business unit 
include the ability to create, read, and execute documents. Those permissions 
for a page or facet include the ability to create, read, update, or delete. 

Associating a Location with a Business Unit 

You can establish an association between a location and a business unit in 
order to map Web resources to an actual physical disk location. 

Using the Locations branch (under the Business Units branch) in the Database 
Object Manager window, you can: 

 Create associations between locations and business unit objects 

 View existing associations between locations and business unit objects, 
including the detailed properties of individual objects 

 Drop associations between location and business unit objects 

The detailed steps for performing these procedures can be found in the 
Procedures section of the online help. See the following topics: 

 Associating a Business Unit with a Location 

 Viewing Object Properties 

 Dropping Objects 



Monitoring Web Deployment Option Information 

Chapter 4: Managing the Web Deployment Option    4–19 

Monitoring Web Deployment Option Information 
The Performance Monitor window in Visual DBA can be used to view 
information on the ICE Server. It provides information on the activity that is 
occurring on the server at any time. The following entities can be monitored: 

 ICE Server properties 

 Connected users 

 Active users 

 Cached files 

 HTTP server connections 

 Database connections 

 Transactions 

 Cursors 

To access this information, select the ICE Server under the Servers branch. In 
the right pane, you can view detailed information on various entities. For more 
information, see the Viewing Performance Information topic in the Procedures 
section of the online help. 

Shutting Down 
Before shutting down an Ingres installation that includes an ICE Server, you 
must first terminate any connections that exist between the HTTP server and 
the ICE Server. 

The Web Deployment Option HTTP server extensions maintain a pool of client 
connections with the ICE Server. The ICE Server detects these connections as 
active sessions. To disconnect these sessions, the HTTP server extension 
should be unloaded. If this is not possible, either the HTTP server can be shut 
down or the Web Deployment Option can be forcibly shut down before shutting 
down the remainder of the Ingres installation. 

For instructions on how to shut down Ingres, see the System Administrator 
Guide. 





  

Chapter 5: Using the Macro Language    5–1 

Chapter 5: Using the Macro Language 
 

This chapter contains reference information that provides instruction on how to 
embed Web Deployment Option macros into your XML or HTML documents, 
including descriptions of the Web Deployment Option XML tags and the macro 
language keywords that are available. 

You can use the Web Deployment Option language to do the following: 

 Create template documents that retrieve their content directly from the 
database 

 Store images and other multimedia content in an Ingres database and 
share them as XML or display them with HTML 

 Show the results of multiple queries on a single page 

Note: The new XML tag language provides the same functionality as the macro 
keywords presented later in the chapter. However, by using an XML-aware 
editor, it is much easier to create documents that do the same thing and are 
valid Web Deployment Option. The macro language keywords are still 
supported for backward compatibility reasons. 

Web Deployment Option XML Tag Set 
The Web Deployment Option XML tag set has been defined to be well-formed 
and conformant XML. It allows XML editors to be used to create Web 
Deployment Option macro language document templates in a seamless way. 
The Web Deployment Option Document Type Description (DTD) file can be 
used stand-alone or in conjunction with the HTML DTD to create HTML/ICE 
templates to be used in Web Deployment Option web sites. 



Web Deployment Option XML Tag Set 

5–2     Web Deployment Option User Guide 

Web Deployment Option XML Macro Tag Format 

The format of a Web Deployment Option macro tag is as follows:  

<i3ce_tag[attributes]> 
<i3ce_child_tag[attributes]> 
</i3ce_child_tag> 
</i3ce_tag> 

In this syntax representation: 

 tag is a valid Web Deployment Option XML tag 

 child_tag is any XML tag that is legal in the context of the parent tag 

 attributes represents any attributes that are legal in the context of the tag 

Web Deployment Option Macro Tags 

The following Web Deployment Option macro tags are available and are 
described in more detail in the sections that follow: 

 <i3ce_commit> 

 <i3ce_declare> 

 <i3ce_extend> 

 <i3ce_function> 

 <i3ce_if> 

 <i3ce_include> 

 <i3ce_query> 

 <i3ce_rollback> 

 <i3ce_switch> 



Web Deployment Option XML Tag Set 

Chapter 5: Using the Macro Language    5–3 

Tag Hierarchy 

Some Web Deployment Option macro tags can contain children. The tag 
hierarchy is shown below: 

 

Notes:  

 “No children” indicates a leaf tag. This tag takes no content, and is an 
Empty Tag. Any information that needs to be supplied to the Web 
Deployment Option at this point is specified in the Tag Attributes.  



Macro Tags 

5–4     Web Deployment Option User Guide 

 “Any tag” is used to refer to any HTML or Web Deployment Option tag that 
would be legal in the current context. The i3ce_HTML tag uses this, for 
example, to allow flexibility in completing HTML elements. Since it 
effectively opens a loophole in the DTD and subverts the normal XML 
syntax checking, it should be used with caution!  

Macro Tags 
This section presents the syntax for each Web Deployment Option macro tag. 

<i3ce_commit> Tag 

Purpose 

Commits a previously started transaction. 

Syntax 

<i3ce_commit i3ce_transaction="transaction_name"/> 

Description 

The <i3ce_commit> tag commits the named transaction, transaction_name. 
The transaction name must have been defined previously using the 
i3ce_transaction attribute of the <i3ce_sql> tag. 

Example 
<i3ce_commit i3ce_transaction="myTransaction"/> 

See Also 

i3ce_query, i3ce_rollback 

<i3ce_declare> Tag 

Purpose 

Assigns a value to a named variable, enabling the value to be reused. 



Macro Tags 

Chapter 5: Using the Macro Language    5–5 

Syntax 

<i3ce_declare i3ce_name="variable_name" i3ce_value="value"  
      i3ce_scope="level"/> 

Description 

The ICE Server extends the availability of variables over standard HTML 
variables. HTML variables must be passed as part of the invoking URI. A 
reference to the HTML variable is replaced by the actual text when the Web 
Deployment Option parses the file. Web Deployment Option variables are more 
convenient in that they are maintained by the server and are not part of the 
Web Deployment Option address. Also, Web Deployment Option variables 
cannot have their values altered by a user changing the value in the Web 
Deployment Option address (URI) in the browser window. 

The following table lists the syntax elements used with the <i3ce_declare> 
macro tag: 

 

Syntax Element Description 

i3ce_name Specifies the name of a variable. 

i3ce_value Specifies the value assigned to the variable. 

i3ce_scope Specifies the lifetime of the variable. The available 
choices are: 

server—loaded when the ICE Server starts and 
available for use until the ICE Server is shut down. A 
server variable persists as long as the repository 
database is not deleted. 

session—available for use while the Web user is logged 
in and has not timed out. 

page—available for use anywhere in the document. 
Once the document has been passed back to the 
browser, the variable becomes invalid. 

Because all the variable lifetime values use the same name space, they are all 
accessed in the same way. For example: 

:ServerVariable 
:SessionVariable 
:PageVariable 



Macro Tags 

5–6     Web Deployment Option User Guide 

The declared variable can be used in a document by referring to it in a Web 
Deployment Option tag. Any variable can be used by preceding its name with 
the colon (:), but you cannot have a session-level variable with the same 
name as a server-level variable. This is why it is a good idea to establish a 
naming convention such as that suggested in the section Committing 
Transactions on the Home Page of the chapter “Creating Web Applications: An 
Example.” 

Example 

This example declares a page level variable containing the text: Static Text” 

<i3ce_declare i3ce_name="var1" i3ce_scope="page" i3ce_value="Static Text"/> 

This example declare a session level variable containing the contents of the 
variable anotherVariable: 

<i3ce_declare i3ce_name="var2" i3ce_scope="session" 
i3ce_value=":anotherVariable"/> 

See Also 

<i3ce_var> 

<i3ce_extend> Tag 

Purpose 

This tag enables the page designer to intermix HTML elements with Web 
Deployment Option elements to extend the functionality provided by the Web 
Deployment Option. The <i3ce_extend> tag is able to incorporate any content 
whenever it is used. The designer can use this to take closer control over the 
HTML that is generated by the Web Deployment Option. As a result it is up to 
the designer to ensure that the resultant HTML is syntactically correct. 



Macro Tags 

Chapter 5: Using the Macro Language    5–7 

Syntax 
<i3ce_extend i3ce_tagName="tag_to_be_inserted">  
       <i3ce_Attributes>  
              <i3ce_Attribute>  
                     <i3ce_AttributeName>tag_attribute_name</i3ce_Attribute
Name>  
                     <i3ce_AttributeValue>tag_attribute_value</i3ce_Attribute
Value>  
              </i3ce_Attribute>  
       </i3ce_Attributes>  
       <i3ce_Children>  
              <i3ce_Child>child</i3ce_Child>  
       </i3ce_Children> 
</i3ce_extend> 

Description 

Use the <i3ce_extend> element to build custom designed HTML constructs or 
even constructs that would be illegal at design time but legal once Web 
Deployment Option has processed the page. You must take great care using 
this element. The tag that is to be inserted is named in the i3ce_tagName 
attribute. This tag can have attributes and children. The children can be other 
tags or text. Attributes are further specified by setting both name and value 
using the <i3ce_AttributeName> and <i3ce_AttributeValue> tags, 
respectively. Any children or text can be individually inserted in the children 
list one per child element in the <i3ce_children> and <i3ce_child> tags 
respectively. 

Example 

The following example introduces an HTML anchor tag, which links to the 
Ingres home page on the Internet. The link is customized by giving it a red 
background. 

<i3ce_extend i3ce_tagName="A">  
 <i3ce_Attributes>  
  <i3ce_Attribute>  
   <i3ce_AttributeName>HREF</i3ce_AttributeName>  
   <i3ce_AttributeValue>http://www.ingres.com</i3ce_AttributeValue>  
  </i3ce_Attribute>  
  <i3ce_Attribute>  
   <i3ce_AttributeName>bgcolor</i3ce_AttributeName>  
   <i3ce_AttributeValue>"red"</i3ce_AttributeValue>  
  </i3ce_Attribute>  
 </i3ce_Attributes>  
 <i3ce_Children>  
  <i3ce_Child>Link to Ingres home page</i3ce_Child>  
 </i3ce_Children> 
</i3ce_extend> 



Macro Tags 

5–8     Web Deployment Option User Guide 

See Also 

<i3ce_query> 

<i3ce_function> Tag 

Purpose 

Invokes the specified Web Deployment Option user extension function. 

Syntax 

<i3ce_function i3ce_name="function_name"  
       i3ce_location="library_name" 
       [<i3ce_parameters> 
              <i3ce_parameter i3ce_name="parameter_name"  
              i3ce_value="parameter_value"/>... 
       </i3ce_parameters> ] 
       [<i3ce_HTML>markup_text_with_variables </i3ce_HTML>] 
</i3ce_function> 

Description 

The following table lists the syntax elements used with the <i3ce_function> 
tag: 

 

Syntax  Element Description 

i3ce_name Specifies the name of the function. 

i3ce_location Specifies the name of the library containing the function. 
It can be either a DLL (on Windows) or shared library 
(on UNIX). 

i3ce_name Specifies the name of a parameter being passed to the 
function. 

i3ce_value Specifies the value assigned to the parameter. 

<i3ce_HTML> Specifies any allowable markup text. A format string 
containing markup tags and column names. This option 
provides the ability to describe a line of markup 
language syntax and embed within it variable 
placeholders. 



Macro Tags 

Chapter 5: Using the Macro Language    5–9 

Example 
<i3ce_function i3ce_name="func1"  
 i3ce_location="lib1"> 
 <i3ce_parameters> 
  <i3ce_parameter i3ce_name="p1" i3ce_value="v1"/> 
  <i3ce_parameter i3ce_name="p2" i3ce_value="v2"/>  
 </i3ce_parameters>  
 <i3ce_HTML> 
  <p>Random HTML & text including Web Deployment Option variables. e.g.: 
:p2, :p1</p> 
 </i3ce_HTML>  
</i3ce_function> 

See Also 

<i3ce_query>, <i3ce_function> 

<i3ce_if> Tag 

Purpose 

Evaluates a conditional expression. 

Syntax 

<i3ce_if> <i3ce_condition i3ce_condop="conditional_operator" 
       i3ce_condlhs="left_hand_side" i3ce_condrhs="right_hand_side"/> 
       <i3ce_then> 
              … 
              Text for then-branch 
              … 
       </i3ce_then> 
       [<i3ce_else> 
              … 
              Text for else-branch 
              … 
       <i3ce_else>] 
<i3ce_if> 



Macro Tags 

5–10     Web Deployment Option User Guide 

Description 

The <i3ce_if tag> can test the value of a conditional expression. It has three 
child tags, <i3ce_condition>, <i3ce_then>, and <i3ce_else>. The first two 
tags are mandatory, and the last one is optional. The <i3ce_condition> tag 
has three attributes to specify a conditional expression. Depending on the 
results of evaluating this expression, either the <i3ce_then> or the 
<i3ce_else> branch is activated. The <i3ce_condition> tag attributes are 
described in the table below. 

The following table lists the syntax elements used with the <i3ce_if macro> 
tag: 

 

Syntax Element Description 

i3ce_condop Specifies a conditional operator, one of “==”, 
“!=”, “ <”, or “>”  

i3ce_condlhs Specifies the left-hand side of the conditional 
expression. 

i3ce_condrhs Specifies the right-hand side of the conditional 
expression. 

<i3ce_then> Specifies the text that is activated if the condition 
evaluates to “true”. 

<i3ce_else> Specifies the text that is activated if the condition 
evaluates to “false”. 

Comparisons are performed as string compares.  

 

Comparison Operator Description 

= = Equal 

!= Not equal 

< Less than 

> Greater than 

> Greater than 



Macro Tags 

Chapter 5: Using the Macro Language    5–11 

Example 
<i3ce_if> <i3ce_condition i3ce_condop = "==" i3ce_condlhs=":VariableA"  
 i3ce_condrhs="String"/> 
  <i3ce_then>The expression evaluates to true, the variable 'VariableA' 
   contains the text 'String'.</i3ce_then> 
  <i3ce_else>The expression evaluates to false.</i3ce_else> 
</i3ce_if> 

<i3ce_if> <i3ce_condition i3ce_condop="=="i3ce_condlhs=":var1" 
i3ce_condrhs=":p1"/> 
 <i3ce_then> then text 
 </i3ce_then>  
 <i3ce_else> else text 
 </i3ce_else> 
</i3ce_if> 

See Also 

<i3ce_switch> 

<i3ce_include> Tag 

Purpose 

Includes a specified fragment/page or macro fragment/page into the current 
document. 

Syntax 

<i3ce_include i3ce_name="document_name"  
       i3ce_location="business_unit_name"  
       i3ce_process="true"|"false"> 
       <i3ce_parameters> 
              <i3ce_parameter i3ce_name="parameter_name"  
              i3ce_value="parameter_value"/> 
       </i3ce_parameters> 
</i3ce_include> 

Description 

The <i3ce_include> tag enables you to include other Web Deployment Option 
macro documents into the current document. This promotes code reuse: you 
could, for example, design a common menu to be included on every page. You 
could collect variable definitions into a single page and include that at the start 
of a user’s session. Furthermore, you can pass parameters on to the document 
that is being included; this allows you to pass parameters to the included 
document thus altering its behavior. 



Macro Tags 

5–12     Web Deployment Option User Guide 

The following table lists the syntax elements used with the <i3ce_include> 
tag: 

 

Syntax Element Description 

i3ce_name Specifies the name of the document to be included. 

i3ce_location Specifies the name of the business unit containing the 
document to be included. 

i3ce_process If “true” is specified, the include file will also be processed 
by Web Deployment Option, interpreting any macros as 
required. If “false” is specified, the include file will not be 
processed by Web Deployment Option. 

i3ce_name Specifies the name of a parameter being passed to the 
included document. 

i3ce_value Specifies the value assigned to the parameter. 

Example 

This example shows the cascading style sheet file that is included in most of 
the documents within the plays business unit: 

<i3ce_include i3ce_name="play_styleSheet.css" i3ce_location="plays">  
 <i3ce_parameters></i3ce_parameters> </i3ce_include>  

The following code sample is included in most of the Globe Shop documents. It 
displays an action bar that has various parts activated under parameter 
(variable) control: 

<i3ce_include i3ce_name="play_shopAction-h.HTML" i3ce_location="plays"> 
 <i3ce_parameters><i3ce_parameter i3ce_name="View" i3ce_value="Yes"/> 
 </i3ce_parameters> 
</i3ce_include> 

SeeAlso 

i3ce_function 



Macro Tags 

Chapter 5: Using the Macro Language    5–13 

<i3ce_query> Tag 

Purpose 

Executes the SQL query provided and returns the result as specified. 

Syntax 

<i3ce_query  
       [i3ce_database="database_name"] 
       [i3ce_vnode="vnode_name"] 
       [i3ce_class="connection_class"] 
       [i3ce_user="user_name"] 
       [i3ce_password="password"]> 
       <i3ce_sql  
              [i3ce_transaction="transaction_name"] 
              [i3ce_cursor="cursor_name"]> 
              <i3ce_statement>SQL_statement</i3ce_statement> 
              [<i3ce_rowsPerRequest i3ce_rowcount="row_number"/>] 
              [<i3ce_links>  
                     <i3ce_link i3ce_column="link_column_name"  
                            i3ce_target="link_target_URI"/>  
                            ... 
              </i3ce_links>] 
              [<i3ce_headers> 
                     <i3ce_header i3ce_column="relation_column_name"  
                     i3ce_text="replacement_name_for_column"/> 
                     ... 
              </i3ce_headers> ]  
              [<i3ce_attribute>HTML_attribute_specification 
</i3ce_attribute>]  
              [<i3ce_extension i3ce_name="file_extension"/>]  
              [<i3ce_nullvar i3ce_value="value_for_NULLS_on_insert"/>] 
              [<i3ce_relation_display i3ce_typename= 
                     "i3ce_table"| "i3ce_selector" | "i3ce_plain" |  
                     "i3ce_unformatted" | "i3ce_xml" | "i3ce_xmlpdata"/> ] 
       </i3ce_sql>  
</i3ce_query>  

Description 

The i3ce_query element allows the user to specify an SQL statement. The 
parent i3ce_query element contains an i3ce_statement tag, which contains the 
query text. The <i3ce_query> statement contains a number of attributes that 
are used to specify options other than the current defaults. 



Macro Tags 

5–14     Web Deployment Option User Guide 

Web Deployment Option executes the SQL statement and formats the results 
as specified by the i3ce_typename attribute of the <i3ce_relation_display> 
tag. If the statement is not a select, a message is displayed. The message can 
be specified using the ii_success_message and ii_error_message HTML 
variables. The SQL statement can contain parameter markers of the form 
:variable, where variable is a defined HTML variable. HTML variables are 
defined using the <INPUT> tag. Note that variables set in an HTML form are 
not defined until that form is submitted; variables defined in a form on the 
same page as a Web Deployment Option macro will not be defined. 

The following table lists the syntax element used with the <i3ce_query> 
macro tag: 

 

Syntax Element Description 

i3ce_database Specifies the database to which the query will be directed. 

i3ce_vnode Specifies the vnode to which the query will be directed. This element is used 
in combination with the i3ce_database attribute. 

i3ce_class Specifies the name of one of the Ingres servers or Enterprise Access 
products. See the Standard Command Line Flags and Parameters section in 
the Command Reference Guide. 

i3ce_user Specifies the name of the Web Deployment Option database user with which 
to associate the query. Web Deployment Option maps this user name to an 
actual Ingres user to run the query. See Database Users in the chapter 
“Managing the Web Deployment Option.”  

This option must be specified with the i3ce_password attribute as a pair. 

Note: This option is provided for backward compatibility with Ingres/ICE 2.0 
and is depreciated. 

i3ce_password Specifies the password for the user specified with the i3ce_user attribute. 

Note: This option is provided for backward compatibility with Ingres/ICE 2.0 
and is depreciated. 

i3ce_transaction Specifies a unique name for a transaction. 

See the i3ce_transaction option description in this section for more 
information. 

i3ce_cursor Specifies a unique name for a cursor. If not used, a cursor is created by 
specifying the number of rows required (using the <i3ce_typename> tag). 

This option can only be specified when associated with a transaction (that is, 
the i3ce_transaction attribute is also specified). There is a limitation of one 
cursor per transaction. 

See the i3ce_cursor option description in this section for more information. 



Macro Tags 

Chapter 5: Using the Macro Language    5–15 

Syntax Element Description 

<i3ce_statement> Specifies one or more SQL statements. 

<i3ce_rowsPerRequest
> 

Specifies the number of rows for retrieval with the cursor. 

<i3ce_links> Generates a hypertext link to the URI for each item in the column.   

This option can only be specified when the i3ce_typename attribute is not 
set to “i3ce_unformatted”. 

See the i3ce_link option description in this section for more information. 

<i3ce_headers> Allows the definition of the text used in column headers. By default, the 
relational table column name is used. 

This option can only be specified when the i3ce_typename attribute is not 
set to “i3ce_unformatted”. 

<i3ce_attribute> Specifies a string representing any valid HTML attribute in the context of the 
i3ce_typename option. 

This option can only be specified when the i3ce_typename attribute is not 
set to “i3ce_unformatted”. 

See the <i3ce_attribute> option description in this section for more 
information. 

<i3ce_extension> Specifies an extension that overrides the extension used for the temporary 
file when referring to a binary object. It is only valid when the output of a 
query contains a single column of binary objects. 

This option applies to all extracted binary columns. 

<i3ce_nullvar> Specifies the text that should be used when retrieving data from a table and 
the column contains NULL values. 

<i3ce_relation_display> Specifies the type of HTML formatting for the output. 

See the i3ce_typename option description in this section for information on 
the valid choices. 

<i3ce_HTML> Specifies a format string containing markup tags and column names. 

When using this option, the i3ce_typename attribute must be set to 
“i3ce_unformatted”. 

See the <i3ce_HTML> option description in this section for more 
information. 

 



Macro Tags 

5–16     Web Deployment Option User Guide 

i3ce_typename 
Option 

The i3ce_typename option specifies the type of HTML formatting for the 
output. The valid values are: 

 i3ce_table (default)—formats the result rows as an HTML table. The 
column headers are the names of the result columns. Each table cell 
contains a single item in the result set. If the result set contains Binary 
Large Objects (BLOBs), Web Deployment Option writes the BLOBs to 
temporary files and generates <IMG> tags to refer to them, indicating 
that the files contain image data. This output type supports the 
<i3ce_links> option. 

 i3ce_selector—formats the results using the HTML SELECT tag. If the 
query contains multiple columns, the columns in each row are 
concatenated. This output type does not support the <i3ce_links>option. 

 i3ce_plain—formats each row of the result set as a paragraph. If the result 
set contains BLOBs, Web Deployment Option writes the BLOBs to 
temporary files and generates <IMG> tags to refer to them, indicating 
that the files contain image data. This output type is particularly useful for 
placing images on a page. This output type supports the <i3ce_links> 
option. 

 i3ce_unformatted—outputs the data with no HTML formatting or 
separators. If the result set contains BLOBS, Web Deployment Option 
writes the BLOBs to temporary files and places the URIs of the files on the 
output page. This output type is useful when you want to embed 
references to BLOBs in another HTML tag, for example, to fetch a 
background image for a page from a database. This output type does not 
support the <i3ce_links> option. 

 i3ce_xml—XML generated from the query is formatted according to the 
Ingres DTD and XML literal characters are converted into CDATA.  

 i3ce_xmlpdata—XML generated from the query is formatted according to 
the Ingres DTD. The data is not processed and it is the responsibility of the 
developer to ensure the generated output is well formed and valid. 

i3ce_transaction 
Attribute 

The i3ce_transaction attribute allows the association of a name with a 
transaction. 

When writing Web Deployment Option queries, “auto commit” is the default 
action. Queries are committed if they complete successfully. With applications 
that require browsing and selecting items from a list (like a shopping cart), it 
is necessary to maintain a transaction over many pages and only commit the 
transaction when the user has finished. A transaction is terminated with either 
the <i3ce_commit> or the <i3ce_rollback> option with the transaction name. 

i3ce_cursor Attribute The i3ce_cursor attribute specifies a unique name for a cursor. When used, a 
named cursor is created which allows the full result set to be displayed page-
by-page until the transaction is ended. If not specified, an anonymous cursor 
is created and which is closed when the rows have been returned. 



Macro Tags 

Chapter 5: Using the Macro Language    5–17 

Using this attribute, the number of rows on a page is defined by the Web 
author. This reduces the volume of data that is transmitted and the amount of 
time the browser spends waiting for the data. 

<i3ce_links> Element The i3ce_links element contains a list of i3ce_link elements. Each i3ce_link 
element has two attributes, i3ce_column and i3ce_target. Each column 
(specified by i3ce_column) can by linked with a URL target (specified by 
i3ce_target) and the contents of the column are passed as a variable to the 
target. The variable name is an HTML variable name and the value is the value 
of the named column for the current (or chosen) row (from the DTD file). 

<i3ce_attribute> 
Element 

The <i3ce_attribute> element allows the user to change the appearance of 
the page by specifying HTML attributes that will be applied to the generated 
HTML. The Web Deployment Option does not parse the value—it simply 
passes it through to the output page. 

Valid children for the i3ce_attribute element include any HTML that is legal in 
the context of the specified output type, specified by the i3ce_typename 
attribute: 

 

Value of i3ce_typename Attribute Use of <i3ce_attribute>Value 

i3ce_table Specify the table border width, color, cell 
spacing, alignment, or any of the other 
HTML table attributes. 

i3ce_selector Specify the name of the HTML variable 
into which the browser will place the 
selected value. 

i3ce_plain Specify the attributes for image output. 

i3ce_unformatted Not available. 

 

<i3ce_HTML> Option The <i3ce_HTML> option allows the developer to include a line of HTML or 
markup language with embedded variable placeholders. This enables a 
developer to program using HTML tools that provide WYSIWYG rendering. 
The Web Deployment Option macros can then be added using the HTML 
already generated. 

This removes dependence of Web Deployment Option on knowledge of HTML 
or other markup syntax when building output. 



Macro Tags 

5–18     Web Deployment Option User Guide 

Example 

The following example selects all columns from the table plays in the iceTutor 
database. It creates a transaction and a cursor. It retrieves 5 rows at a time 
and formats them into an HTML table. 

<i3ce_query i3ce_database="iceTutor"> 
 <i3ce_sql i3ce_transaction="myTransaction" i3ce_cursor="myCursor"> 
  <i3ce_statement> 
   select * from plays 
  </i3ce_statement> 
  <i3ce_rowsPerRequest i3ce_rowcount="5"/> 
  <i3ce_relation_display i3ce_typename="i3ce_table"/> 
 </i3ce_sql> 
</i3ce_query>  

This example code selects the play, performed date, and author name from 
the plays table. It creates links based on the author and play names to the 
template files Authors.HTML and play_types.HTML, respectively. It also 
changes the header of the ‘performed’ column to be “Date of First 
Performance”. The attribute tag sets the table border width to be “3”.  

<i3ce_query i3ce_database="playsdb" i3ce_vnode="globe"  
  i3ce_user="user_name" i3ce_password="password">  
 <i3ce_sql i3ce_transaction="Complete" i3ce_cursor="Works"> 
 <i3ce_statement> 
  select name as 'Play Name', performed, playwright as 'Author', type 
  from plays 
 </i3ce_statement> 
 <i3ce_rowsPerRequest i3ce_rowcount="5"/>  
 <i3ce_links>  
  <i3ce_link i3ce_column="Author" i3ce_target=  
  "http://www.globe.com/ice-bin/oiice.dll/Author_gp[Authors.HTML]"/> 
  <i3ce_link i3ce_column="type" i3ce_target="plays[play_types.HTML]"/>  
 </i3ce_links>  
 <i3ce_headers> 
  <i3ce_header i3ce_column="performed" i3ce_text="Date of First  
   Performance"/>  
 </i3ce_headers> 
 <i3ce_attribute>border=3</i3ce_attribute> 
 <i3ce_relation_display/> 
 </i3ce_sql> 
</i3ce_query>  

See Also 

<i3ce_commit>, <i3ce_rollback>, <i3ce_function>, <i3ce_include> 



Macro Tags 

Chapter 5: Using the Macro Language    5–19 

<i3ce_rollback> Tag 

Purpose 

Rolls back a previously started transaction. 

Syntax 

<i3ce_rollback i3ce_transaction="transaction_name"/> 

Description 

The <i3ce_rollback> tag rolls back the transaction specified by 
transaction_name. The transaction name must have been defined previously 
using the i3ce_transaction option of the <i3ce_sql> tag. 

Note: This is the default action for a session that times out. 

Example 
<i3ce_rollback i3ce_transaction="myTransaction"/> 

See Also 

<i3ce_query>, <i3ce_commit> 

<i3ce_switch> Tag 

Purpose 

Tests the value of an expression against a number of constant values and 
executes an associated expression based on the value that matches. 

Syntax 

<i3ce_switch i3ce_value="switch_expression">  

       <i3ce_case i3ce_value="constant1">Action for case 1</i3ce_case>  
       ...  

       <i3ce_case i3ce_value="constantn">Action for case n</i3ce_case>  
       <i3ce_default>Action for default case</i3ce_default> 
</i3ce_switch> 



Macro Tags 

5–20     Web Deployment Option User Guide 

Description 

The following table lists the syntax elements used with the <i3ce_switch> 
macro tag: 

 

Syntax Element Description 

switch_expression The value you want to compare to the constant values. 
It is usually an expression containing one or more 
variables. 

constantn A constant value to be compared to switch_expression.

action for case n An action for the particular case. It can be any markup 
text, including variables or Web Deployment Option 
XML language commands. 

action for default 
case 

The default action, if none of the compared values 
match switch_expression. 

Example 
<i3ce_switch i3ce_value=":shape">  
 <i3ce_case i3ce_value="T">Triangle </i3ce_case>  
 <i3ce_case i3ce_value="S">Square </i3ce_case>  
 <i3ce_case i3ce_value="P">Pentagon </i3ce_case>  
 <i3ce_default>Circle </i3ce_default>  
</i3ce_switch> 

See Also 

<i3ce_if> 

<i3ce_var> Tag  

Purpose 

Replaces a variable within a string with its actual value. 

Syntax 

<i3ce_var i3ce_name="variable_name"/>  



Macro Statements 

Chapter 5: Using the Macro Language    5–21 

Description 

This tag can be used to replace the named variable, variable_name, with its 
textual value. 

Example 
<i3ce_var i3ce_name="myVariable"/> 

See Also 

<i3ce_declare> 

Macro Statements 
The Web Deployment Option allows macro statements to be embedded in 
HTML documents, specifying SQL statements that are executed and whose 
result sets are automatically formatted by Web Deployment Option.  

Macro Statement Format 

The format of a Web Deployment Option macro statement is as follows:  

<!-- #ICE [keyword=`value`] --> 

In this syntax representation: 

 “<!--” and “-->” are the HTML comment delimiters 

 #ICE is the Web Deployment Option macro marker 

 keyword is a valid Web Deployment Option keyword 

 value is the value assigned to the keyword, delimited by grave (back) 
quotes (`) 

Web Deployment Option macros can be embedded anywhere in an HTML 
document. Because they are always contained within the HTML comment 
delimiters, Web Deployment Option macros remain valid in all HTML 
documents. 

By using a grave quote as the delimiter, you are free to include both single (') 
and double quote (") characters in the values of macro language keywords. If 
you need to include a grave quote character in a macro value, double the 
grave quote character (``). 



Macro Keywords 

5–22     Web Deployment Option User Guide 

Note: All keywords except for SQL and VAR require a session.  However, there 
are certain options for the SQL keyword that do require a session. For 
information about these SQL options, see the SQL Keyword in this chapter. 

Macro Keywords 

The following macro language keywords are available and are described in 
more detail in the sections that follow: 

 COMMIT 

 DECLARE 

 FUNCTION 

 IF 

 INCLUDE 

 ROLLBACK 

 SQL 

 SWITCH 

 VAR 

Macro Keywords 
This section presents the syntax for each Web Deployment Option macro 
keyword. 

COMMIT Keyword 

Purpose 

Commits a previously started transaction. 

Syntax 

<!-- #ICE COMMIT=`transaction_name`--> 

Description 

The COMMIT keyword commits the transaction specified by transaction_name. 



Macro Keywords 

Chapter 5: Using the Macro Language    5–23 

The transaction name must have been defined previously using the 
TRANSACTION option of the SQL keyword. 

Example 
<!-- #ICE COMMIT=`myTransaction` --> 

See Also 

SQL keyword, ROLLBACK keyword 

DECLARE Keyword 

Purpose 

Assigns a value to a named variable, enabling the value to be re-used. 

Syntax 

<!-- #ICE [REPEAT] DECLARE=`[level.]variable_name=value` --> 

Description 

The ICE Server extends the availability of variables over standard HTML 
variables. HTML variables must be passed as part of the invoking URI. A 
reference to the HTML variable is replaced by the actual text when Web 
Deployment Option parses the file. 

The Web Deployment Option variables are more convenient in that they are 
maintained by the server and are not part of the Web Deployment Option 
address (URI). Also, Web Deployment Option variables cannot have their 
values altered by a user changing the value in the Web Deployment Option 
URI within the browser address window. 

The following table lists the parameters used with the DECLARE keyword: 

 



Macro Keywords 

5–24     Web Deployment Option User Guide 

Parameter Description 

level The lifetime of the variable. The valid values are: 

server—loaded when the ICE Server starts and available 
for use until the ICE Server is shut down. A server 
variable persists as long as the repository database is not 
deleted. 

session—available for use while the Web user is logged in 
and has not timed out. 

page—available for use anywhere within the document. 
Once the document has been passed back to the browser, 
the variable becomes invalid. 

variable_name The name of a variable. 

value The value assigned to the variable. 

Because all the variable lifetime values use the same name space, they are all 
accessed in the same way. For example: 

:ServerVariable 
:SessionVariable 
:PageVariable 

The declared variable can be used within a document by referring to it in a 
Web Deployment Option macro. Any variable can be used by preceding its 
name with the colon (:), but you cannot have a session-level variable with the 
same name as a server-level variable. This is why it is a good idea to establish 
a naming convention such as that suggested in the section Committing 
Transactions on the Home Page of the chapter “Creating Web Applications: An 
Example.”  

REPEAT Option The REPEAT option allows the recursive parsing of macros. This allows multiple 
queries and macros to be embedded within a single macro. It must be used in 
conjunction with another macro option and has no meaning when used on its 
own. 

Since the grave quote (`) and the colon (:) characters are used as delimiters, 
they must be duplicated when used with the REPEAT option. This option has 
the effect of disabling the delimiting effect when used with the REPEAT option 
to preserve the delimiting effect. 

Note: The REPEAT option must be used carefully with the DECLARE keyword. It 
implies that further macros must be resolved, the results of which will be used 
by the DECLARE keyword. It is possible to declare variables containing large 
strings or to issue a repeated declare that recurses and takes memory. All 
declared information will permanently reside in memory. 



Macro Keywords 

Chapter 5: Using the Macro Language    5–25 

Examples 
<!-- #ICE DECLARE=`page.myVar=static string` --> 
<!-- #ICE DECLARE=`page.myVar=:anotherVariable` --> 
<!-- #ICE DECLARE=`page.myVar=:anotherVariable +  
 static string` --> 
<!-- #ICE DECLARE=`session.myVar=static string` --> 
<!-- #ICE DECLARE=`session.myVar=:anotherVariable`--> 
<!-- #ICE REPEAT DECLARE=`session.myRepeatVar==`<!-- #ICE SQL=``select BgColor 
 from Style where Style_id = 4`` -->` 

FUNCTION Keyword 

Purpose 

Invokes the specified Web Deployment Option extension function or server 
function. 

Syntax 

For Extension 
Functions 

<!-- #ICE [REPEAT] FUNCTION= 
       `[library_name.]function_name?{variable_name=value}[&...]` 
       [HTML=`HTML text with variables`] 
--> 

For Server Functions <!-- #ICE [REPEAT]  
       FUNCTION=`server_function_name?action=action 
              [&property=value][{&property=value}]` 
--> 

Description 

Parameters The following table lists the parameters used with the FUNCTION keyword: 

 

Parameter Description 

library_name The name of the library containing the function. It 
can be either a DLL (on Windows NT) or shared 
library (on UNIX). 

Note: This parameter should not be included when 
specifying server functions. 

function_name The name of the function. 

variable_name The name of a variable being passed to the function.



Macro Keywords 

5–26     Web Deployment Option User Guide 

Parameter Description 

value The value assigned to the variable. For server 
functions, value is only specified if the requested 
action/property combination is associated with an 
output value. 

action For ICE Server functions, specifies the query 
operation to be executed. Possible values include 
select, retrieve, insert, update, and delete, 
depending on the function. (For valid action 
parameters, see “Appendix D: ICE Server 
Functions.”) 

property The ICE Server parameter to which the action 
applies. (For valid property values, see “Appendix D:
ICE Server Functions.”) 

HTML text with 
variables 

Any allowable HTML text. A format string containing 
markup tags and column names. This option 
provides the ability to describe a line of HTML or 
markup language syntax and embed within it 
variable placeholders. 

Also, for a description of the possible functions and variables that can be used 
with the FUNCTION keyword to access the ICE Server, see “Appendix D: ICE 
Server Functions.” Server functions can also be invoked through the Web 
Deployment Option C API; for more information, see “Chapter 7: Using the C 
API.” 

REPEAT Option The REPEAT option allows the recursive parsing of macros. This allows multiple 
queries and macros to be embedded within a single macro. It must be used in 
conjunction with another macro option and has no meaning when used on its 
own. 

Since the grave quote (`) and the colon (:) characters are used as delimiters, 
they must be duplicated when used with the REPEAT option. This option has 
the effect of disabling the delimiting effect when used with the REPEAT option 
to preserve the delimiting effect. 

Example 

The following example invokes the “unit” ICE Server function, which changes 
the play’s unit ID to 3 and unit name to Shakespeare: 

<!-- #ICE FUNCTION=`unit?action= 
 update&unit_id=3&unit_name=Shakespeare` 
--> 



Macro Keywords 

Chapter 5: Using the Macro Language    5–27 

IF Keyword 

Purpose 

Evaluates a conditional expression. 

Syntax 

<!-- #ICE [REPEAT]  
              IF `condition`  
              THEN=`...` 
              [ELSE=`...`] 
--> 

Description 

Parameters The following table lists the parameters used with the IF keyword: 

 

Parameter Description 

condition A single or a compound conditional expression where: 

condition = comparison {AND | OR}  
 comparison 

and: 

comparison = `...` { == | != | < | > }  
 `...` or DEFINED(variable_name) 

Conditional expressions are available to allow HTML output that is dependent 
on the result of an expression. An expression is composed of one or more 
comparisons. Comparisons are performed as string compares. The comparison 
operators are: 

 

Comparison Operator Description 

== Equal 

!= Not equal 

< Less than 

> Greater than 

Multiple comparisons are expressed using logical operators: 

 



Macro Keywords 

5–28     Web Deployment Option User Guide 

Logical Operator Description 

AND Logical AND 

OR Logical OR 

 

Existence Function Description 

DEFINED(variable_name) Returns true if variable_name is defined. 

REPEAT Option For information on the REPEAT option, see the FUNCTION Keyword in this 
chapter. 

Examples 
<!-- #ICE IF ( `:VariableA` == `String` ) 
 THEN=`<b>The expression evaluates to true.</b>` 
 ELSE=`<b>The expression evaluates to false.</b>` 
--> 

<!-- #ICE IF (DEFINED(VariableA)) 
 THEN=`<b>The variable exists</b>` 
 ELSE=`<b>The variable doesn’t exist.</b>` 
--> 

<!-- #ICE REPEAT IF (`:ii_status_number` == `0`) 
 THEN=`<!-- #ICE INCLUDE=``success.HTML`` -->` 
--> 

See Also 

SWITCH keyword 

INCLUDE Keyword 

Purpose 

Includes a Web Deployment Option HTML or macro document into the current 
document. 

Syntax 

<!-- #ICE [REPEAT] INCLUDE=`[business_unit_name 
              '[']document_name[']']?{variable_name=value}[&...]` 
              [TYPE=`HTML|MULTI|REPORT|EXE`] 
--> 



Macro Keywords 

Chapter 5: Using the Macro Language    5–29 

Description 

Parameters The following table lists the parameters used with the INCLUDE keyword: 

 

Parameter Description 

business_unit_name The name of the business unit containing the document 
to be included. 

document_name The name of the document to be included. 

variable_name The name of the variable. 

value The value assigned to the variable. 

TYPE Option The TYPE option is used to distinguish the action the ICE Server should take 
when processing the included file. This allows reuse of common component 
documents. 

There are four selections when using the TYPE option with the INCLUDE 
keyword: 

 HTML (pages) 

This is the default option. When you include a page, the document can 
access every page variable defined in the current page.  You can add new 
parameters in the include call. If you include a page with no REPEAT, the 
user must be granted read permission for this document. If you include a 
page with a REPEAT, the user must be granted execute and read 
permissions for this document. 

 MULTI (facets) 

To include a facet, the user must be granted the execute permission for 
the document. 

 REPORT (reports) 

 EXE (applications) 

REPEAT Option For information on the REPEAT option, see the FUNCTION Keyword in this 
chapter. 

Examples 

This example shows the cascading style sheet file that is included in most of 
the documents within the plays business unit: 

<!-- #ICE INCLUDE=`plays[play_styleSheet.css]` 
 TYPE=`MULTI` --> 



Macro Keywords 

5–30     Web Deployment Option User Guide 

The following code sample is included in most of the Globe Shop documents. It 
displays an action bar that has various parts activated under parameter 
(variable) control: 

<!-- #ICE REPEAT INCLUDE= 
 `plays[play_shopAction_h.HTML]?View=Yes`--> 

ROLLBACK Keyword 

Purpose 

Rolls back a previously started transaction. 

Syntax 

<!-- #ICE ROLLBACK=`transaction_name`--> 

Description 

The ROLLBACK keyword rolls back the transaction specified by 
transaction_name. 

The transaction name must have been defined previously using the 
TRANSACTION option of the SQL keyword. 

This is the default action for a session that times out. 

Example 
<!-- #ICE ROLLBACK=`myTransaction` --> 

See Also 

COMMIT keyword, SQL keyword 



Macro Keywords 

Chapter 5: Using the Macro Language    5–31 

SQL Keyword 

Purpose 

Executes the SQL query provided and returns the result as specified. 

Syntax 

<!-- #ICE [REPEAT] 
       SQL=`query`  
       [TYPE=`TABLE`|`SELECTOR`|`PLAIN`|`UNFORMATTED`| 
              `XML`|`XMLPDATA`] 
       [DATABASE=`database_name`] 
       [TRANSACTION=`transaction_name`] 
       [CURSOR=`cursor_name`] 
       [ROWS=`number_of_rows`] 
       [USER=`user_name`] 
       [PASSWORD=`password`] 
       [LINKS=`{column_name, URI}[,…]`] 
       [HEADERS=`{column_name, text}[,…]`] 
       [ATTR=`attribute`] 
       [EXT=`extension`] 
       [NULLVAR=`text`] 
       [HTML=`markup text with variables`] 
       [XML=`markup text with variables`] 
       [XMLPDATA=`markup text with variables`] 
--> 

Description 

The value of the SQL keyword, query, is specified by one or more SQL 
statements. The SQL keyword also provides a variety of options. The Web 
Deployment Option executes the SQL statements and formats the results as 
specified by the TYPE option. If the statement is not a select, a message is 
displayed. The message can be specified using the ii_success_message and 
ii_error_message HTML variables. 

The SQL statement can contain parameter markers of the form :variable, 
where variable is a defined HTML variable. HTML variables are defined using 
the <INPUT> tag. Note that variables set in an HTML form are not defined 
until that form is submitted; variables defined in a form on the same page as a 
Web Deployment Option macro will not be defined at the time the page is 
parsed by Web Deployment Option. 



Macro Keywords 

5–32     Web Deployment Option User Guide 

The TRANSACTION, CURSOR, and ROWS options to the SQL keyword require a 
session. A session is established when a user connects to and is authenticated 
by the ICE Server. The session lasts until either a timeout occurs or the user 
logs out. It is used by Web Deployment Option to maintain information about 
user context. 

Syntax Elements The following table lists the syntax elements used with the SQL keyword: 

 

Syntax Element Description 

query Specifies one or more SQL statements. 

TYPE Specifies the type of HTML formatting for the output. 

For information on the valid choices, see the TYPE option 
description in this section. 

DATABASE Specifies the database to which the query will be 
directed. 

TRANSACTION Specifies a unique name for a transaction. 

For more information, see the TRANSACTION option 
description in this section. 

CURSOR Specifies a unique name for a cursor. If not used, a 
cursor is created by specifying the number of rows 
required (using the ROWS option). 

This option can only be specified when associated with a 
transaction (that is, the TRANSACTION option is also 
specified). There is a limitation of one cursor per 
transaction. 

For more information, see the CURSOR option 
description in this section. 

ROWS Specifies the number of rows for retrieval with the 
cursor. 

USER Specifies the name of the Web Deployment Option 
database user with which to associate the query. The 
Web Deployment Option maps this user name to an 
actual Ingres user to run the query. See Database Users 
in the chapter “Managing the Web Deployment Option.” 

This option must be specified with the PASSWORD 
option.  

Note: This option is provided for backward compatibility 
with Ingres/ICE 2.0 and is depreciated. 



Macro Keywords 

Chapter 5: Using the Macro Language    5–33 

Syntax Element Description 

PASSWORD Specifies the password for the user specified with the 
USER option. 

Note: This option is provided for backward compatibility 
with Ingres/ICE 2.0 and is depreciated. 

LINKS Generates a hypertext link to the URI for each item in 
the column.   

This option can only be specified when TYPE is not 
UNFORMATTED. 

For more information, see the LINKS option description 
in this section. 

HEADERS Allows the definition of the text used in column headers. 
By default, the relational table column name is used. 

This option can only be specified when TYPE is not 
UNFORMATTED. 

ATTR Specifies a string representing any valid HTML attribute 
in the context of the TYPE option. 

This option can only be specified when TYPE is not 
UNFORMATTED. 

For more information, see the ATTR option description in 
this section. 

EXT Specifies an extension that overrides the extension used 
for the temporary file when referring to a binary object. 
It is only valid when the output of a query contains a 
single column of binary objects. 

This option applies to all extracted binary columns. 

NULLVAR Specifies the text that should be used when retrieving 
data from a table and the column contains NULL values. 

HTML Specifies a format string containing markup tags and 
column names. 

When using this option, the TYPE option must be set to 
UNFORMATTED. 

For more information, see the HTML option description in 
this section. 

XML Specifies a format string containing markup tags and 
column names. 

The variable data is processed and XML literal characters 
are converted into CDATA. 



Macro Keywords 

5–34     Web Deployment Option User Guide 

Syntax Element Description 

XMLPDATA Specifies a format string containing markup tags and 
column names. 

The variable data is not processed and any XML literal 
characters are left unchanged. It is the responsibility of 
the developer to ensure that the resulting generated XML 
is well formed and valid. 

TYPE Option The TYPE option specifies the type of HTML formatting for the output. The valid 
values are: 

 TABLE (default)—formats the result rows as an HTML table. The column 
headers are the names of the result columns. Each table cell contains a 
single item in the result set. If the result set contains Binary Large Objects 
(BLOBs), Web Deployment Option writes the BLOBs to temporary files and 
generates <IMG> tags to refer to them, indicating that the files contain 
image data. This output type supports the LINKS option. 

 SELECTOR—formats the results using the HTML SELECT tag. If the query 
contains multiple columns, the columns in each row are concatenated. This 
output type does not support the LINKS option. 

 PLAIN—formats each row of the result set as a paragraph. If the result set 
contains BLOBs, Web Deployment Option writes the BLOBs to temporary 
files and generates <IMG> tags to refer to them, indicating that the files 
contain image data. This output type is particularly useful for placing 
images on a page. This output type supports the LINKS option. 

 UNFORMATTED—outputs the data with no HTML formatting or separators. 
If the result set contains BLOBS, Web Deployment Option writes the 
BLOBs to temporary files and places the URIs of the files on the output 
page. This output type is useful when you want to embed references to 
BLOBs in another HTML tag, for example, to fetch a background image for 
a page from a database. This output type does not support the LINKS 
option. 

 XML—the XML generated from the query is formatted according to the 
Ingres DTD and XML literal characters are converted into CDATA. 

 XMLPDATA—the XML generated from the query is formatted according to 
the Ingres DTD. The data is not processed and it is the responsibility of the 
developer to ensure that the generated output is well formed and valid. 

TRANSACTION Option The TRANSACTION option allows the association of a name with a transaction. 

When writing Web Deployment Option queries, “auto commit” is the default 
action. Queries are committed if they complete successfully. With applications 
that require browsing and selecting items from a list (like a shopping cart), it 
is necessary to maintain a transaction over many pages and only commit the 
transaction when the user has finished. A transaction is terminated with either 
the COMMIT or the ROLLBACK option with the transaction name. 



Macro Keywords 

Chapter 5: Using the Macro Language    5–35 

CURSOR Option The CURSOR option specifies a unique name for a cursor. When used, a 
named cursor is created which allows the full result set to be displayed page-
by-page until the transaction is ended. If not specified, an anonymous cursor 
is created and which is closed when the rows have been returned. 

Using this option, the number of rows on a page is defined by the Web author. 
This reduces the volume of data that is transmitted and the amount of time 
the browser spends waiting for the data. 

LINKS Option The value of the LINKS option has the form `column_name,URI`. For 
example: 

`type,http://www.foo.com/typeinfo.HTML` 

This would generate links to the URI, http://www.foo.com/typeinfo.HTML, for 
each item in the type column in the result set. 

You can specify as many comma-separated column and URI pairs as you 
require. As Web Deployment Option processes the result set, for each item in 
a LINKS column, it generates a hyperlink tag to the specified URI for each item 
in the column. 

To enable the referenced page to determine which item was clicked on, Web 
Deployment Option sets an HTML variable. The variable has the same name as 
the column name, and its value is the value clicked on. The referenced page 
can use this variable, typically by making it a parameter in another SQL 
statement. You cannot generate links for a BLOB column. 

ATTR Option The ATTR option allows the user to change the appearance of the page by 
specifying HTML attributes that will be applied to the generated HTML. The 
Web Deployment Option does not parse the value—it simply passes it through 
to the output page. 

Valid values for the ATTR option include any HTML that is legal in the context 
of the specified output type, specified by the TYPE option: 

 

Value of TYPE Option Use of ATTR Option 

TABLE Specify the table border width, color, cell spacing, 
alignment, or any of the other HTML table attributes.

SELECTOR Specify the name of the HTML variable into which the 
browser will place the selected value. 

PLAIN Specify the attributes for image output. 

UNFORMATTED Not available. 



Macro Keywords 

5–36     Web Deployment Option User Guide 

HTML Option The HTML option allows the developer to include a line of HTML or markup 
language with embedded variable placeholders. This enables a developer to 
program using HTML tools that provide WYSIWYG rendering. The Web 
Deployment Option macros can then be added using the HTML already 
generated. 

This removes dependence of Web Deployment Option on knowledge of HTML 
or other markup syntax when building output. 

REPEAT Option For information on the REPEAT option, see the FUNCTION Keyword in this 
chapter. 

Examples 

Example 1 The following examples show several different uses of the SQL macro keyword 
and a sample of the source output: 

<!-- #ICE 
 SQL=`select * from icetable`  
 DATABASE = `iceTutorial`  
 TRANSACTION=`myTransaction`  
 CURSOR=`myCursor`  
 ROWS=`10`  
 TYPE=`TABLE` 
--> 

<!-- #ICE  
 SQL=`select * from icetable` 
 DATABASE = `iceTutorial`  
 TRANSACTION=`myTransaction`  
 CURSOR=`myCursor`  
 ROWS=`10`  
 TYPE=`TABLE` 
 HEADERS=`i_title,Category`  
 LINKS=`i_title,www.uri.com`  
 ATTR=`border=1`  
--> 

<!-- #ICE 
 SQL = `select title,lastname from  
  book,author,bookauthor where book.bookid =  
  bookauthor.bookid and bookauthor.authid =  
  author.authid` 
--> 



Macro Keywords 

Chapter 5: Using the Macro Language    5–37 

An example of the generated output produced by the ICE Server follows: 

<TABLE><TR> 
<TH>title</TH> 
<TH>lastname</TH> 
</TR> 
<TR> 
<TD>Hamlet 
<TD>Shakespeare 
</TR> 
<TR> 
<TD>Macbeth 
<TD>Shakespeare 
</TR> 
<TR> 
</TABLE> 

Example 2 This example shows how the LINKS option can be used in conjunction with the 
SQL macro keyword to produce a parameterized list of links: 

<!-- #ICE  
  DATABASE = `icetutor`  
  SQL=`select distinct type from plays`  
  TYPE=`PLAIN` 
  LINKS=`type,/ice-bin/oiice.dll/my_playgroup/ 
  my_plays[myplay_typeLinkSubSet.HTML]`  
--> 

The HTML generated by the ICE Server follows: 

<A HREF="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_typeLinkSubSet.HTML]?type=comedy"> 
 comedy</A> 

<A HREF="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_typeLinkSubSet.HTML]?type=history"> 
 history</A> 

<A HREF="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_typeLinkSubSet.HTML]?type=tragedy"> 
 tragedy</A> 

Example 3 The following example shows the results of the query formatted for XML 
according to the Ingres DTD. 

<!-- #ice database=`icetutor` 
 sql=`select * from plays` 
 type=`xml` 
--> 

The generated output produced follows: 

<?xml: version='1.0' ?> 

<resultset> 
<row> 
<column column_name="comporder">1</column> 
<column column_name="title">The Two Gentlemen of Verona</column> 
<column column_name="playwright">Shakespeare</column> 
<column column_name="performed">1598</column> 
<column column_name="acts">5</column> 
<column column_name="type">comedy</column> 
</row> 



Macro Keywords 

5–38     Web Deployment Option User Guide 

•<column column_name="comporder">37</column> 
<column column_name="title">Henry VIII</column> 
<column column_name="playwright">Shakespeare</column> 
<column column_name="performed">1613</column> 
<column column_name="acts">5</column> 
<column column_name="type">history</column> 
</row></resultset> 

Example 4 The following example shows the retrieval of XML data stored as a regular text 
field as child tags of an XML result set.  It is the responsibility of the developer 
to ensure that the generated XML is well-formed. 

<!-- #ice database=`icetutor` 
 sql=`select * from test` 
 type=`xmlpdata` 
--> 

The generated output produced follows: 

<?xml: version='1.0' ?> 

<resultset> 
<row> 
<column column_name="idx">1</column> 
<column column_name="xmltest"> 
<plays> 
<play> 
<comporder>1</comporder> 
<title>The Two Gentlemen of Verona</title> 
<playwright>Shakespeare</playwright> 
<performed>1598</performed> 
<acts>5</acts> 
<type>comedy</type> 
</play> 

<play> 
<comporder>5</comporder> 
<title>Titus Andronicus</title> 
<playwright>Shakespeare</playwright> 
<performed></performed> 
<acts>5</acts> 
<type>tragedy</type> 
</play> 
</plays> 
</column> 
</row> 
</resultset> 

Example 5 The following example shows the results of the query formatted for XML 
according to the defined markup: 

<plays> 
<!-- #ice database=`icetutor` 
 sql=`select comporder, title, playwright, performed, acts, type from plays` 
 xml=`<play> 
<comporder>:comporder</comporder> 
<title>:title</title> 
<playwright>:playwright</playwright> 
<performed>:performed</performed> 
<acts>:acts</acts> 
<type>:type</type> 
</play>` 
--> 
</plays> 



Macro Keywords 

Chapter 5: Using the Macro Language    5–39 

The generated output produced follows: 

<?xml: version='1.0' ?> 

<plays> 
<play> 
<comporder>1</comporder> 
<title>The Two Gentlemen of Verona</title> 
<playwright>Shakespeare</playwright> 
<performed>1598</performed> 
<acts>5</acts> 
<type>comedy</type> 
</play> 

<play> 
<comporder>37</comporder> 
<title>Henry VIII</title> 
<playwright>Shakespeare</playwright> 
<performed>1613</performed> 
<acts>5</acts> 
<type>history</type> 
</play> 
</plays> 

See Also 

COMMIT keyword, ROLLBACK keyword 

SWITCH Keyword 

Purpose 

Tests the value of an expression against a number of constant values and 
executes an associated expression based on the value that matches. 

Syntax 

<!-- #ICE [REPEAT]  
              SWITCH=`switch_expression` 
              CASE `constant1`=`result1` 
              CASE `constant2`=`result2` 
              … 
              CASE `constantn`=`resultn` 
              [DEFAULT=`default_result`] 
--> 

Description 

The following table lists the parameters used with the SWITCH keyword: 

 



Macro Keywords 

5–40     Web Deployment Option User Guide 

Parameter Description 

switch_expression The value you want to compare to the constant values. It 
is usually an expression containing one or more variables.

constantn A constant value to be compared to the 
switch_expression. 

resultn A resulting value. It can be any markup text, including 
variables and Web Deployment Option macro commands. 

default_result The default resulting value, if none of the compared 
values match the switch_expression. 

REPEAT Option For information on the REPEAT option, see the FUNCTION Keyword in this 
chapter. 

Example 

The following example results in the string “Pentagon” appearing in the 
document if the variable product is set to “P”: 

<!-- #ICE SWITCH= `:shape` 
 CASE `T`=`Triangle` 
 CASE `S`=`Ingres` 
 CASE `P`=`Pentagon` 
 DEFAULT=`Circle` 
--> 

See Also 

IF keyword 



Macro Keywords 

Chapter 5: Using the Macro Language    5–41 

VAR Keyword 

Purpose 

Replaces a variable within a string with its actual value. 

Syntax 

<!-- #ICE [REPEAT] VAR=`HTML text with variables` --> 

Description 

HTML text with variables is any allowable HTML text. Variables are denoted by 
preceding the variable name with a colon (:). 

This keyword can be used to read the specified variables and replace them 
with their actual values within a text string. 

REPEAT Option The REPEAT option causes a reparse of the resultant string after the variables 
have been inserted. This allows variables to contain macros or other variables. 
For information on the REPEAT option, see the FUNCTION Keyword in this 
chapter. 

Example 

In the Plays tutorial application, the HTML containing the VAR macro keyword 
appears as follows, using the variable e_orderNumber: 

<!-- #ICE VAR=`Your order number  
 <b>:e_orderNumber</b> will now be processed.<br> 
 Please quote this number in all correspondence`  
--> 

The application sets the e_orderNumber session variable to a character string 
that becomes part of the message to the customer. 

See Also 

DECLARE keyword 





  

Chapter 6: Creating Web Applications: An Example    6–1 

Chapter 6: Creating Web Applications: 
An Example 
 

In this chapter, you will learn how to create Web applications using Web 
Deployment Option and standard HTML programming concepts. You will learn 
how to recreate the Plays tutorial application. 

The chapter takes an in-depth look at some of the various steps you may go 
through in creating a Web Deployment Option application. To begin, we create 
some basic Web Deployment Option objects and HTML files, and register them 
with the ICE server. From there, we explain the programming concepts used in 
constructing the pages for the Plays application. 

Note: This chapter can be used in a variety of ways. It can be used as a 
tutorial, whereby you actually create the objects and files as you go—or you 
can simply follow along and learn about the features of Web Deployment 
Option. Alternatively, you may want to read certain sections only to apply 
specific concepts to your Web Deployment Option application. 

The following topics are covered: 

 Creating your application files and server location, and registering them 
with Web Deployment Option 

 Setting up security for Web Deployment Option using a variety of objects 
including a session group, business unit, database connection, and others 

 Designing the pages for your application, using the following Web 
Deployment Option programming features: 

– Automatic user account creation 

– SQL language support 

– Transaction support (commit/rollback) 

– Cursor support 

– Web Deployment Option native variables 

– Control flow statements 

– Automatic HTML code generation 

– Automatic hyperlink generation 

– Automatic HTML support for BLOBs (Binary Large OBjects) 

– Advanced security model 

– Fine-tuning of generated HTML 

– Parameterized include mechanism, promoting code reuse 



Before You Begin 

6–2     Web Deployment Option User Guide 

– C language function support 

– IMA (Ingres Management Architecture) support 

 

  
Tip: You can access the online HTML-based Plays Tutorial application or the 
online Tutorial Guide by accessing the address 
http://your_machine_name/ice_index.html. 
 

Before You Begin 
This chapter assumes you have a basic understanding of HTML and its 
components. Standard HTML concepts are not reviewed as part of this 
tutorial—only Web Deployment Option features are examined in detail. If you 
would like to refresh your knowledge of HTML, see “Appendix B: HTML 
Primer.” 

If you do intend to work through the creation of an application, which is a 
duplicate of the Plays tutorial application, be sure you have your HTTP server 
and Web Deployment Option installed and running. You should be logged in as 
the Web Deployment Option privileged user so that you can perform all of the 
functions in this chapter. Also, take a moment to familiarize yourself with the 
pages in the ice subdirectory of your Ingres installation. You will be recreating 
many of these pages. 

Finally, ensure that you know how to address your ICE server (for example, 
http://your_machine_name/ice-bin/oiice.dll). 

A Tour of the Plays Application 

 

The Plays application allows a visiting Web user to browse through the works 
of William Shakespeare at the Globe Centre for Shakespeare studies. After 
viewing Shakespeare’s works in a variety of ways and based on different 
criteria, visitors can go shopping for some of their favorite souvenirs at the 
online Globe Boutique. 



A Tour of the Plays Application 

Chapter 6: Creating Web Applications: An Example    6–3 

The vision for the Web site, as directed by the Art Director of the Globe 
Centre, is to provide a way for the Web user to select a group of 
Shakespeare’s plays by type—that is, by choosing comedy, history, or tragedy. 
Additionally, the Web site should be visual so that icons should be used to 
select the play type. The Plays application, however, presents the different 
iterations of the development process, showing how the Web author 
accomplished this goal by the simplest means working up to the more 
sophisticated features of Web Deployment Option—the most elegant of which 
is the desired result. 

Note: The Plays application is designed to demonstrate various 
implementations of the features of Web Deployment Option and is not 
necessarily intended to represent a “real-world” application. It represents the 
progression of the development of the site. 

Let us now take a brief tour of the Plays application. 

Plays Welcome Page 

To begin, we enter the following address in the address bar, assuming that the 
name of the machine on which you are running Web Deployment Option is 
“globe”: 

http://globe/ice_index.html 

You will then see a list of options for Web Deployment Option. Select the 
Example Tutorial Application option. This invokes the welcome page of the 
Plays application: 

 

Clicking the icon, we proceed to the login page for the application. 



A Tour of the Plays Application 

6–4     Web Deployment Option User Guide 

Plays Login Page 

The Plays login page contains some introductory text that explains the login 
process. In addition, two controls are provided that enable the Web user to be 
authenticated to the ICE server, which provides access to the remaining pages 
in the Plays application. 

 

This page allows you to enter a name and password that you have already 
defined, or a new name and password. If the user is already defined, and you 
click the icon, you will proceed to the Home page of the application. 

If the user name is unknown to the system, you are brought to an Automatic 
Declaration page, which allows you to define yourself as a user on the system. 
We will look at this page next. 



A Tour of the Plays Application 

Chapter 6: Creating Web Applications: An Example    6–5 

Automatic Declaration Page 

The Automatic Declaration page is the page on which you declare yourself as a 
Web user to the Web Deployment Option system: 

 

Enter a unique user name in the Name edit control (do not use “ingres” or 
leave this blank). Then enter a password to be associated with your user name 
in the Password edit control. Next, click the icon to establish a connection to 
Web Deployment Option and proceed to the Plays home page. 

Note that when you subsequently log in, you will already be authenticated and 
can simply enter your name and password on the Login page. 



A Tour of the Plays Application 

6–6     Web Deployment Option User Guide 

Plays Home Page 

Now that you have been authenticated, you move on to the first secured page 
within the application, which is the home page. The Shakespheare’s Plays 
Home Page appears as follows: 

 

This page presents a list of options that allow the user to view all or a subset 
of plays, and an option to shop at the Globe Shop. 

The following options are available to the Web user: 

All Displays all of Shakespeare’s plays (from the plays table), without wrapping 
to the beginning of the list of plays when the end is reached. 

All (Wrap to 
Beginning) 

Displays all of the Shakespeare’s plays, wrapping to the beginning of the list 
of plays when the end is reached. 

By Type (Selector) Displays a subset of Shakespeare’s plays, based on the type selected using a 
selector control. 

By Type (Hyperlink) Displays a subset of Shakespeare’s plays, based on the type selected using a 
hyperlink. 

By Type (Graphical 
Hyperlink) 

Displays a subset of Shakespeare’s plays, based on the type selected using a 
graphical hyperlink. 

Switch by Type 
(Graphical Hyperlink) 

Displays a subset of Shakespeare’s plays, based on the type selected using a 
SWITCH macro with a graphical hyperlink. 

Note: This would be the desired result in an actual finalized application. 



A Tour of the Plays Application 

Chapter 6: Creating Web Applications: An Example    6–7 

Plays View Options 

There are several different methods of displaying data from the plays table in 
the icetutor database. Some of these methods are described in this section. 

Viewing All Plays 

If the All option is selected, all the plays in the plays table are presented in 
groups of five in a data browser, as follows: 

 

The More button displays the next set of five plays in the browser until all the 
plays have been displayed. This option does not wrap to the beginning of the 
list, so that when the last play is displayed, the browser is empty. 

This is not as desirable as if the first set of plays were to be displayed after the 
last play in the database. This is exactly the purpose of the second option, All 
(Wrap to Beginning), which does provide the wrap-around capability. 

You can return to the home page at any time by clicking the left icon at the 
bottom of the page. Similarly, the right icon is clicked if a user wants to log 
out of the application. 



A Tour of the Plays Application 

6–8     Web Deployment Option User Guide 

Viewing Selected Plays 

The next four options on the home page menu allow a user to display a subset 
of the plays based on type. They each accomplish this in a different way. For 
example, the simplest example of this is evident in the By Type (Selector) 
option. A play type is chosen from a selector control, shown below: 

 

After a play type is selected and Display clicked, a browser is displayed 
containing only plays of that type. Again, a More button allows the user to 
display more plays until the end of the list of plays is reached. 

The other options show you how various implementations use hyperlinks for 
each of the play types in the database. The Switch by Type (Graphical 
Hyperlink) option is the programming example that we would like to highlight 
and the most desirable in terms of elegant Web page design and efficient 
HTML design. 



A Tour of the Plays Application 

Chapter 6: Creating Web Applications: An Example    6–9 

This option produces the following Web page: 

 

Here, the user can click the icon that represents the type of play they are 
interested in viewing. The results are again displayed in a browser with a More 
button. 

 

  
Tip: You may want to take some time to familiarize yourself with play 
browsing portion of the application now before we move on to the next 
section describing the Globe Boutique. If you want to see how the 
browsing application was built, see Designing a Data Browsing Application 
in this chapter. 
 



A Tour of the Plays Application 

6–10     Web Deployment Option User Guide 

Globe Boutique 

The Globe Shop option presents a home page for the Globe Boutique. On this 
page, a list of products that are available for purchase can be viewed and 
selected: 

 

A user may see some interesting items and want to know more about them, so 
they would click the number of the item. A page that describes the item 
appears, providing more detail and its price. If the user is interested in 
purchasing the item, it can be easily added to their shopping bag (we doubt 
that shopping carts existed in Elizabethan England); otherwise, they can 
choose to go back to the product list. 



A Tour of the Plays Application 

Chapter 6: Creating Web Applications: An Example    6–11 

Viewing Shopping 
Bag Contents 

Once the item is added to the shopping bag, more items can be chosen or 
the contents of the shopping bag can be viewed, as shown below: 

 

Each item in the shopping bag is listed, along with its price. Additionally, the 
total cost of the order is calculated and displayed at the bottom at the list. 

Placing an Order or 
Emptying Shopping 
Bag 

Notice that the available user options are hyperlinks that have been enabled 
(those that are not available are simply not enabled). The choices at this 
point are to add more items, empty the shopping bag, or place the order. If 
an order is placed and confirmed, a unique order number is assigned and 
that transaction is complete. If the bag is emptied, the items are removed 
and the user can start again. 

We will now explore how the Plays application was created. You can actually 
perform the steps or just follow along, as desired. 

 

  
Tip: Take some time to familiarize yourself with the Globe Boutique 
application before we explore how the entire Plays application was created 
in the next section. If you would like to see how the code for the Globe 
Boutique portion of the application was developed, see Designing an 
Internet Shopping Application in this chapter. 
 



Creating Application Directories 

6–12     Web Deployment Option User Guide 

Creating Application Directories 
We will begin by creating the directories that we will need for our new 
My_Plays application. Two types of directories are needed—one that comes 
under Web Deployment Option security and one that does not. 

Creating Directories for Non-Web Deployment Option Registered Files 

We have to create several directories under the Web root directory that will 
contain files that do not come under Web Deployment Option security and are 
visible to the HTTP server. These files include a welcome page HTML file and 
the facets it references, and a style sheet used with this page. 

The welcome page for the my_plays application is the first page of the 
application. It must be accessible to any Web user because the user has not 
been authenticated yet. The welcome page is followed by the login page, 
which is public, but is resident in the plays business unit. 

Create the directory structure for the non-Web Deployment Option files of 
My_Plays as follows: 

a. Create a subdirectory under the Web server default document directory 
(for example, myice) that will hold the non-Web Deployment Option files 
for your application (that is, the welcome page): 

 

b. Beneath this directory, create two other subdirectories that will hold the 
images and style sheet for the welcome page (for example, images and 
styles, respectively): 

 

Note: The ice directory, and the images and styles subdirectories, were 
created for the Plays application at installation time. This can be used as a 
model for the myplays directory structure. 



Creating Application Files 

Chapter 6: Creating Web Applications: An Example    6–13 

Creating Directories for Web Deployment Option-Registered Files 

Next, an application directory for the majority of the files in your application 
has to be created. These files do come under Web Deployment Option security 
and instead of residing under the Web root directory, they will be created 
elsewhere in the file system. Later, we will register these files with the ICE 
server, which will then make the location visible through the HTTP server. 

Create the directory structure for the Web Deployment Option files of 
My_Plays by performing the following steps: 

1. In the desired (drive and/or) directory, create a directory for Web 
Deployment Option documents. 

For example, c:\ice\documents on Windows systems and 
/usr/web/documents on UNIX systems. 

2. Create a subdirectory called myplays, which will contain all of the Web 
Deployment Option files for your application: 

 

Note: The plays directory beneath your Web Deployment Option directory 
was created for the Plays application at installation time. This can be used 
as a model for the directory structure on your machine (for example, the 
c:\ice\documents\myplays directory on Windows systems and 
/usr/web/documents/myplays on UNIX systems). 

Creating Application Files 
Next, we will proceed by creating the files that will comprise the My_Plays 
application. Again, there are files that are registered under Web Deployment 
Option and those that are not. In each case, pages, facets, and style sheets 
have to be created. 

This section takes you through the process of creating or setting up these 
application components: 

 An initial application page, not under Web Deployment Option control 

 A welcome page and its referenced facets and style sheet, not under Web 
Deployment Option control 

 A login page, under Web Deployment Option control 

 The remainder of the Web Deployment Option-controlled application 
pages, facets, and style sheets 



Creating Application Files 

6–14     Web Deployment Option User Guide 

Creating the Starting Application Page 

We first have to create the entry point for the application that is accessible 
through the Web server. In the Plays application, a single index file, 
ice_index.html, is the first file the Web user encounters. From this page, we 
will provide a hyperlink to the welcome page of the My_Plays application. 

Note: You should also specify this initial file as the default document in your 
Web server setup or alternatively provide a link to it from your default 
document. Either way allows a Web user to simply enter an address of 
http://machine_name to access the initial page of the application. If you need 
more information, see the documentation supplied with your Web server. 

To create the starting My_Plays application page: 

1. Within the Web server default document directory, make a copy of the 
ice_index.html file, which was installed with Web Deployment Option, and 
rename the file “my_ice_index.html”. 

For example, if you are using the Microsoft Internet Information Server, 
you might create: 

C:\InetPub\wwwroot\my_ice_index.html 

2. In an HTML editor of your choice, modify the HTML in the new file, 
removing all options except the one to select the example tutorial 
application: 

<HTML> 
<HEAD> 
<META HTTP-EQUIV="Content-Style-Type"  
 content="text/css"> 
<LINK HREF="/ice/styles/ice.css" type="text/css" 
 REL="stylesheet"> 
<TITLE>Web Deployment Option</TITLE> 
</HEAD> 
<BODY> 
<H1>Web Deployment Option</H1> 
<P ID=W>Welcome to Web Deployment Option</P> 
Choose the Following Option to Enter the My_Plays 
 Application: 
<P> 
<TABLE> 
<TR><TD><A HREF="/ice-bin/oiice.dll/my_plays[myplay_welcome.html">My 
 Example Tutorial Application</A></TD></TR> 
</TABLE> 
</BODY> 
</HTML> 

3. Save your file and exit the HTML editor. 



Creating Application Files 

Chapter 6: Creating Web Applications: An Example    6–15 

Creating the Welcome Page and Facets 

For the welcome page, you will now create a skeleton file, in which you will 
enter a standard HTML template to be inserted into all the files eventually. 

Creating the 
Welcome HTML File 

To create the skeleton file for the welcome page file, perform the following 
steps: 

1. In an HTML editor of your choice, enter the following code template. (Note 
that this code can be found in the play_welcome.html file, provided in the 
plays directory). 

<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.0//EN">  
<HTML> 
<HEAD> 
<META HTTP-EQUIV="Content-Style-Type"  
 CONTENT="text/css"> 
<LINK HREF="<!-- #ICE 
 INCLUDE=`my_plays[myplay_styleSheet.css]` -->"  
 TYPE="text/css" REL="STYLESHEET"> 
<TITLE>Title of page</title> 
</HEAD> 
<BODY> 
<H1>Title of page</H1> 
</BODY> 
</HTML> 

2. Save the file with the name myplay_welcome.html in the myice 
subdirectory that you created, beneath the Web server root directory that 
you created. (For more information, see Creating Directories for Non-Web 
Deployment Option Registered Files in this chapter). 

3. Check that you can read the HTML file with your browser by using File 
Open (or the equivalent). 

Note: The file will not be visible via your Web server. 

Copying the 
Welcome Page 
Facets 

Rather than creating new facets referenced by the welcome page for 
My_Plays, we will copy the facets from the Plays application: 

1. From within your Web server default document directory, access the 
ice\images subdirectory on Windows, or ice/images subdirectory on UNIX. 

2. Copy the bgpaper.gif and oldglobe.gif files to the myice\images 
subdirectory. 

For more information, see Creating Directories for Non-Web Deployment 
Option Registered Files in this chapter. 

3. From within your Web server default document directory, access the 
ice\styles subdirectory. 

4. Copy the ice.css file to the myice\styles subdirectory. 

For more information, see Creating Directories for Non-Web Deployment 
Option Registered Files in this chapter. 



Creating Application Files 

6–16     Web Deployment Option User Guide 

Creating the Remaining Pages and Facets 

To save time, we will create skeleton files for all the pages we will need for our 
application at once, and then register them with the ICE server at the same 
time using Visual DBA. We will also copy the facets used in the Plays 
application, and later register with the new business unit. 

Creating My_Plays 
Application Pages 

To create the skeleton pages for the My_Plays application: 

1. In an HTML editor of your choice, create a new HTML file named 
myplay_home.html, corresponding to the play_home.html original file in 
the plays directory. 

2. Enter the code template found in the Creating the Welcome Page section. 
(Note that this code can also be found in the play_welcome.html file 
provided in the plays directory). 

3. Save the file in your myplays application subdirectory. 

For more information, see Creating Directories for Non-Web Deployment 
Option Registered Files in this chapter. 

4. Check that you can read the HTML file with your browser by using File 
Open (or the equivalent). 

Note: The file will not be visible via your Web server. 

5. Repeat this procedure for all the files in the plays application directory, 
renaming them with the “my” prefix. 

The HTML file names are provided below for convenience: 

 

myplay_all myplay_shopDescribe 

myplay_allWrap myplay_shopHome 

myplay_allWrapSub myplay_shopRemove 

myplay_autoUser myplay_shopView 

myplay_home myplay_subSet 

myplay_login myplay_TxnCndCmt_h 

myplay_newProduct myplay_typeGLink 

myplay_newProductInsert myplay_typeGSLink 

myplay_sessionControl_h myplay_typeLink 

myplay_shopAction_h myplay_typeLinkSubSet 

myplay_shopAdd myplay_typeList 

myplay_shopConfirm  

 



Creating Application Files 

Chapter 6: Creating Web Applications: An Example    6–17 

Copying the 
My_Plays Application 
Facets 

We will now copy the image and style sheets files from the Plays application 
to the myplays directory. 

1. From within your Ingres system directory, access the ingres\ice\plays 
subdirectory on Windows, or ingres/ice/plays subdirectory on UNIX. 

2. Copy each of the .gif and .css files to the myplays subdirectory. 

For more information, see Creating Directories for Non-Web Deployment 
Option Registered Files in this chapter. 

The names of the images and style sheets to be used are shown below for 
your reference: 

 
� bgpaper.gif � play_styleSheet.css 

� comedy.gif � play_public.css 

� history.gif � romance.gif 

� logout.gif � tragedy.gif 

� oldglobe.gif  

These files will be registered to a new business unit later in the tutorial for 
ease in maintenance and security purposes. 

Using Style Sheets 

The following code line includes a reference to the style sheet that is used for 
determining the styles that apply to the various elements in the application: 

<LINK HREF="<!-- #ICE INCLUDE= 
 `my_plays[myplay_styleSheet.css]` -->"  
 TYPE="text/css" 
 REL="STYLESHEET"> 

Style sheets help us to separate appearance or style from the information or 
content of our Web site. By including the style sheet using this technique, we 
are able to bring the style of our site under Web Deployment Option control in 
addition the content. In this tutorial, we use level one of the cascading style 
sheet mechanism, recommended by the World Wide Web Consortium (W3C) at 
the Web site http://www.w3.org/TR/REC-CSS1. 



Gaining Access to Web Deployment Option Information 

6–18     Web Deployment Option User Guide 

Gaining Access to Web Deployment Option Information 
You use a Database Object Manager window within Visual DBA to access the 
objects on your ICE server. For information on how to start Visual DBA and 
access the Web Deployment Option information in the Database Object 
Manager, see “Chapter 4: Managing the Web Deployment Option.” 

The following sections take you through the management of objects using the 
ICE branches in the Database Object Manager. 

Registering Your Files and Location 
Through the ICE branch in the Database Object Manager in Visual DBA, you 
can set up security for your Web Deployment Option objects, and establish a 
server location for your files. 

It is a requirement of the system that all objects to be made available through 
Web Deployment Option must be registered with a business unit. Each 
business unit must, in turn, be registered with a session group. We therefore 
begin by creating a new session group in this section. 

Creating a Session Group 

The first step in establishing security for our My_Plays application is the 
creation of a session group. This is used in the creation of cookies in the 
management of connections to the ICE server, in the case of a user opening 
more than one application within the same browser. 

We will create the my_playgroup session group as follows: 

1. Expand the ICE branch in the Database Object Manager. 

2. Expand the Server branch. 

3. Select the Session Groups branch. 

 

4. Click the Add Object toolbar button. 

 Alternatively, choose Edit, Create. 

The Create ICE Session Group Name dialog appears: 

 



Registering Your Files and Location 

Chapter 6: Creating Web Applications: An Example    6–19 

5. Enter my_playgroup in the Session Group edit control. 

6. Click OK. 

Setting Up Public Files 

You must place those application files that need to be publicly accessible in the 
HTML root document directory or in an aliased directory. This includes the first 
file the user will encounter in the application, which is myplay_welcome.html. 
Move this file to the HTML root document directory for your Web server. For 
example, if using Microsoft Internet Explorer, this would be: 

C:\InetPub\wwwroot 

Next, we have to copy the graphic files that will appear in the welcome and 
login pages to the wwwroot\ice directory. These files include bgpaper.gif and 
oldglobe.gif. 

The files that need to be public when being registered with Visual DBA are 
myplay_autoUser.html and myplay_login.html. These files include a page for 
user login and auto declaration—used if the user is not defined. 

Creating a Server Location for Secured Pages 

The next step is to create a server location, registering the application 
directory that you created earlier with the ICE server. We will later associate 
this location with a business unit. 

To create the my_play_location location: 

1. Expand the ICE branch in the Database Object Manager. 

2. Expand the Server branch. 

3. Select the Locations branch. 

 

4. Click the Add Object toolbar button. 

 Alternatively, choose Edit, Create. 

The Create ICE Location dialog appears: 

 



Registering Your Files and Location 

6–20     Web Deployment Option User Guide 

5. In the Name edit control, enter the server name for the location, 
my_play_location. 

The ICE radio button should already be selected. Also, the Public check 
box should be cleared, which it is by default. (It indicates whether the 
location is available if no authentication of the user has been performed.) 

6. In the Path edit control, enter the full path of your application 
subdirectory. 

This is the plays subdirectory under your chosen application directory on 
the local file system, discussed in the Creating Application Directories 
section. 

7. Leave the Extensions edit control empty. 

8. Click OK. 

Creating a Business Unit 

We need a business unit that is equivalent of plays for the Plays application. 
This business unit is a collection of HTML files, facets, and applications 
performing a similar or related function in our application. 

In a later section, you will see how you can associate a role with the business 
unit and grant permissions to it. 

To create the my_plays business unit: 

1. Expand the ICE branch in the Database Object Manager. 

2. Select the Business Units branch. 

 

3. Click the Add Object toolbar button. 

 Alternatively, choose Edit, Create. 

The Create ICE Business Unit dialog appears: 

 

4. Enter the name of the business unit, my_plays. 

5. Click OK. 

Notice that if you expand the Business Units branch, the new my_plays 
business unit appears. 



Registering Your Files and Location 

Chapter 6: Creating Web Applications: An Example    6–21 

Associating the Server Location with the Business Unit 

The next step is to create an association between the physical location of the 
application files and the business unit. 

To associate the my_play_location server location with the my_plays business 
unit: 

1. Expand the ICE branch in the Database Object Manager. 

2. Expand the Business Units branch. 

3. Expand the my_plays branch. 

4. Select the Locations branch. 

 

5. Click the Add Object toolbar button. 

 Alternatively, choose Edit, Create. 

The Associate a Location to Business Unit dialog appears: 

 

6. Select my_play_location from the drop-down list. 

7. Click OK. 

Associating Pages with the Business Unit 

In order to group the pages for the My_Plays application together logically, we 
must associate them with the my_plays business unit. 

Note: You can use the regdocs utility to register multiple files simultaneously. 
For more information on this command, see the Command Reference Guide. 

To associate a page with the my_plays business unit: 

1. Expand the ICE branch in the Database Object Manager. 

2. Expand the Business Units branch. 

3. Expand the my_plays business unit branch. 

4. Select the Pages branch. 

 

5. Click the Add Object toolbar button. 

 Alternatively, choose Edit, Create. 



Registering Your Files and Location 

6–22     Web Deployment Option User Guide 

The Create ICE Page for Business Unit dialog appears: 

 

6. In the Document edit controls, enter the name and extension, 
respectively, of the document file (for example, myplay_all and html). 

Note: For this example, we are choosing to use the same name for the 
document and the actual HTML page. 

7. Select the Take from File System option. 

The dialog changes as follows: 

 

Notice that the my_play_location location is already selected. 

8. In the Filename edit controls, enter the name and extension, respectively, 
of the HTML file (for example, myplay_all and html). 

9. Click OK. 

10. Repeat steps 5–9 for each of the HTML files in your myplays application 
directory. 

Associating Facets with the Business Unit 

You must also include the facets together with the pages logically, requiring us 
to associate them with the my_plays business unit. 

Note: You can use the regdocs utility to register multiple files simultaneously. 
For more information on this command, see the Command Reference Guide. 

To associate a facet with the my_plays business unit: 

1. Expand the ICE branch in the Database Object Manager. 

2. Expand the Business Units branch. 

3. Expand the my_plays business unit branch. 



Registering Your Files and Location 

Chapter 6: Creating Web Applications: An Example    6–23 

4. Select the Facets branch. 

 

5. Click the Add Object toolbar button. 

 Alternatively, choose Edit, Create. 

The Create ICE Facet for Business Unit dialog appears: 

 

6. In the Document edit controls, enter the image file name and extension, 
respectively (for example, comedy and gif). 

Note: For this example, we are choosing to use the same name for the 
document and the actual facet. 

7. Select the Take from File System option. 

The dialog changes as follows: 

 

Notice that the my_play_location location is already selected. 

8. In the Filename edit controls, enter the name and extension, respectively, 
of the HTML file (for example, comedy and gif). 

9. Click OK. 

10. Repeat steps 5–9 for each of the graphic and style sheet files in your 
myplays application directory. For the following files, also select the Public 
check box: 

 bgpaper.gif 

 oldglobe.gif 

 play_public.css 

Note: Making these files public allows them to be accessed by any 
unauthenticated user while in the application. 



Registering Your Files and Location 

6–24     Web Deployment Option User Guide 

Creating a Database Connection 

To create an alias for the icetutor database and the user that owns the Ingres 
installation, the my_play_database database connection will be created. 

Note: This database connection can then be associated with a Web user using 
the Associate DB Connection to Web User dialog. This is left as an exercise for 
the reader. 

To create the my_play_database database connection: 

1. Expand the ICE branch in the Database Object Manager. 

2. Expand the Security branch. 

3. Select the Database Connections branch. 

 

4. Click the Add Object toolbar button. 

 Alternatively, choose Edit, Create. 

The Create ICE Database Connection dialog appears: 

 

5. Enter my_play_database in the Name edit control. 

6. Select icetutor from the Database drop-down list. 

7. Select icedefdb from the Database User drop-down list. 

8. In the Comment edit control, enter the following text: 

Database dedicated to the works of the Bard of Stratford-Upon-Avon 

9. Click OK. 

Creating a Profile 

The security administrator of the Web Deployment Option Web site will want 
to create a profile that defines the general capabilities of a user that logs in 
using the auto-declaration page. 

Next, we want to create a profile that can be assigned to a default user when a 
Web user declares an account for themselves. 



Registering Your Files and Location 

Chapter 6: Creating Web Applications: An Example    6–25 

To create the my_play_profile profile: 

1. Expand the ICE branch in the Database Object Manager. 

2. Expand the Security branch. 

3. Select the Profiles branch. 

 

4. Click the Add Object toolbar button. 

 Alternatively, choose Edit, Create. 

The Create ICE Profile dialog appears: 

 

5. Enter my_play_profile in the Name edit control. 

6. Select icedefdb from the DB User drop-down list. 

All other edit controls will be left blank. They can be modified later, if 
necessary, by altering the profile. 

7. Specify 300 seconds in the Timeout edit control. 

8. Click OK. 

Creating a Role 

A role definition is needed so that we can associate the my_play_profile profile 
and the my_plays business unit with it, as you will see in the sections that 
follow. 

To create the my_play_role role: 

1. Expand the ICE branch in the Database Object Manager. 

2. Expand the Security branch. 

3. Select the Roles branch. 

 

4. Click the Add Object toolbar button. 

 Alternatively, choose Edit, Create. 



Registering Your Files and Location 

6–26     Web Deployment Option User Guide 

The Create ICE Role dialog appears: 

 

5. In the Name edit control, enter my_play_role. 

6. In the Comment edit control, enter Role for the My_Plays Web application. 

7. Click OK. 

Associating a Role with a Profile 

Now that we have a role created, we can associate the my_play_profile profile 
with it. The my_play_role will eventually have the Execute Documents 
permission granted to it. 

To associate the my_play_role role with the my_play_profile profile: 

1. Expand the ICE branch in the Database Object Manager. 

2. Expand the Security branch. 

3. Expand the Profiles branch. 

4. Expand the my_play_profile branch. 

5. Select the Roles branch. 

 

6. Click the Add Object toolbar button. 

 Alternatively, choose Edit, Create. 

The Associate Role to ICE Profile dialog appears: 

 

7. Select my_play_role from the Role drop-down list. 

8. Click OK. 



Registering Your Files and Location 

Chapter 6: Creating Web Applications: An Example    6–27 

Associating a Database Connection with a Profile 

We also want to associate a database connection with the profile we have 
created. This associates the profile with the icetutor database and icedbuser 
database user. 

To associate the my_play_database database connection with the 
my_play_profile profile: 

1. Expand the ICE branch in the Database Object Manager. 

2. Expand the Security branch. 

3. Expand the Profiles branch. 

4. Expand the my_play_profile profile branch. 

5. Select the Database Connections branch. 

 

6. Click the Add Object toolbar button. 

 Alternatively, choose Edit, Create. 

The Associate DB Connection to ICE Profile dialog appears: 

 

7. Select my_play_database from the DBConnection drop-down list. 

8. Click OK. 

Associating a Role with a Business Unit 

A Web Deployment Option role allows a group of users to be granted 
appropriate access rights by business unit owners to their business unit as a 
whole or on a per-page or per-facet basis. 

We will now associate the my_play_role role with the my_plays business unit, 
granting the Execute Documents permission: 

1. Expand the ICE branch in the Database Object Manager. 

2. Expand the Business Units branch. 

3. Expand the my_plays branch. 

4. Expand the Security branch. 

5. Select the Roles branch. 

 

6. Click the Add Object toolbar button. 

 Alternatively, choose Edit, Create. 



Designing a Data Browsing Application 

6–28     Web Deployment Option User Guide 

The Role Access Definition for Business Unit dialog appears: 

 

7. Select my_play_role from the Role drop-down list. 

8. Select the Execute Documents check box. 

9. Click OK. 

Designing a Data Browsing Application 
Now that the security objects for our application are created, we can go on to 
create the HTML pages that will make up the application. You can use the 
skeleton files that we created previously, as discussed in the Creating 
Application Files section. 

We will examine the code used in the Plays application provided with Web 
Deployment Option for the viewing of Shakespeare’s plays. In creating the 
My_Plays application, you will be instructed to add the code that is shown to 
your new files or copy it from an original Plays file. 

  
Tip: Throughout this chapter, you can use the Plays HTML files to extract 
the code and paste it into the new file, so that you don’t have to retype 
the code. However, you may want to reproduce the code manually as an 
exercise in using the Web Deployment Option macros. 
 

Creating a Welcome Page 

The welcome page is the first page that the user encounters. It lies outside the 
control of the ICE server and is a standard HTML page that does not come 
under the control of Web Deployment Option. 

The welcome page is needed to provide access to the pages that do come 
under the control of the ICE server. It contains some welcome text and a link 
to the login page and therefore must be accessible through your Web server. 

Important! The welcome page of your Web application should be accessible 
through the Web server. 



Designing a Data Browsing Application 

Chapter 6: Creating Web Applications: An Example    6–29 

Welcoming the User 
to Your Site 

An example of a welcome page is the play_welcome.html file, which will be 
reproduced in our new file. Add the following code to the 
myplay_welcome.html file: 

<HTML> 
<HEAD> 
<TITLE> 
Shakespeare Live 
</TITLE> 
</HEAD> 
<BODY> 
<CENTER> 
<H1> 
Shakespeare Live 
</H1> 
</CENTER> 
<CENTER> 
Welcome to the <B>globe</B> 
site for Shakespeare Studies. 
<P> 
<A HREF=/ice-bin/oiice.dll/ 
 my_plays[myplay_login.html]> 
 <IMG SRC="/myice/images/oldglobe.gif" alt="Enter the Globe Here"></A> 
</CENTER> 
</BODY> 
</HTML> 

The line of interest here is the anchor: 

<A HREF=/ice-bin/oiice.dll/ 
 my_plays[myplay_login.html]> 
 <IMG SRC="/myice/images/oldglobe.gif" alt="Enter the Globe Here"></A> 

This instructs the ICE server to access the myplay_login page, which resides in 
the my_plays business unit. The square brackets in the syntax show that the 
page is part of the business unit. 

The oldglobe.gif file is visible to the HTTP server and resides under the 
ice/images directory beneath the root document directory within your Web 
server directory. 

Note: There is no support for session groups at this level because we have not 
yet logged in and therefore have not yet been assigned a session ID. 

The next page to be created is the login page. 

Creating a Login Page 

It is necessary to log in to the ICE server before you can access any pages 
held under its control. An example of a login page is the play_login.html page, 
which we will use to create myplay_login.html. It allows Web users to create 
an account for themselves by leaving the entry fields blank. 



Designing a Data Browsing Application 

6–30     Web Deployment Option User Guide 

Establishing a 
Connection to the 
Server 

Add the following code to the myplay_login.html file: 
<HTML> 

<HEAD> 

<TITLE>Shakespeare Plays </TITLE> 

</HEAD> 
<BODY> 
<CENTER> 
<H1>Shakespeare Plays </H1></TD> 
</CENTER> 
Thank you for visiting the Globe Centre for Shakespeare. 
<P> 
If you are a new visitor to our site, leave the 
user name and password fields <I>blank.</I>  
<BR> 
Click on the 
picture of the original Globe below from whence you 
will be able to register with us. 
<P> 
If you already have an account, please fill in 
your user name and password below.  
<BR> 
Click on the 
picture of the original Globe below. 
<P> 
We hope you enjoy your visit! 
<HR> 
<FORM ACTION="/ice-bin/oiice.dll/ 
 my_plays[myplay_home.html]" METHOD="POST"> 
<INPUT TYPE=hidden NAME="ii_action" value="connect"> 
<INPUT TYPE=hidden  
 NAME="ii_error_url" value= 
 "/my_plays[myplay_autoUser.html]"> 
<CENTER> 
<TABLE BORDER=0 ALIGN=CENTER VALIGN=CENTER> 
 <TR> 
 <TD>Please enter your:</TD> 
 </TR> 
 <TR> 
 <TD>Name: </TD> 
 <TD><INPUT SIZE=32 NAME="ii_userid"></TD> 
 </TR> 
 <TR> 
 <TD>Password: </TD> 
 <TD><INPUT SIZE=32 TYPE=PASSWORD  
  NAME="ii_password"></TD> 
 </TR> 
</TABLE> 
<INPUT TYPE="IMAGE" BORDER=0 NAME="connect" 
 SRC="/myice/images/oldglobe.gif" ALT="Press Here to Enter the Globe Experience"> 
</CENTER> 
</FORM> 
</BODY> 
</HTML> 



Designing a Data Browsing Application 

Chapter 6: Creating Web Applications: An Example    6–31 

This page sets the value of the hidden variable ii_action to “connect,” collects 
the account name and password from the user, and passes them all to the 
my_plays[myplay_home.html] page when the user clicks Connect: 

<FORM ACTION="/ice-bin/oiice.dll/ 
 my_plays[myplay_home.html]" METHOD="POST"> 
<INPUT TYPE=hidden NAME="ii_action" value="connect"> 
... 
<INPUT TYPE="IMAGE" BORDER=0 NAME="connect" 
 SRC="/ice/images/oldglobe.gif" ALT="Connect"> 

If the user has no account, the login will fail and the failure action (specified 
by ii_error_url) will take them to the page my_plays[myplay_autoUser.html]. 
This page allows the user to create a new account. We will look at how to do 
that later. First, we will take a quick look at the home page for our system. 

Creating a Home Page 

Once the Web user has logged in, they are presented with a home page, which 
instructs them of the options that are available to them. You will notice the 
introduction of a session group to the HTML code for this page. 

For our home page, we will demonstrate the INCLUDE feature. This allows the 
Web author to incorporate generic Web Deployment Option code on many 
pages. An example of its use would be to include code to ensure that each 
page had a uniform style across the site. In our case, we use the INCLUDE file 
for another reason; that of including Web Deployment Option code to ensure 
any open transactions are closed. Little else is new other than a list of links to 
the various pages that demonstrate various HTML or Web Deployment Option 
features. 

Using INCLUDE file to 
Commit Open 
Transactions 

Add the following code to the myplay_home.html page: 
<HTML> 

<HEAD> 

<TITLE>Shakespeare’s Plays Home Page</TITLE> 

</HEAD> 
<BODY> 
<CENTER> 
<H1>Shakespeare's Plays Home Page</H1> 
</CENTER> 
This is the home page for Shakespeare’s plays hosted on the server globe 
<H2> 
View Shakespeare’s Plays 
</H2> 
<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_TxnCndCmt_h.html]` --> 



Designing a Data Browsing Application 

6–32     Web Deployment Option User Guide 

<OL> 
<LI> <A HREF="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_all.html]">All</A> 
<LI> <A HREF="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_allWrap.html]"> 
 All (wrap to beginning)</A> 
<LI> <A HREF="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_typeList.html]">By type (selector)</A> 
<LI> <A HREF="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_typeLink.html]">  
 By type (hyper-link)</A> 
<LI> <A HREF="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_typeGLink.html]"> 
 By type (Graphical hyper-link)</A> 
<LI> <A HREF="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_typeGSLink.html]"> 
 Switch by type (Graphical hyper-link)</A> 
<LI> <A HREF="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_newProduct.html]">Add a product</A> 
</OL> 
<A HREF="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_shopHome.html]">Globe 
 Shop</A> 
<P> 
Please  
<A HREF="/ice-bin/oiice.dll/ 
 my_plays[myplay_login.html]?ii_action=disconnect"> 
 logout</A>,don't time out! 
</BODY> 
</HTML> 

The line that includes the extra code is:  

<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_TxnCndCmt_h.html]` --> 

The syntax for specifying an include file is the same as for when one is linked 
to. Here the business unit is my_plays and the file name is  
myplay_TxnCndCmt_h.html. We need to specify the REPEAT keyword because 
there are Web Deployment Option macro statements to be evaluated in this 
file. 

In the next section, you will create a page to create a new account. 

Creating a User Account Automatically 

Anyone accessing non-public pages in a Web Deployment Option-controlled 
part of a Web site must have an account. Since this could mean creating 
accounts for a large number of Web users, there needs to be a way for the 
users to allocate themselves an account. The account should have the 
minimum permissions required, by associating a role using Visual DBA. 



Designing a Data Browsing Application 

Chapter 6: Creating Web Applications: An Example    6–33 

Adding an Auto-
Declaration Page 

The following is an example of an auto-declaration page. This code should be 
added to the myplay_autoUser.html file: 

</HEAD> 
<BODY> 
<H1>Automatic Declaration</H1> 
<FORM ACTION="/ice-bin/oiice.dll/ 
 my_plays[myplay_home.html]" METHOD="POST"> 
<INPUT TYPE=hidden NAME="ii_action" value="declare"> 
<INPUT TYPE=hidden NAME="ii_profile"  
 value="myplay_profile"> 

<CENTER> 
<TABLE BORDER=0 ALIGN=CENTER VALIGN=CENTER> 
 <TR> 
 <TD>Please enter your:</TD> 
 </TR> 
 <TR> 
 <TD>Name: </TD> 
 <TD><INPUT SIZE=32 NAME="ii_userid"></TD> 
 </TR> 
 <TR> 
 <TD>Password: </TD> 
 <TD><INPUT SIZE=32 TYPE=PASSWORD  
  NAME="ii_password"></TD> 
 </TR> 
</TABLE> 
<INPUT TYPE="IMAGE" BORDER=0 NAME="connect"  
 SRC="/ice/images/oldglobe.gif" ALT="Connect"> 
</CENTER> 
</FORM> 
</BODY> 
</HTML> 

The action for the form is to execute the myplay_home.html document in the 
my_plays business unit. It is passed, along with the new user name and 
password, the declare action. This causes a new Web user to be created with 
the my_play_profile profile. 

Note: The my_plays profile must have been created previously using the 
Create ICE Profile dialog in Visual DBA. See Creating a Profile in this chapter. 

Displaying All Table Rows 

In the first Web Deployment Option feature programming example, we will 
show how to specify an SQL Web Deployment Option macro keyword and then 
embed the macro into a simple Web Deployment Option document. We will 
also take advantage of the CURSOR macro keyword to add a More button to 
the document, enabling us to view the sequence of plays by subset. 

Finally, we will arrange to commit the transaction upon returning to the home 
page. The code will be placed into a separate file and included into the home 
page and the myplay_all.html document using the INCLUDE keyword. 
Communication of the transaction name will be achieved with Web 
Deployment Option session variables. 



Designing a Data Browsing Application 

6–34     Web Deployment Option User Guide 

The page used to display all the rows in the plays table is shown below: 

 

Using a Simple Select Statement 

We would like to present the data in the plays table in the icetutor database, 
five rows at a time in an HTML tabular format. A transaction name and cursor 
name will also be established. 

Constructing Macro The first task is to construct a Web Deployment Option macro using the SQL 
keyword, as follows: 

<!-- #ICE  
 DATABASE = `icetutor`  
 SQL=`select * from plays`  
 TRANSACTION=`Complete`  
 CURSOR=`Works`  
 ROWS=`5`  
 TYPE=`TABLE` 
--> 



Designing a Data Browsing Application 

Chapter 6: Creating Web Applications: An Example    6–35 

If we were to display this page in a browser, the output would appear as 
follows: 

 

Adding the Macro to 
Your HTML 

We are happy—for now—with this output, so we cut and paste the macro text 
into the “myplay_all.html” file. The result is as follows: 

<HTML> 
<HEAD> 
<TITLE>Shakespeare's Plays</TITLE> </HEAD> 
<BODY> 
<H1>Shakespeare's Plays</H1> 

<!-- #ICE DATABASE = `icetutor`  
 SQL=`select * from plays` 
 TRANSACTION=`Complete` 
 CURSOR=`Works` 
 ROWS=`5` 
 TYPE=`TABLE` --> 

</BODY> 
</HTML> 

Viewing the Page Since you have already registered the file, you can now view the page by 
logging in to your site and specifying its address: 

Windows
 

http://your_machine_name/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_all.html]   

UNIX
 

http://your_machine_name/ice-bin/oiice.1.so/my_playgroup/ 
 my_plays[myplay_all.html]   

Notice that the only way of retrieving the next set of rows is by reloading the 
page (by clicking the Refresh or Reload button in your browser). In the next 
section, we will add a More button to do this more elegantly. 

Adding a More Button 

We now need a more efficient way of retrieving the next set of five plays. 
Since we have opened both a transaction (Complete) and a cursor (Works)—
and the action of the cursor is to retrieve the next set of rows—all we need to 
do is to reload the document. You might like to try this now with your 
document. 



Designing a Data Browsing Application 

6–36     Web Deployment Option User Guide 

Reloading the 
Browser with a Submit 
(More) Button 

Although this will work, it is not quite as user-friendly as we would like!  It is 
preferable to add a button to get more plays. The action of the button is to 
revisit the document. If you have read the “HTML Primer” appendix, you 
know that a button exists on a form so we need a form whose action is the 
address of the current document. The button type that submits the form to 
the Web server is Submit. 

The result of all of this is that the Submit button acts just like the Refresh or 
Reload button on your browser. We assign a meaningful name to the button 
(such as “More”). We are now ready to present the myplay_all.html document 
with our new “More” button. 

Adding the More 
Button to the Form 

Update the myplay_all.html file to include the following code: 

<HTML> 
<HEAD> 
<TITLE>Shakespeare's Plays</TITLE> 
</HEAD> 
<BODY> 
<H1>Shakespeare's Plays</H1> 

<!-- #ICE 
  DATABASE = `icetutor` 
  SQL=`select * from plays` 
  TRANSACTION=`Complete` 
  CURSOR=`Works` 
  ROWS=`5` 
  TYPE=`TABLE` 
  --> 

<P> 
<FORM ACTION="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_all.html]" METHOD="POST"> 
<INPUT TYPE="submit" NAME="More" VALUE="More"  
 ALT="Show more plays"> 
</FORM> 
</BODY> 
</HTML> 



Designing a Data Browsing Application 

Chapter 6: Creating Web Applications: An Example    6–37 

Including Generic Session Control 

We would obviously like to give the user some way of returning to the home 
page, or logging out. We can easily do this with the following macro 
statements: 

<HR WIDTH="50%" > 
<H2>Where would you like to go now:</H2> 
<TABLE BORDER=0 CELLSPACING=3> 
<TR> 
<TD> 
<A HREF="/ice-bin/oiice.dll/my_plays[myplay_home.html]">Globe Home Page:</A> 
<TD> 
<A HREF="/ice-bin/oiice.dll/my_plays[myplay_home.html]"> 
 <IMG SRC="/myice/images/oldglobe.gif" alt="Return to Globe Home Page" 
</A> 
<TR> 
<TD> 
<P> 
<A HREF="/ice-bin/oiice.dll/my_plays[myplay_login.html]?ii_action=disconnect"> 
 logout:<A> 
<TD> 
<A HREF="/ice-bin/oiice.dll/my_plays[myplay_login.html]?ii_action=disconnect"> 
 <IMG SRC="/ice-bin/oiice.dll/my_plays[logout.gif]" alt="Logout"> 
</A> 
</TABLE> 
<HR> 

Clearly, we could insert this directly into our file; then every other one that we 
create. Then, revisit every file whenever we wish to change something. You 
get the idea. It would be much easier to have one version of this in a separate 
file and include it as needed. To do this, we save the code in the file named 
myplay_SessionControl_h.html and add the INCLUDE line to the 
myplay_all.html file. 

Note: Any INCLUDE files need to be registered (that is, associated with a 
business unit) with the ICE server using the Create ICE Page for Business Unit 
dialog. (You should have already registered the file in the Associating Pages 
with the Business Unit section). 

Using INCLUDE file to 
Control Sessions 

This code adds the INCLUDE line to the myplay_all.html file: 

<HTML> 
<HEAD> 
<TITLE>Shakespeare's Plays</TITLE> 
</HEAD> 
<BODY> 
<H1>Shakespeare's Plays</H1> 
<!-- #ICE 
  DATABASE = `icetutor` 
  SQL=`select * from plays` 
  TRANSACTION=`Complete` 
  CURSOR=`Works` 
  ROWS=`5` 
  TYPE=`TABLE` 
  --> 
<P> 
<FORM ACTION="/ice-bin/oiice.dll/ 
 my_playgroup/my_plays[myplay_all.html]" METHOD="POST"> 



Designing a Data Browsing Application 

6–38     Web Deployment Option User Guide 

<INPUT TYPE="submit" NAME="More"  VALUE="More" 
 ALT="Show more plays"> 
</FORM> 
<!-- #ICE REPEAT  
 INCLUDE=`my_plays[myplay_SessionControl_h.html]`  
--> 
</BODY> 
</HTML> 

Adding Transaction Control 

The document as it stands opens a transaction named “Complete,” but never 
closes it with a commit or rollback. We obviously cannot commit the 
transaction on the same page because then we would only ever retrieve the 
first result subset. We could create an extra page, which we visit for the sole 
purpose of committing the transaction, but we effectively already have such a 
page—our home page. A good time to commit the transaction would be when 
we transfer to the home page. 

There could be many transactions that use this mechanism, so we choose a 
variable to contain the name of the transaction to be committed. Another 
variable will record the fact that the transaction is either available to be 
committed or has already been committed (since it is the nature of 
HTML/HTTP that we have no control over how the user arrives at the home 
page or how often). 

Declaring Variables 
to Control 
Transactions 

Add the two DECLARE macros shown below to your myplay_all.html file. This 
is the final version of the file, with transaction control information: 

<HTML> 
<HEAD> 
<TITLE>Shakespeare's Plays</TITLE> 
</HEAD> 
<BODY> 
<H1>Shakespeare's Plays</H1> 
<!-- #ICE 
  DATABASE = `icetutor` 
  SQL=`select * from plays` 
  TRANSACTION=`Complete` 
  CURSOR=`Works` 
  ROWS=`5` 
  TYPE=`TABLE` 
  --> 
<!-- #ICE DECLARE=`session.e_playTxn=Complete` --> 
<!-- #ICE DECLARE=`session.e_playTxnCommitted=FALSE` 
--> 
<P> 
<FORM ACTION="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_all.html]" METHOD="POST"> 
<INPUT TYPE="submit" NAME="More" VALUE="More" 
 ALT="Show more plays"> 
</FORM> 
<!-- #ICE REPEAT  
 INCLUDE=`my_plays[myplay_SessionControl_h.html]`  
--> 
</BODY> 
</HTML> 



Designing a Data Browsing Application 

Chapter 6: Creating Web Applications: An Example    6–39 

Committing Transactions on the Home Page 

There are various variable scopes available to us: server, session, and page. 
The naming convention used for variables in this tutorial is scope_name, 
where scope is represented by one of the following prefixes: 

 

Scope Prefix Scope Level  

s Server 

e sEssion 

p Page 

This means that the variable e_playTxnCommitted is a session-level variable. 

Using Variables to 
Commit Transactions 

We now need some code to use these variables to commit the transaction at 
the appropriate time. The code that achieves this conditional transaction 
commit appears below. It should be added to the myplay_TxnCndCmt_h.html 
file: 

<!-- #ICE REPEAT IF (DEFINED (e_playTxnCommitted)) 
 THEN=`` 
 ELSE=`<!-- #ICE  
   DECLARE=``session.e_playTxnCommitted=TRUE``  
   -->` 
--> 

<!-- #ICE REPEAT IF (DEFINED(e_playTxn) AND 
 (`:e_playTxnCommitted` != `TRUE`)) 
 THEN=`<!-- #ICE COMMIT=``:e_playTxn`` --> 
 <!-- #ICE 
  DECLARE=``session.e_playTxnCommitted=TRUE`` 
 -->` 
--> 

Perform Conditional 
Transaction 
Committals 

We add an IF macro statement to our next document; suffice it to say for 
now that the first part of this code tests if the e_playTxnCommitted variable 
exists. If it does not, it is created and set to the value TRUE. We need to do 
this because the first time we visit the home page, no variables will be set. 
Then, if the e_playTxn variable exists and the transaction has not yet been 
committed, it is committed. We need to perform these checks because it is 
an error to commit a non-existent transaction. 



Designing a Data Browsing Application 

6–40     Web Deployment Option User Guide 

It only remains to include this file in our home page, myplay_home.html, as 
follows: 

<HTML> 
<HEAD> 
<TITLE>Shakespeare's Plays Home Page</TITLE> 
</HEAD> 
<BODY> 
<CENTER> 
<H1>Shakespeare's Plays Home Page</H1> 
</CENTER> 
This is the home page for Shakespeare's plays hosted on the server <B>globe</B> 
<H2> 
View Shakespeare’s Plays 
</H2> 

<!-- #ICE REPEAT  
 INCLUDE=`my_plays[myplay_TxnCndCmt_h.html]` --> 

<OL> 
<LI> <A HREF="/ice-bin/oiice.dll/my_playgroup 
 /my_plays[myplay_all.html]">All</A> 
</OL> 
Please 
<A HREF="/ice-bin/oiice.dll 
 /my_plays[myplay_login.html]?ii_action= 
 disconnect">logout</A>, don't time out! 
</BODY> 
</HTML> 

The next section illustrates the use of the IF keyword. 

Displaying All Table Rows with Wrapping 

In the previous example, when the information in the table was exhausted, the 
page displayed the column headers and no rows. If you have not seen this, 
you might like to try it now by clicking More until there are no more rows to 
display. (Hint: The number of rows returned is available in the ii_rowcount 
variable.) 

Testing for End of 
Result Set 

We would prefer the user to be presented with a way of resetting the cursor 
to the beginning of the result set again, to be able to return to the beginning. 
We choose to do this only when the number of rows returned is not 5 (the 
requested number). When there are more than five rows available, the ICE 
server will always return five and set ii_rowcount accordingly. When there 
are fewer than five rows to return, ii_rowcount will be set to the appropriate 
value. We can, therefore, test the inequality of ii_rowcount with 5. 

The select statement is as before but now we include the test. If we receive 
fewer than five rows (ii_rowcount != 5), we insert the HTML to visit another 
page which is a facsimile of this page, but commits the transaction before 
running exactly the same query. This allows us to restart from the beginning 
of the result set.  



Designing a Data Browsing Application 

Chapter 6: Creating Web Applications: An Example    6–41 

Adding an IF 
Statement to Wrap to 
Beginning of Result 
Set 

Our solution should be added to the myplay_allWrap.html file, as follows: 
<HTML> 

<HEAD> 

<TITLE>Shakespeare's Plays</TITLE> 

</HEAD> 
<BODY> 
<FORM ACTION="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_allWrap.html]" METHOD="POST"> 

<!-- #ICE REPEAT  
  DATABASE = `icetutor`  
  SQL=`select * from plays`  
  TRANSACTION=`Complete`  
  CURSOR=`Works`  
  ROWS=`5`  
  TYPE=`TABLE` 
--> 

<!-- #ICE IF (`:ii_rowcount` != `5`) 
 THEN=`<P> 
 <B> 
 <A HREF="/ice-bin/oiice.dll/my_playgroup/ 
  my_plays[myplay_allWrapSub.html]"> 
  Re-start from the beginning 
  </A></B><P>` 
-->  

<!-- #ICE DECLARE=`session.e_playTxn=Complete` --> 
<!-- #ICE DECLARE=`session.e_playTxnCommitted=FALSE` --> 
<P> 
<INPUT TYPE="submit" NAME="More" VALUE="More"  
 ALT="Show more plays"> 
<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_SessionControl_h.html]` --> 
</FORM> 
</BODY> 
</HTML> 

The interesting part of the file is: 

<!-- #ICE IF (`:ii_rowcount` != `5`) 
 THEN=`<P> 
 <B> 
 <A HREF="/ice-bin/oiice.dll/my_playgroup/ 
  my_plays[myplay_allWrapSub.html]"> 
  Re-start from the beginning 
  </A></B><P>` 
--> 

If the number of rows returned is not 5, it must be less than 5. We must test 
the inequality here because the IF statement performs string comparisons. If 
the number of rows is less than 5 (we have reached the end of the result set), 
we wish to give the user the opportunity to visit a “reset” page. The THEN 
branch of the IF inserts the required link. 



Designing a Data Browsing Application 

6–42     Web Deployment Option User Guide 

The page will appear as follows once the user has reached the end of the plays 
in the browser: 

 

Committing Previous 
Transaction and 
Starting Transaction 
Again 

In order to start again, the first thing we need to do is to commit the 
previous transaction: 
<!-- #ICE COMMIT=`:e_playTxn` --> 

We then start exactly the same transaction again, giving the illusion that the 
user has visited the same file. Notice how the link to retrieve MORE entries 
returns the user to the main page. This page is therefore only used to commit 
and restart the transaction. This technique can also be used to ensure that a 
result set is current. 

Let us take a look at the code below. You should add this code to the next file, 
named myplay_allWrapSub.html: 

<HTML> 
<HEAD> 
<TITLE>Shakespeare's Plays</TITLE> 
</HEAD> 
<BODY> 

<!-- #ICE COMMIT=`:e_playTxn` --> 

<!-- #ICE  
  DATABASE = `icetutor`  
  SQL=`select * from plays`  
  TRANSACTION=`Complete`  
  CURSOR=`Works`  
  ROWS=`5`  
  TYPE=`TABLE` 
--> 



Designing a Data Browsing Application 

Chapter 6: Creating Web Applications: An Example    6–43 

<!-- #ICE DECLARE=`session.e_playTxn=Complete` --> 
<!-- #ICE DECLARE=`session.e_playTxnCommitted=FALSE`  
--> 

<FORM ACTION="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_allWrap.html]" METHOD="POST"> 
<INPUT TYPE="submit" NAME="More" VALUE="More"  
 ALT="Show more plays"> 
</FORM> 

<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_SessionControl_h.html]` --> 
</BODY> 
</HTML> 

Notice how the link to retrieve ‘MORE’ entries returns the user to the main 
page. This page is therefore only used to commit and restart the transaction. 
This technique can also be used to ensure that a result set is current. 

The next section shows how Web Deployment Option can generate the tags 
needed for a selector control. 

Creating an Automatically-Generated Selector Control 

We have seen how to retrieve a result set from the database. Now we would 
like to retrieve the plays according to type. We note that for the purposes of 
these examples, the schema is somewhat denormalized. Normalization and the 
subsequent adjustment of the queries are left as an exercise for the reader. 

One way of presenting Web users with a choice is to use a selector control. 
Web Deployment Option automatically generates the necessary HTML tags to 
generate a selector control element for us when we specify the SELECTOR 
keyword for an SQL query. We must supply a variable name to contain the 
value selected by the user and we specify this by using the ATTR keyword to 
name the e_type variable type. 



Designing a Data Browsing Application 

6–44     Web Deployment Option User Guide 

The following page uses a selector control and a Display button: 

 

Using a Selector 
Control to Obtain 
Play Type 

The following code should be added to the myplay_typeList.html page, as 
shown below: 

<HTML> 
<HEAD> 
<TITLE>Select a Type: Shakespeare's Plays</TITLE> 
</HEAD> 
<BODY> 
<H1>Select a Type: Shakespeare's Plays</H1> 
<FORM ACTION="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_subSet.html]" METHOD="POST"> 

<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_TxnCndCmt_h.html]` --> 

<!-- #ICE DECLARE=`session.e_type='select play type'` --> 

<!-- #ICE REPEAT 
 DATABASE = `icetutor`  
 SQL=`select distinct type from plays`  
 TRANSACTION=`t_typeList`  
 CURSOR=`Works`  
 ROWS=`10` 
 TYPE=`SELECTOR` 
 ATTR=`NAME=e_type`  
--> 
<!-- #ICE COMMIT=`t_typeList` --> 
<P> 
<INPUT TYPE="submit" NAME="Display" VALUE="Display" 
 ALT="Show Plays of this type"> 
</FORM> 
<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_SessionControl_h.html]` --> 
</BODY> 
</HTML> 



Designing a Data Browsing Application 

Chapter 6: Creating Web Applications: An Example    6–45 

Extracting Play Types 
from Plays Table 

There are three interesting areas in this example. The first is in the select 
statement: 

SQL=`select distinct type from plays`  

Here we are selecting the various play types from the table (we need to 
specify distinct because we have denormalized the schema). 

Using a Selector 
Control to Display 
Distinct Play Types 

Next, we see that the TYPE of the result set has been changed from the 
default (TABLE) to the type SELECTOR. This automatically generates the 
HTML tags required for a selector control. We use the ATTR keyword to set 
the NAME variable for this selector control: 

TYPE=`SELECTOR` 
ATTR=`NAME=e_type` 

Committing the 
Transaction 

Finally, we tidy up the transaction immediately by committing it at once 
(there is no need to hold it open, in contrast to the one in the previous 
document): 

<!-- #ICE COMMIT=`t_typeList` --> 

Having set the e_type HTML variable on the form, we now include a Submit 
button to send the successful controls (in particular e_type) to the next 
(display) document, myplay_subSet.html. We examine this document next. 

Displaying a Subset of Table Rows by Selector 

The myplay_subSet.html document will be used to display those plays 
required, as specified by the e_type variable. This is used in the where clause 
of the select statement: 

SQL=`select * from plays where  
 type = ':e_type'` 

We also include a hyperlink back to the type selection page: 

<A HREF="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_typeList.html]">Select a new play  
 type</A> 

In every other respect, this document is identical to the first example we saw. 
Extending this example to wrap around to the beginning when the end of the 
result set is reached is left as an exercise to the reader. 



Designing a Data Browsing Application 

6–46     Web Deployment Option User Guide 

Displaying Plays 
Based on Type 

Include the following code in the myplay_subset.html file: 

<HTML> 
<HEAD> 
<TITLE>Shakespeare's Plays by Type</TITLE> 
</HEAD> 
<BODY> 
<H1>Shakespeare's Plays by Type</H1> 

<FORM ACTION="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_subSet.html]" METHOD="POST"> 

<!-- #ICE  
 DATABASE = `icetutor`  
 SQL=`select * from plays where type = ':e_type'`  
 TRANSACTION=`Complete`  
 CURSOR=`Works`  
 ROWS=`5`  
 TYPE=`TABLE` 
--> 

<!-- #ICE DECLARE=`session.e_playTxn=Complete` --> 

<!-- #ICE DECLARE=`session.e_playTxnCommitted=FALSE` --> 

<P> 

<A HREF="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_typeList.html]">Select a new play 
 type</A> 
<P> 

<INPUT TYPE="submit" NAME="More" VALUE="More" 
  ALT="Show More Plays of this type"> 
</FORM> 
<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_SessionControl_h.html]` --> 
</BODY> 
</HTML> 

In this example, we have seen how we can communicate values between two 
(or more) Web Deployment Option HTML documents—presenting a simple 
refinement of search criteria to the user based on data in the database. 

In the next example, we see how to achieve a similar effect, this time using 
hyperlinks instead of a selector control. 



Designing a Data Browsing Application 

Chapter 6: Creating Web Applications: An Example    6–47 

Creating Automatically-Generated Hyperlinks 

This example is a simple variation of the previous one, using hyperlinks in 
place of a selector control. To do this, we replace the SELECTOR keyword with 
the LINKS keyword. This automatically generates the HTML tags to create a 
hyperlink for each row and pass a variable to the target page. The name of the 
variable is that of the selected column and the value is the contents of the 
column for that row. 

In addition, we set a return address for the following page so that it can link 
back to this one. That way, we can use the same sub-page from more than 
one page, creating in effect a doubly-linked list albeit with only two members. 

Using a Hyperlink to 
Obtain Play Type 

Add the following code to the myplay_typeLink.html page: 
<HTML> 

<HEAD> 

<TITLE>Hyper Link to Shakespeare's Plays by  

 type</TITLE> 
</HEAD> 
<BODY> 
<H1>Hyper Link to Shakespeare's Plays by type</H1> 

<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_TxnCndCmt_h.html]` --> 

<!-- #ICE  
  DATABASE = `icetutor`  
  SQL=`select distinct type from plays`  
  TRANSACTION=`t_type`  
  CURSOR=`c_type`  
  ROWS=`10`  
  TYPE=`PLAIN` 
  LINKS=`type,/ice-bin/oiice.dll/my_playgroup/ 
   my_plays[myplay_typeLinkSubSet.html]`  
--> 
<!-- #ICE COMMIT=`t_type` --> 

<!-- #ICE DECLARE= 
 `session.e_return=myplay_typeLink.html` --> 

<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_SessionControl_h.html]` --> 
</BODY> 
</HTML> 

Using the LINKS 
Keyword to Generate 
Distinct Play Type 
Hyperlinks 

The required tags to generate the hyperlinks (one per row) are generated by 
the LINKS keyword as follows: 
LINKS=`type,/ice-bin/oiice.dll/my_playgroup/ 

 my_plays[myplay_typeLinkSubSet.html]` 

The first parameter, type, specifies the column name. This sets the name of 
the variable that will be passed to the target document. The second argument 
specifies the document that is the target of the link. The following construct 
produces hyperlinks given the contents of the plays table. The data in the 
plays table is shown in Plays Tutorial Application Data. 



Designing a Data Browsing Application 

6–48     Web Deployment Option User Guide 

<A HREF="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_typeLinkSubSet.html]?type=comedy"> 
 comedy</A> 

<A HREF="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_typeLinkSubSet.html]?type=history"> 
 history</A> 

<A HREF="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_typeLinkSubSet.html]?type=tragedy"> 
 tragedy</A> 

Using a Session 
Variable to Return to 
Current Document 

We next declare a new session variable, e_return, because the next few 
examples use the same page to list the required plays and we would like to 
return to the current document. Therefore, the variable takes on the value 
myplay_typeLink.html, which is the name of this document: 

<!-- #ICE DECLARE= 
 `session.e_return=myplay_typeLink.html` -->  

We next examine the document that is the target of all three generated links 
from this document. 

Displaying a Subset of Table Rows by Hyperlink 

This document is virtually the same as the sub-select document in the selector 
control example. The variable name in the where clause has been changed to 
be the HTML variable TYPE and we include a parameterized hyperlink back to 
the calling page using the Web Deployment Option session variable e_return. 
That said, it is a trivial exercise to modify the selector control’s sub-select 
document to have the same functionality as this document. 

Hyperlink selector controls are shown in the following page: 

 



Designing a Data Browsing Application 

Chapter 6: Creating Web Applications: An Example    6–49 

 
Displaying Plays 
Based on Type 

Let’s now include the following code in the file named 
myplay_typeLinkSubSet.html: 

<HTML> 
<HEAD> 
<TITLE>Link generated sub-set of Shakespeare's Plays  
 by type</TITLE> 
</HEAD> 
<BODY> 
<CENTER> 
<H1>Link generated sub-set of Shakespeare's Plays by 
 type</H1> 
</CENTER> 

<FORM ACTION="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_typeLinkSubSet.html]" METHOD="GET"> 
<!-- #ICE DECLARE=`session.e_playTxn=Complete` --> 
<!-- #ICE DECLARE=`session.e_playTxnCommitted=FALSE` 
--> 
<!-- #ICE REPEAT 
  DATABASE = `icetutor`  
  SQL=`select * from plays where type = ':type'`  
  TRANSACTION=`Complete`  
  CURSOR=`Works`  
  ROWS=`5`  
  TYPE=`TABLE` 
--> 
<P> 
<!-- #ICE VAR=` 
 <A HREF="/ice-bin/oiice.dll/my_playgroup/ 
  my_plays[:e_return]">Select a new play  
  type</A>` 
--> 
<P> 
<INPUT TYPE="submit" NAME="More" VALUE="More" 
 ALT="Show more plays"> 
<!-- #ICE VAR=`<INPUT TYPE="hidden" NAME="type" 
 VALUE=":type">` --> 
</FORM> 

<!-- #ICE REPEAT  
 INCLUDE=`my_plays[myplay_SessionControl_h.html]`  
--> 
</BODY> 
</HTML> 

  

Using a Dynamic 
Hyperlink to Return to 
Calling Page 

Expanding the Web Deployment Option session variable e_return creates the 
hyperlink that returns the user to the calling page. The VAR keyword takes 
any text (including HTML text) containing Web Deployment Option variables 
and replaces them with their contents. Here we make use of this to generate 
a hyperlink dynamically: 

<!-- #ICE VAR=` <A HREF="/ice-bin/oiice.dll/ 
 my_playgroup/my_plays[:e_return]">Select a new  
 play type</A>` -->  

With this pair of documents, we have ended up with text links based on the 
contents of the table making the page dynamic. As an improvement, we would 
like to have an image to click rather than plain text. This is demonstrated in 
the next section. 



Designing a Data Browsing Application 

6–50     Web Deployment Option User Guide 

Creating Graphical Hyperlinks 

Our first attempt at building a hyperlink list of play types was simple and 
effective, but we would much rather use a graphical link to do this. In this 
example, we build a link by embedding the HTML tags directly in the select 
statement. 

The document using graphical hyperlinks is shown below: 

 

Using Graphical 
Hyperlinks to Obtain 
Play Type 

We will now set the return address as before, in the myplay_typeGLink.html 
file. Enter the following code: 

<HTML> 
<HEAD> 
<TITLE>Graphical Hyper Link to Shakespeare's Plays by  
 type</TITLE> 
</HEAD> 
<BODY> 
<H1>Graphical Hyper Link to Shakespeare's Plays by 
 type</H1> 

<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_TxnCndCmt_h.html]` --> 



Designing a Data Browsing Application 

Chapter 6: Creating Web Applications: An Example    6–51 

<!-- #ICE REPEAT 
  DATABASE = `icetutor`  
  SQL=`select distinct 
   '<A HREF="/ice-bin/oiice.dll/my_playgroup 
   /my_plays[myplay_typeLinkSubSet.html]? 
   type=', type, '"><IMG SRC="/ 
   ice-bin/oiice.dll/my_playgroup/ 
   my_plays[', type,'.gif]" alt="',  
   type,'"></A>' from plays` 
  TRANSACTION=`t_type`  
  CURSOR=`c_type`  
  ROWS=`-1`  
  TYPE=`PLAIN` 
--> 
<!-- #ICE COMMIT=`t_type` --> 
<!-- #ICE DECLARE= 
 `session.e_return=myplay_typeGLink.html` --> 

<!-- #ICE REPEAT  
 INCLUDE=`my_plays[myplay_SessionControl_h.html]` --> 
</BODY> 
</HTML> 

Embedding Static 
Tags for Hyperlinks in 
the SQL Statement 

The first thing we notice is that the select statement has become far more 
complicated than it was. We are making use of the ability to embed static 
text within the statement to embed the tags for a hyperlink. We select the 
column named “type” three times in all. First, to pass in as the value of the 
variable passed to the target document; second, as the name of the image 
file (we hard code the extension); and finally, as the alternative text to the 
image as follows: 

SQL=`select distinct 
 '<A HREF="/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_typeLinkSubSet.html]?type=', type, 
  '"> 
 <IMG SRC="/ice-bin/oiice.dll/my_playgroup/ 
  my_plays[', type, '.gif]" alt="', type, '"> 
 </A>' 
 from plays` 

The first line introduces the select. The hyperlink anchor tag with the variable 
type passes the contents of the “type” column as the value. The image tag 
<IMG SRC> uses the contents of the type column in two places—the first as 
the name of the image file (with the hard-coded extension) and the second as 
the alternate text for the image. 

Both the link and the value of the HTML variable type are built dynamically in 
this document. We note that, although in this case the image files are 
constrained to have the same names as the various play types, this is: 

 Not necessarily a bad thing  

 Easily changed by joining with an image table 

We set the value of the e_return session variable so as to reuse the display 
document from before. 



Designing a Data Browsing Application 

6–52     Web Deployment Option User Guide 

This document achieved the aim of dynamically creating a set of graphical 
hyperlinks, but at the expense of placing HTML code within the select 
statement. We would prefer to abstract the HTML away from the SQL.  The 
keywords, HTML and SWITCH, make this possible. 

Creating Switch Image Links 

Building up the hyperlink in the SQL select statement can be confusing and 
make code very difficult to maintain. We would rather separate the HTML code 
from the SQL statement and this is just what the HTML keyword allows us to 
do. For each record returned, we execute a SWITCH statement, embedding 
the image file name (now independent from the value of the type column) 
and, in addition, different alternative text for each image. 

Using the HTML and 
SWITCH Keywords to 
Generate Distinct 
Play Type Graphical 
Hyperlinks 

In the final example, include the following code in the 
myplay_typeGSLink.html file: 
<HTML> 

<HEAD> 

<TITLE>Graphical Switched Hyper Link to Shakespeare's 
 Plays by type</TITLE> 
</HEAD> 
<BODY> 
<H1>Graphical Switched Hyper Link to Shakespeare's 
 Plays by type</H1> 

<!-- #ICE REPEAT  
 INCLUDE=`my_plays[myplay_TxnCndCmt_h.html]` --> 

<!-- #ICE REPEAT 
 DATABASE = `icetutor` 
 SQL=`select distinct type from plays` 
 TRANSACTION=`t_type` 
 CURSOR=`c_type` 
 ROWS=`10` 
 TYPE=`UNFORMATTED` 
 HTML=`<P><!-- #ICE SWITCH=``:type`` 
  CASE ``comedy``=``<A HREF= 
   /ice-bin/oiice.dll/my_playgroup 
   /my_plays[myplay_typeLinkSubSet.html]? 
   type=:type><IMG SRC="/ 
   ice-bin/oiice.dll/my_playgroup/ 
   my_plays[comedy.gif]" alt="Laugh at the 
   Comedy plays"></A>`` 
  CASE ``tragedy``=``<A HREF= 
   /ice-bin/oiice.dll/my_playgroup 
   /my_plays[myplay_typeLinkSubSet.html]? 
   type=:type><IMG SRC="/ice-bin/oiice.dll 
   /my_playgroup/my_plays[tragedy.gif]" alt= 
   "Be moved by the tragedy plays"></A>`` 
  CASE ``history``=``<A HREF= 
   /ice-bin/oiice.dll/my_playgroup 
   /my_plays[myplay_typeLinkSubSet.html]? 
   type=:type><img src="/ice-bin/oiice.dll 
   /my_playgroup/my_plays[history.gif]" alt= 
   "Look back at the history plays"></A>`` 
  -->` 
--> 



Designing a Data Browsing Application 

Chapter 6: Creating Web Applications: An Example    6–53 

<P> 
<!-- #ICE COMMIT=`t_type` --> 
<!-- #ICE DECLARE=`session.e_return=play_typeGSLink.html` --> 
<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_SessionControl_h.html]` --> 
</BODY> 
</HTML> 

The first thing we notice is that the select statement has gone back to being 
simple once more. Secondly, there is a large block of HTML code appearing at 
the end of the entire statement, following the HTML keyword. This implements 
a switch taking the value of the type column as its variable. There are three 
recognized play types in this application: “comedy,” “tragedy,” and “history.”  
There is a CASE for each. 

Note that we have not made use of the DEFAULT case in this example. For 
each case, we specify the same target document, pass the variable type in, 
and set individual picture files and alternative text for them. The SWITCH 
statement appears within the HTML statement and this requires us to: 

 Use the REPEAT keyword in the SQL statement 

 Double-up the grave quotes (`) 

Doubling Grave 
Quotes 

The REPEAT informs Web Deployment Option that it must evaluate a sub-
statement (SWITCH in this case) and because of this, we must protect the 
grave quotes in the SWITCH statement by doubling them up, as follows: 

CASE ``comedy``= 
``<A HREF=/ice-bin/oiice.dll/my_playgroup/ 
 my_plays[myplay_typeLinkSubSet.html]?type=:type>/ 
 <IMG SRC="/ice-bin/oiice.dll/my_playgroup 
 my_plays[comedy.gif]" alt="Laugh at the Comedy 
 plays"> 
 </A>`` 

Each CASE of the SWITCH statement is similar—here we examine the comedy 
case. First, we build a hyperlink to the display document, 
myplay_typeLinkSubSet.html, and pass in the variable type with the value 
“:type,” which comes from the column of that name. We then provide an 
image for this link and this is now no longer constrained to be the value of the 
column; neither is the alternative text. 

We have now covered most of the Web Deployment Option macro keywords 
and features. You can see how you can use them to develop applications that 
are both robust and visually appealing. In the next section, we will build 
another very popular type of application—an Internet shopping application. 



Designing an Internet Shopping Application 

6–54     Web Deployment Option User Guide 

Designing an Internet Shopping Application 
In this section, we will examine the code in the Plays application provided with 
Web Deployment Option for shopping for Shakespeare products at the Globe 
Boutique using the Internet. 

The Globe Boutique Home Page 

The home page for the Globe Boutique has two main jobs. It must list all the 
items for sale, which are listed in the table named play_item. This is a 
standard type of select statement that we have seen before. 

In addition, the home page must allocate an order number for the user (if one 
does not already exist) and this is achieved by invoking a user-defined 
function extension to the ICE server (myplay_neworder.sc file). The function 
invokes a database procedure (in the myplay_newOrder.sql file) which 
increments a count in a table. We will examine each of these files, starting 
with the procedure. For clarity, error-checking code has been left out. 

 

Windows
 

Note: This example assumes that the function is to be built for the Windows 
platform. Check to see if Ingres embedded SQL/C supports your C compiler 
version.  

The my_new_order procedure produces a new order number by updating the 
order number in the counters table. This should be executed in a transaction 
on its own and the order number later used as needed in another transaction. 
This is exactly what happens when the Web Deployment Option extension, 
My_NewOrder(), executes it. 

We also include a general shop action page, which activates those links set to 
“Yes” in the parameter list. 

Creating the Tables for the Globe Boutique Application 

In the Plays application, the play_items, plays_order, and play_counters are 
used in the Globe Boutique shopping segment. For consistency, you can 
recreate the tables for the tutorial and rename them with a “my” prefix (that 
is, myplay_items, etc.). You could also simply use the Plays tables and refer to 
these in your code. 

To begin with, we write the database procedure to generate monotonically 
increasing order numbers.  



Designing an Internet Shopping Application 

Chapter 6: Creating Web Applications: An Example    6–55 

Creating the New Order Procedure 

You will now create an SQL script that will create the my_new_order 
procedure. Beneath the myplays directory, create a subdirectory named src. 
Then, create a file named myplay_newOrder.sql file and enter the following 
statements: 

/* Procedure my_new_order */ 
create procedure my_new_order as 
declare 
next integer not null; 
begin 
 select value into :next from counters  
  where name = 'order'; 
next = next + 1 ; 
update counters set value = :next  
 where name = 'order'; 
return :next;end; 

The my_new_order database procedure is invoked on its own in a transaction 
by the My_NewOrder() server extension, which returns the value as a string in 
the out_OrderNumber variable. 

Creating the New Order Extension Header File 

The file myplay_NewOrder.sc includes the header file, myplay_NewOrder.h, to 
define return types and the ice_function_table function description table, 
reproduced here: 

/* 
** Name: myplay_NewOrder.h 
** 
** Description:  Defines the types used for the 
** extension server functions 
*/ 
# include <windows.h> 

# define ICE_EXT_API __declspec(dllexport) 

typedef char*       ICE_STATUS; 
typedef ICE_STATUS  (*PFNEXTENSION) (char**, BOOL*, 
 char **); 

typedef struct ice_function_table 
{ 
 char*  pszName; 
 char**  pszParams; 
}SERVER_DLL_METHOD, *PSERVER_DLL_METHOD; 

typedef ICE_STATUS  
 (*PFNINITIALIZE)(PSERVER_DLL_METHOD*); 



Designing an Internet Shopping Application 

6–56     Web Deployment Option User Guide 

Creating the New Order Extension 

The ICE server defines an interface to which all extension functions must be 
written. This includes a defined entry point that returns a structure describing 
the function and its parameters. This structure and the function are to be 
reproduced in the file myplay_NewOrder.sc: 

/** 
** Name: myplay_NewOrderNr.sc 
** 
# include "play_NewOrder.h" 
*/ 
# define MAX_SIZE  20  
/** 
** Parameter name list. 
** A NULL pointer terminates the list. 
*/ 
static char* pszNewOrderParams[] = 
 {"out_orderNumber", NULL}; 

/** 
 ** Function Description 
*/ 
static SERVER_DLL_METHOD FunctionTable[] = 
{ 
  { "newOrder", { pszNewOrderParams } }, 
  { NULL } 
}; 

/* 
 * Name: InitICEServerExtension 
 * 
 * Description: 
 *  Mandatory function for providing method 
 *  description to the server. 
 * 
 * Inputs: 
 *  None. 
 * 
 * Outputs: 
 *  ppServerDllMethod: pointer to the function 
 *  description structure. 
 * 
 * Returns: 
 *  pointer to error text 
 *  NULL on success 
 */ 
ICE_EXT_API ICE_STATUS 
InitICEServerExtension(PSERVER_DLL_METHOD* ppServerDllMethod) 
{ 
 ICE_STATUS status= NULL; 
 *ppServerDllMethod = FunctionTable; 
 return status; 
} 



Designing an Internet Shopping Application 

Chapter 6: Creating Web Applications: An Example    6–57 

/* 
 * Name: newOrder 
 * 
 * Description: 
 *  Return the next order number 
 * 
 * Inputs: 
 *  None. 
 * 
 * Outputs: 
 *  out_OrderNumber 
 * 
 * Return: 
 *  pointer to error text 
 *  NULL on success 
 */ 
ICE_EXT_API ICE_STATUS 
newOrder(char** out_OrderNumber, BOOL* print, char**  
 context) 
{ 
 ICE_STATUS  status = NULL; 

 *print = FALSE; 
 /* 
 ** if first invocation allocate some memory for 
 ** the result 
 */ 
 if (*context == NULL) 
 { 
  exec sql begin declare section; 
  long x; 
  exec sql end declare section; 

  *context = 
   HeapAlloc(GetProcessHeap(), 
   HEAP_ZERO_MEMORY, MAX_SIZE); 
  if (*context == NULL) 
  { 
   return ("Memory error\n"); 
  } 

 exec sql connect 'icetutor' identified by 
  'icedbuser'; 
 exec sql execute procedure my_new_order into :x; 

 exec sql commit; 
 exec sql disconnect; 

 sprintf (*context, "%d", x); 

 *out_OrderNumber = *context; 
 *print = TRUE; 
 } 
else 
{ 
 HeapFree (GetProcessHeap(), 0, *context); 
 *context = NULL; 
} 

return (status); 
} 



Designing an Internet Shopping Application 

6–58     Web Deployment Option User Guide 

Entry Point 

There is some “housekeeping” that needs to be done when writing an ICE 
server extension function. There must be an InitICEServerExtension() 
function, its purpose being to return a structure describing the function. This 
structure contains the name of the function and its parameter list. In our case, 
the function is My_NewOrder() and it exports one value parameter, 
out_OrderNumber, and a context pointer to the memory location used, 
context. 

Generating a New Order Number 

When My_NewOrder() is first invoked, the context pointer is set to NULL, 
indicating that it the must allocate some memory to hold the value to be 
returned, it returns a pointer to that memory in the context variable. The next 
order number is returned in the out_OrderNumber parameter. 

Clean-Up 

My_NewOrder() frees context memory when it is invoked with a non-NULL 
value for context.  

Building the New Order Extension 
 

Windows
 

The extension function must be built as a dynamic link library (for the 
Windows platform) and installed in the files\dynamic directory in the Ingres 
system area (addressed by the environment variable II_SYSTEM). 

Make File Used to 
Build DLLs 

The file named makefile (in the \ingres\ice\plays\src directory) is used to 
build the DLL. Its contents are shown below: 

CFLAGS=-c $(CDEBUG) -MD -D_X86_=1 -DWINVER=0x0400 -DWIN32 -D_WIN32 
LFLAGS=/DLL $(LDEBUG) 

all: myplay_NewOrder.dll 

myplay_NewOrder.dll: myplay_NewOrder.obj 
 link $(LFLAGS) /out:$@ $** ws2_32.lib \ 
 $(II_SYSTEM)\ingres\lib\libingres.lib 

myplay_NewOrder.obj: myplay_NewOrder.c 
 myplay_NewOrder.h 
 cl $(CFLAGS) $*.c 

myplay_NewOrder.c: myplay_NewOrder.sc 
 esqlc $*.sc 

install: myplay_NewOrder.dll 
 copy myplay_NewOrder.dll 
 "$(II_SYSTEM)\ingres\files\dynamic\ 
 myplay_NewOrder.dll" 



Designing an Internet Shopping Application 

Chapter 6: Creating Web Applications: An Example    6–59 

The “install” target copies the library to the appropriate place, once it has been 
successfully built (target “all”).  

Using the Extension Function on the Web Page 

Once the dynamic link library has been successfully built and installed, it can 
be used in a Web document. We chose to issue every visitor to the Globe Shop 
home page a unique order number. In addition, we must ensure that an 
existing visitor who has confirmed an order is issued a new order number, in 
case they wish to come back and order more items. 

 

Globe Boutique 
Home Page 

Enter the following code into the myplay_shopHome.html file: 

<HTML> 
<HEAD> 
<TITLE>Globe Boutique</TITLE> 
</HEAD> 
<BODY> 
<H1>Globe Boutique</H1> 
The Globe Boutique is where you can purchase all your 
 favorite Globe memorabilia. 
<P> 
Visit often to find that gift for the person in your 
 life who always seems to have everything 
<P> 
Genuine quality products and gifts with a unique  
 cultural heritage 
<P> 
<H2>Instructions</H2> 
Select an item from the list below to view its 
 description. 

<!-- #ICE REPEAT IF (DEFINED (e_shopTxn)) 
 THEN=`` 
 ELSE=`<!-- #ICE DECLARE= 
  ``session.e_shopTxn=NOT-OPEN`` -->` 
--> 

<!-- #ICE REPEAT IF (DEFINED (e_orderNumber) AND 
 `:e_shopTxn` != `COMPLETE`) 
 THEN=`` 
 ELSE=`<!-- #ICE REPEAT 
  FUNCTION=``play_NewOrder.newOrder`` 
  HTML=``<!-- #ICE 
  DECLARE=````session.e_orderNumber 
   =:out_orderNumber```` 
  -->`` 
 -->` 
--> 
<!-- //enable to see order nr ICE VAR=`<P>DEBUG:  
 Order nr is :e_orderNumber` --> 
<!-- #ICE  
  DATABASE = `icetutor`  
  SQL=`set lockmode session where readlock = 
   nolock; 
   select id, name from play_item`  
  TRANSACTION=`Shoppe`  
  CURSOR=`Keeper`  
  ROWS=`-1` 
  TYPE=`TABLE` 



Designing an Internet Shopping Application 

6–60     Web Deployment Option User Guide 

  HEADERS=`id,Reference,name,Article`  
  LINKS=`id,my_plays[myplay_shopDescribe.html]`  
--> 
<!-- #ICE COMMIT=`Shoppe` --> 
<!-- Standard Shop Actions --> 
<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_shopAction_h.html]?View=Yes` --> 
<!-- Standard Session Control --> 
<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_SessionControl_h.html]` --> 
</BODY> 
</HTML> 

Checking Shop Entry 
Variable 

We first check to see if the shop has been entered for the first time by 
checking for the existence of the e_shopTxn variable: 

<!-- #ICE REPEAT IF (DEFINED (e_shopTxn)) 
 THEN=`` 
 ELSE=`<!-- #ICE DECLARE= 
  ``session.e_shopTxn=NOT-OPEN`` -->` 
--> 

Checking Order 
Number and 
Transaction 

If the variable does not exist, it is created and given the value “NOT-OPEN” 
to indicate that a (shopping) transaction has yet to be opened. 

We next check to see if an order number, e_orderNumber, exists and if the 
transaction has been completed.: 

<!-- #ICE REPEAT IF (DEFINED (e_orderNumber) AND 
 `:e_shopTxn` != `COMPLETE`) 

Issuing a New Order 
Number 

If no order number exists or the transaction is not complete, we need to 
issue a new order number using the function My_NewOrder(), to be found in 
the My_Play_NewOrder library. 

Note: Do not add the .dll or .so extension to the library name: 

<!-- #ICE REPEAT FUNCTION=``my_play_NewOrder.my_newOrder`` 

Since the function invocation is part of another Web Deployment Option macro 
statement, we must double up the grave quotes. 

We then set a session variable to hold the order number and terminate the 
statement: 

HTML=``<!-- #ICE 
 DECLARE=````session.e_orderNumber=:out_orderNumber ```` 
  -->`` 
 -->` 
--> 

When we declare the e_orderNumber variable, we are nested two levels down, 
and so need to double-up the grave quotes again. The number of grave quotes 
you need is easily calculated as 2 raised to the power ‘level’, where level is the 
nesting level, here 2 because we start with level = 0 (2 raised to the power 0 
is 1). 



Designing an Internet Shopping Application 

Chapter 6: Creating Web Applications: An Example    6–61 

Creating Links to Item 
Descriptions 

Having allocated the new order number, we perform a select with links to 
create links on the item identifier to a page providing more detailed 
description of the item selected. The user can then decide to buy or not to 
buy.  

Providing Shopping 
Options 

At any time in the Globe Shop application, the user can move to any of the 
other pages. This is accomplished by including the 
myplay_shopAction_h.html file, which takes the following parameters:  

 

Parameter Meaning 

View  View contents of shopping bag  

Confirm  Confirm order  

Remove  Empty the shopping bag  

The myplay_shopAction_h.html file is included as follows: 

<!-- Standard Shop Actions: activate View bag only  
--> 

<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_shopAction_h.html]?View=Yes` --> 

 

Activating Option to 
View Bag Contents 

Here we only activate the View Bag Contents option; the Return to Products 
option to return to the product list is always valid. The action file, 
play_shopAction_h.html, is shown below. Add this code to the 
myplay_shopAction_h.html file: 

<!-- shopAction_h.html: 
 Activate links as appropriate. Link is active if  
 the variable of that name is set to Yes, else 
 inactive 
--> 
<HR WIDTH="50%"> 
<TABLE BORDER=0 CELLSPACING=4> 
<TR> 
<TD> 
<!-- #ICE IF (`:View` == `Yes`) 
 THEN=`<A HREF="my_plays[myplay_shopView.html]"> 
  View Bag Contents</A>` 
 ELSE=`View Bag Contents` 
--> 
<TD> 
<A HREF="my_plays[myplay_shopHome.html]">Return to 
 Products</A> 
<TD> 
<!-- #ICE IF (`:Confirm` == `Yes`) 
 THEN=`<A HREF="my_plays[myplay_shopConfirm.html]"> 
  Place Order</A>` 
 ELSE=`Place Order` 
--> 
<TD> 
<!-- #ICE IF (`:Remove` == `Yes`) 
 THEN=`<A HREF="my_plays[myplay_shopRemove.html]"> 
 Empty Bag</A>` 
 ELSE=`Empty Bag` 



Designing an Internet Shopping Application 

6–62     Web Deployment Option User Guide 

--> 
</TABLE> 

This file builds a table and sets the contents of each cell to be either an active 
link or an inactive link (normal text) depending on the values of the variables 
passed in. We will examine the item description page next. 

Displaying an Item Description 

The description page selects the required product, passed in as the HTML 
variable ID, and displays more information about the item—in this case, the 
price. (An application typically presents more information about a product, 
such as textual description and photo. In the Plays application, the price is 
used as a sample field.) 

The Item Description Page appears as follows: 

 

In addition, a link is provided to add the item to the shopping bag and another 
to return to the Globe Shop home page. The add item link passes the item ID 
on to the confirmation page. 



Designing an Internet Shopping Application 

Chapter 6: Creating Web Applications: An Example    6–63 

Displaying a Selected 
Item’s Description 

The following code appears in the play_shopDescribe.html file. Proceed by 
adding this code to the myplay_shopDescribe.html file. 

<HTML> 
<HEAD> 
<TITLE>Item Description Page</TITLE> 
</HEAD> 
<BODY> 
<CENTER> 
<H1>Item Description Page</H1> 
</CENTER> 

<!-- #ICE REPEAT 
  DATABASE = `icetutor`  
  SQL=`select id, name, cost from play_item  
   where id = :id`  
  TYPE=`UNFORMATTED` 
  HTML=`<p>You have selected:  
   <BR><B>:name</B>@:cost Silver Crown 
   <!-- #ICE IF ( ``1`` !=``:cost``) 
   THEN=``s`` --> 
    <BR><A HREF= 
    "my_plays[myplay_shopAdd.html]? 
    id=:id">Add to Shopping Bag</A>` 
--> 
<P> 

<!-- Standard Shop Action --> 
<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_shopAction_h.html]` --> 
<!-- Standard Session Control --> 
<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_SessionControl_h.html]` --> 
</BODY> 
</HTML> 

First of all, we select the ID, name, and cost of the product from the play_item 
table. The ID is specified in the where clause, passed in with the HTML variable 
ID, and the UNFORMATTED type is specified: 

SQL=`select id, name, cost from play_item  
 where id = :id`  
TYPE=`UNFORMATTED` 

We need an unformatted output from the select statement because we want to 
add the HTML code to add this item to the shopping bag, which we do as 
follows:  

HTML=`<P>You have selected:<BR> 
 <B>:name</B> 
 @ :cost Silver Crown<!-- #ICE IF ( ``1`` != 
  ``:cost``) 
  THEN=``s`` --> 
 <BR> 
 <A HREF= 
  "my_plays[myplay_shopAdd.html]?id=:id"> 
  Add to Shopping Bag</A>` 
 

Adding Items to 
Shopping Bag 

The anchor, in the last line, is built up by passing the item identifier held in 
the HTML variable ID to the next document, myplay_shopAdd.html, with the 
caption “Add to Shopping Bag”. 



Designing an Internet Shopping Application 

6–64     Web Deployment Option User Guide 

For that final touch, we test to see if the cost of the item is 1 Silver Crown. If 
it is not, we pluralize the word Crown, thus resulting in “Crown” or “Crowns,” 
as required. 

The following page examines the code necessary to add the item to the 
shopping bag. 

Adding an Item to the Shopping Bag 

There are three main sections in the document that adds an item to the 
shopping bag. The first inserts the required item into the myplay_order order 
table, along with the user’s login ID and the order number. A status of 1 is 
included.  

The meaning of the status column is as follows:  

 

Status  Meaning  

1 Item placed in bag  

2 Item ordered  

3 Order passed to warehouse  

4 Order in dispatch  

5  Courier confirms delivery  

This exercise set uses the first two status values. If you would like to add code 
to handle the remaining statuses, see Further Exercise in this chapter. 

The second section confirms that the item has been added and in the final 
section, the user can return to the shop (Return to Products) or view the 
contents of their shopping bag (View Bag Contents). 

Order Processing Add the following code to the myplay_shopAdd.html file: 

<HTML> 
<HEAD> 
<TITLE>Add to Bag: Confirmation</TITLE> 
</HEAD> 
<BODY> 
<H1>Add to Bag: Confirmation</H1> 



Designing an Internet Shopping Application 

Chapter 6: Creating Web Applications: An Example    6–65 

<!-- #ICE 
 DATABASE=`icetutor` 
 SQL=`insert into play_order 
  (order_nr, user_id, product_id, status) 
  values (:e_orderNumber, ':ii_userid', :id, 1)` 
  TRANSACTION=`t_shopAdd` 
--> 
<!-- Flag the transaction as open; we have now added something to the bag --> 
<!-- #ICE DECLARE=`session.e_shopTxn=OPEN` --> 
<TABLE BORDER=0> 
<TR> 
<TD BGCOLOR="lime"> 
The item,  
<!-- #ICE REPEAT 
 DATABASE=`icetutor` 
 SQL=` 
  set lockmode session where readlock = nolock; 
  select name, cost from play_item where id =  
   (select product_id from play_order 
   where order_nr = :e_orderNumber  
   and user_id = ':ii_userid' 
   and product_id = :id)` 
 TRANSACTION=`t_shopAddConfirm` 
 TYPE=`UNFORMATTED` 
 HTML=`<B>:name</B> @<I>:cost Silver Crown 
  <!-- #ICE IF ( ``1`` != ``:cost``) 
  THEN=``s`` --> 
 </I>` 
--> 

<!-- #ICE COMMIT=`t_shopAddConfirm` --> 
 has been added to your shopping bag. 
</TD></TR></TABLE> 

<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_shopAction_h.html]?View=Yes` --> 
<!-- Standard Session Control --> 
<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_SessionControl_h.html]` --> 

</BODY> 
</HTML> 

Adding Order to 
myplay_order Table 

The first thing this document must do is actually to add the ordered item to 
the myplay_order table. This is accomplished with an SQL insert statement: 

SQL=`insert into myplay_order 
 (order_nr, user_id, product_id, status) 
 values (:e_orderNumber, ':ii_userid', :id, 1)` 
TRANSACTION=`t_shopAdd` 

Opening a 
Transaction 

We do not commit this transaction yet because the user may want to add 
other items to the order. Furthermore, the user may log out or time out 
before completing their purchases, at which point the ICE server 
automatically rolls back any open transactions on our behalf. What we do 
instead is to set the e_shopTxn session variable to OPEN with the statement 
shown below: 

SQL=`insert into myplay_order 
 <!-- #ICE DECLARE=`session.e_shopTxn=OPEN` --> 



Designing an Internet Shopping Application 

6–66     Web Deployment Option User Guide 

Although this is a dummy value, it is meaningful. Remember that when its 
value is COMPLETE, the shop home page will generate a new order number. 
We defer committing the transaction until later (on the order confirmation 
page). 

Displaying Ordered 
Items 

Next, we select the same record from myplay_order and display it in a table 
with a green background. We place the select statement inside a table cell 
(<td>). Note that we use readlock = nolock to avoid any locks that may be 
taken on the table. The transaction, t_shopAddConfirm, is committed 
immediately—in fact, within the HTML table element. 

Here is the table element in its entirety: 

<TABLE BORDER=0> 
<TR> 
<TD BGCOLOR="lime"> 
The item,  
<!-- #ICE REPEAT 
 DATABASE=`icetutor` 
 SQL=`set lockmode session where readlock = nolock; 
  select name, cost 
  from play_item 
  where id =  
   (select product_id from play_order 
   where order_nr = :e_orderNumber  
   and user_id = ':ii_userid' 
   and product_id = :id)` 
  TRANSACTION=`t_shopAddConfirm` 
  TYPE=`UNFORMATTED` 
  HTML=`<B>:name</B> @<I>:cost Silver Crown 
   <!-- #ICE  IF ( ``1`` != ``:cost``) 
    THEN=``s`` --> 
  </I>` 
--> 
<!-- #ICE COMMIT=`t_shopAddConfirm` --> 
 has been added to your shopping bag. 
</TABLE> 

The same technique from the previous example has been used to add an “s” to 
the Silver Crown if the cost is other than one Silver Crown. 



Designing an Internet Shopping Application 

Chapter 6: Creating Web Applications: An Example    6–67 

The Add to Bag:Confirmation page appears as follows: 

 

Enabling Shop Action 
Links 

In the third section, we enable the View option for the standard set of shop 
action links: 

<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_shopAction_h.html]?View=Yes` --> 

Further Exercise 

Using the status values 3–5, extend the Web site so that the user, specifying 
their order number, can track the order through the system. Hint: At each 
stage throughout increment the status; orders of status 5 can be purged from 
the current order table.  

We have already examined the Globe Shop home page, we now move on to 
the View Bag Contents page. 

Displaying Shopping Bag Contents 

The user will most likely want to view the contents of their shopping bag 
before confirming or canceling the order. The View Bag Contents page 
provides that all important functionality and consists of a select to present the 
entire contents of the user’s bag, it also totals up the cost and activates the 
Remove and Confirm options from the standard shop actions. 

Note that the Empty Bag and Remove options—which are displayed but 
inactive on the page—can be activated by setting the value of the variables 
Remove and Confirm, respectively, to “Yes”. 



Designing an Internet Shopping Application 

6–68     Web Deployment Option User Guide 

Viewing Bag 
Contents 

Enter the following code into the myplay_shopView.html file: 

<HTML> 
<HEAD> 
<TITLE>View Bag Contents</TITLE> 
</HEAD> 
<BODY> 
<H1>View Bag Contents</H1> 

<!-- #ICE  
 DATABASE=`icetutor` 
 SQL=`set lockmode session where readlock = nolock; 
  select name, cost 
  from play_item, play_order 
  where id = product_id and 
   (order_nr = :e_orderNumber and  
   user_id =  ':ii_userid')` 
 HEADERS=`name, Name, cost, Price` 
 TYPE=`TABLE` 
--> 

<!-- #ICE  
 DATABASE=`icetutor` 
 SQL=`set lockmode session where readlock = nolock; 
  select sum(cost)  
  from play_item, play_order 
  where id = product_id and 
   (order_nr = :e_orderNumber and  
   user_id = ':ii_userid')` 
 HEADERS=`col1, Total` 
 TYPE=`TABLE` 
--> 
<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_shopAction_h.html]? 
 Remove=Yes&Confirm=Yes` --> 
<!-- Standard Session Control --> 
<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_SessionControl_h.html]` --> 
</BODY> 
</HTML> 



Designing an Internet Shopping Application 

Chapter 6: Creating Web Applications: An Example    6–69 

The View Bag Contents page appears as follows: 

 

Naming Column 
Headings 

When Web Deployment Option does not have a column name specified in the 
select statement (for example, when we use a function), it names the 
columns col1, col2, and so on. In this case, we sum the cost column and 
rather than having the total cost of our order shown with the heading col1, 
we use the HEADERS keyword to replace the generated column name with a 
more descriptive one, “Total.”  The code fragments appear below: 

select sum(cost) 
... 
HEADERS=`col1, Total` 

This page requires that we pass two variables into the parameterized included 
file myplay_shopAction_h.html; the variables must be separated by the & 
symbol: 

<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_shopAction_h.html]?Remove= 
 Yes&Confirm=Yes` --> 

Once satisfied with the contents of the shopping bag, the user will next want 
to confirm their purchases. 



Designing an Internet Shopping Application 

6–70     Web Deployment Option User Guide 

Confirming an Order 

When the user confirms their purchases, this must be reflected in the database 
by updating the status of the order. The transaction as a whole must then be 
committed and signaled to the home page so that if the user returns to the 
home page, they can start again with a new order number. Then we display 
the contents of the order, the cost, and the order number, for reference: 

 
 

Committing the 
Transaction 

To accomplish this, enter the following code into the 
myplay_shopConfirm.html file: 

<HTML> 
<HEAD> 
<TITLE>Order Confirmed</TITLE> 
</HEAD> 
<BODY> 
<H1>Order Nr: <!-- #ICE VAR=`:e_orderNumber` --> 
Confirmed</H1> 

<!-- #ICE  
 DATABASE=`icetutor` 
 SQL=`update play_order 
  set status = 2 
  where order_nr = :e_orderNumber  
  and user_id = ':ii_userid'` 
 TRANSACTION=`t_shopAdd` 
--> 
<!-- Commit the transaction --> 
<!-- #ICE COMMIT=`t_shopAdd` --> 
<!-- Set the transaction to 'complete' as it is now committed --> 
<!-- #ICE DECLARE=`session.e_shopTxn=COMPLETE` --> 



Designing an Internet Shopping Application 

Chapter 6: Creating Web Applications: An Example    6–71 

<!-- Show the products ordered: --> 
<P> 
You have ordered the following: 
<BR> 
<!-- #ICE  
 DATABASE=`icetutor` 
 SQL=`set lockmode session where readlock = nolock; 
  select name, cost 
  from play_item, play_order 
  where id = product_id and 
   (order_nr = :e_orderNumber and user_id =  
   ':ii_userid')` 
 HEADERS=`name, Name, cost, Price` 
 TYPE=`TABLE` 
--> 

<!-- Show the total cost: --> 
<P> 
The total value of your order is: 
<BR> 
<!-- #ICE  
 DATABASE=`icetutor` 
 SQL=`set lockmode session where readlock = nolock; 
  select sum(cost) 
  from play_item, play_order 
  where id = product_id and 
   (order_nr = :e_orderNumber  
   and user_id = ':ii_userid')` 
 TRANSACTION=`t_shopConfirmList` 
 HEADERS=`col1, Total` 
 TYPE=`TABLE` 
--> 
<!-- Commit the transaction --> 
<!-- #ICE COMMIT=`t_shopConfirmList` --> 
<P> 
<!-- #ICE VAR=`Your order number <B>:e_orderNumber</B> will now be processed.<BR> 
Please quote this number in all correspondence` --> 
<P> 
We suggest you print this page for your records,  
<P> 
Thank you for your custom, 
<BR> 
<I>Your Globe Heritage Team</I> 
<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_shopAction_h.html]` --> 
<!-- Standard Session Control --> 
<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_SessionControl_h.html]` --> 
</BODY> 
</HTML> 

Completing the 
Transaction 

Once the status of the order has been updated in the myplay_order table, we 
commit the transaction and then update the value of the e_shopTxn session 
variable to “COMPLETE.” 

<!-- #ICE DECLARE=`session.e_shopTxn=COMPLETE` --> 

This will cause the code in the shop home page to issue a new order number 
should the user return there. 

If the user decides not to continue with their order, they will proceed to empty 
the contents of their bag. 



Designing an Internet Shopping Application 

6–72     Web Deployment Option User Guide 

Rolling Back a Transaction 

Canceling an Order If the user decides not to buy the products that have been placed in the bag, 
they follow the link to this page, where the transaction is rolled back. The 
transaction is not flagged as being completed though, because the user may 
simply want to start again. If this is the case, we do not need to generate a 
new order number. We can continue with the one already issued. 

As a confirmation that the order has been rolled back, we display the empty 
table and the total cost of the order (this is not something that one would do 
in reality, it is present as an artifact of our example). 

The following code should be entered into the file named 
myplay_ShopRemove.html: 

<HTML> 
<HEAD> 
<TITLE>Empty Bag</TITLE> 
</HEAD> 
<BODY> 
<H1>Empty Bag</H1> 
<!-- #ICE ROLLBACK=`t_shopAdd` --> 

<P>Your shopping bag now contains: 
<!-- #ICE  
 DATABASE=`icetutor` 
 SQL=`set lockmode session where readlock = nolock; 
  select name, cost 
  from play_item 
  where id =  
   (select product_id from play_order 
    where order_nr = :e_orderNumber  
    and user_id = ':ii_userid')` 
 TYPE=`TABLE` 
--> 

<!-- #ICE  
 DATABASE=`icetutor` 
 SQL=`set lockmode session where readlock = nolock; 
  select sum(cost) as Total 
  from play_item 
  where id =  
   (select product_id from play_order 
   where order_nr = :e_orderNumber  
   and user_id = ':ii_userid')` 
 TYPE=`TABLE` 
--> 
<!-- Standard Shop Action --> 
<!-- #ICE REPEAT INCLUDE= 
 `my_plays[myplay_shopAction_h.html]` --> 
<!-- Standard Session Control --> 
<!-- #ICE REPEAT  INCLUDE=`my_plays[myplay_SessionControl_h.html]` -
 -> 
</BODY> 
</HTML> 

Rolling Back the 
Transaction 

This page demonstrates the use of the ROLLBACK keyword and this appears 
as the first active element in the file: 

<!-- #ICE ROLLBACK=`t_shopAdd` --> 



Plays Tutorial Application Data 

Chapter 6: Creating Web Applications: An Example    6–73 

The other features have already been examined. We note that the e_shopTxn 
session variable has not been updated. This means that should the user wish 
to start again, they will not be issued with a new order number by the shop 
home page. Since they have just rolled back their transaction, the order 
number is effectively unused and still valid.  

This completes the electronic commerce example and our discussion of the 
Globe web site.  

Plays Tutorial Application Data 
The plays table, used with the sample Plays tutorial application, resides in the 
icetutor database. The following table shows the rows in the plays table: 

 

Comporder Title Playright Performed Acts Type 

1 The Two Gentlemen of Verona Shakespeare 1598 5 comedy 

2 The Taming of the Shrew Shakespeare (null) 5 comedy 

3 Henry VI part 1 Shakespeare 1591 5 history 

4 Henry VI part 3 Shakespeare 1595 5 history 

5 Titus Andronicus Shakespeare (null) 5 tragedy 

6 Henry VI part 2 Shakespeare 1592 5 history 

7 Richard III Shakespeare 1593 5 history 

8 The Comedy of Errors Shakespeare 1594 5 comedy 

9 Loves Labours Lost Shakespeare 1594 5 comedy 

10 A Midsummer Night’s Dream Shakespeare 1595 5 comedy 

11 Romeo and Juliet Shakespeare 1595 5 tragedy 

12 Richard II Shakespeare 1595 5 history 

13 King John Shakespeare 1596 5 history 

14 The Merchant of Venice Shakespeare 1598 5 comedy 

15 Henry IV part 1 Shakespeare 1598 5 history 

16 The Merry Wives of Windsor Shakespeare 1597 5 comedy 

17 Henry IV part 2 Shakespeare 1597 5 history 

18 Much Ado About Nothing Shakespeare 1599 5 comedy 

19 Henry V Shakespeare 1599 5 history 

20 Julius Ceasar Shakespeare 1599 5 tragedy 



Plays Tutorial Application Data 

6–74     Web Deployment Option User Guide 

Comporder Title Playright Performed Acts Type 

21 As You Like It Shakespeare 1600 5 comedy 

22 Hamlet Shakespeare 1600 5 tragedy 

23 Twelfth Night Shakespeare 1601 5 comedy 

24 Troiles Cressida Shakespeare (null) 5 comedy 

25 Measure for Measure Shakespeare (null) 5 comedy 

26 Othello Shakespeare (null) 5 tragedy 

27 Alls Well That Ends Well Shakespeare (null) 5 comedy 

28 Timon and Athens Shakespeare (null) 5 tragedy 

29 King Lear Shakespeare (null) 5 tragedy 

30 Macbeth Shakespeare (null) 5 tragedy 

31 Anthony and Cleopatra Shakespeare (null) 5 tragedy 

32 Pericles, Prince of Tyre Shakespeare (null) 5 comedy 

33 Coriolanus Shakespeare (null) 5 tragedy 

34 The Winter’s Tale Shakespeare (null) 5 comedy 

35 Cymbeline Shakespeare (null) 5 comedy 

36 The Tempest Shakespeare (null) 5 comedy 

37 Henry VIII Shakespeare 1613 5 history 



  

Chapter 7: Using the C API    7–1 

Chapter 7: Using the C API 
 

This chapter provides all the information you need to use the Web Deployment 
Option C API. The API lets you execute any ICE Server function in a remote C 
application based on GCA. An additional function gives you the ability to 
download a document from the ICE Server to a remote client. 

The Web Deployment Option C API is used primarily to interface with 
administration software, such as Visual DBA or HTML editing tools. 

This chapter provides an alphabetical reference to all of the C API functions 
and information to help you effectively use the functions. Included are 
examples showing typical uses of the functions and explanations of how the 
functions work together. 

Note: You need to include the following header file to use the API: 

#include <ice_c_api.h> 

Web Deployment Option C API Reference 
This section is an alphabetical reference to all of the functions, data structures, 
and a data type in the Web Deployment Option C API. For a description of 
some additional data types used in the Web Deployment Option C API, see the 
OpenAPI Reference Guide. 

The code examples used throughout this section are taken from the sample 
Web Deployment Option C API at the end of the chapter. They are explained in 
the context of that example. 

ICE_C_Close() Function 

Frees the memory resources created for the row data during fetch operations. 

Syntax 

ICE_STATUS ICE_C_Close(ICE_C_CLIENT client); 

Parameters 

client A reference pointer to a structure containing client connection information, 
returned by the ICE_C_Connect() function. 



Web Deployment Option C API Reference 

7–2     Web Deployment Option User Guide 

Returns 

SUCCESS if completed successfully; otherwise, an error code indicating the 
reason for failure. 

ICE_C_Connect() Function 

Establishes a connection to the ICE Server with the specified node, using the 
provided user name and password. 

Syntax 

ICE_STATUS ICE_C_Connect(II_CHAR* node, II_CHAR* user,  
 II_CHAR* password, ICE_C_CLIENT* client); 

Parameters 

node The name of the vnode associated with the ICE Server machine to which to 
connect. If a NULL pointer is specified, the local node is assumed. 

user The name of the user to connect to the ICE Server. 

password The password associated with the user. 

client A reference pointer to the client returned by the function. This pointer is used 
in all subsequent calls to the ICE C API functions. 

Important! This reference is used internally by the Web Deployment Option C 
API interface and should not be modified. 

Returns 

SUCCESS if completed successfully; otherwise, an error code indicating the 
reason for failure. 

Example 

The following line of code establishes a connection to the local node, using the 
user name and password variables: 

status = ICE_C_Connect(NULL, username,  
 password, &client) 



Web Deployment Option C API Reference 

Chapter 7: Using the C API    7–3 

The status variable is set to a value of 0 if successful, or a failure code if 
unsuccessful. Also, the &client variable is assigned the value of a reference 
pointer to the connection information for the client. 

ICE_C_Disconnect() Function 

Closes a connection from the connected ICE Server node and cleans memory. 

Syntax 

ICE_STATUS ICE_C_Disconnect(ICE_C_CLIENT* client); 

Parameters 

client A reference pointer to a structure containing client connection information, 
returned by the ICE_C_Connect() function. 

Returns 

SUCCESS if completed successfully; otherwise, an error code indicating the 
reason for failure. 

ICE_C_Execute() Function 

Prepares the server to perform a specified ICE Server extension function. 

Syntax 

ICE_STATUS ICE_C_Execute(ICE_C_CLIENT client,  
 II_CHAR* name, ICE_C_PARAMS tab[]); 

Parameters 

client A reference pointer to a structure containing client connection information, 
returned by the ICE_C_Connect() function. 

name The name of the ICE Server function to execute. 

tab[] An array that is updated with the results of the query, if the query is a select 
or retrieve operation, and output parameter(s) are specified. 



Web Deployment Option C API Reference 

7–4     Web Deployment Option User Guide 

Returns 

SUCCESS if completed successfully; otherwise, an error code indicating the 
reason for failure. 

Description 

The ICE_C_Execute() function prepares the function for execution by the ICE 
Server, and then actually executes the query on the database. The result set is 
stored in memory and can be accessed through the ICE_C_Fetch() and 
ICE_C_GetAttribute() functions. 

An additional Download() function is provided by Web Deployment Option and 
is accessed through the ICE_C_Execute() function. “download” is specified for 
name and the download parameters are supplied through the tab[] array. The 
document name, business unit name, and target file on the local drive are 
specified in this array. For example: 

ICE_C_PARAMS params[] =  
{ {ICE_IN, "document", "plays_home.html"}, 
 {ICE_IN, "ii_unit", "plays"}, 
 {ICE_IN, "target", local_plays_home}, 
 {0, NULL, NULL } 
}; 

Note: ICE_C_Execute() functions cannot be nested. Each call to the function 
must be followed by your ICE_C_Fetch(), ICE_C_GetAttribute(), and 
ICE_C_Close() calls before calling ICE_C_Execute() again. 

Example 

The following line of code requests that the User() ICE Server function be 
executed with the parameters specified in the params[] array on the client 
previously returned from an  
ICE_C_ Connect() call: 

status = ICE_C_Execute(client, "user", params) 

The params[] array contains the following input and output parameters: 

ICE_C_PARAMS params[] =  
{ {ICE_IN, "action", "select"}, 
 {ICE_OUT, "user_name", NULL}, 
 {ICE_OUT, "user_timeout", NULL}, 
 {0, NULL, NULL } 
}; 

A select operation is performed on the user_name and user_timeout columns 
(properties) for the User() server function. For more information, see the 
User() Function in the appendix “ICE Server Functions.”  



Web Deployment Option C API Reference 

Chapter 7: Using the C API    7–5 

The ICE_C_Fetch() and ICE_C_GetAttribute() function descriptions contain 
examples that detail how the data is accessed. 

See Also 

ICE_C_PARAMS, ICE_C_Fetch(), ICE_C_GetAttribute() 

ICE_C_Fetch() Function 

Updates the retrieved row position within the result set obtained by a select or 
retrieve operation. 

Syntax 

ICE_STATUS ICE_C_Fetch(ICE_C_CLIENT client, II_INT4* end); 

Parameters 

client A reference pointer to a structure containing client connection information, 
returned by the ICE_C_Connect() function. 

end An integer returned indicating whether a row is present. If SUCCESS is 
returned, it indicates that the last row has been referenced and that there are 
no more rows. If any other value is returned, it means that a row is present. 

Description 

After a call to the ICE_C_Execute() function, which prepares and executes the 
query, the ICE_C_Fetch() function updates the retrieved row position. You can 
access all the data rows by using an if statement and checking on whether the 
last data row has been reached. 

The data rows can be accessed by the ICE_C_GetAttribute() function. See the 
description of this function to see how the data is manipulated. 

Returns 

SUCCESS if completed successfully; otherwise, an error code indicating the 
reason for failure. 



Web Deployment Option C API Reference 

7–6     Web Deployment Option User Guide 

Example 

In the following code sample, ICE_C_Fetch() updates the retrieved row 
position within the result set and checks if the row was returned successfully 
and if it is the last row. (The previous line of code had performed an 
ICE_C_Execute() function, which defined and executed the select operation.) 

if ((status = ICE_C_Fetch(client, &end)) == OK && !end) 

For example, the values for user_id, user_name, user_password1, etc. will be 
fetched and stored in memory for later retrieval by the ICE_C_GetAttribute() 
function. for a complete list of the properties that are selected, see the User() 
Function in the appendix “ICE Server Functions.” 

See Also 

ICE_C_Execute(), ICE_C_GetAttribute() 

ICE_C_GetAttribute() Function 

Returns the value of the specified server function property within the current 
row of the select action. 

Syntax 

char* ICE_C_GetAttribute(ICE_C_CLIENT client,  
 II_INT4 position); 

Parameters 

client A reference pointer to a structure containing client connection information, 
returned by the ICE_C_Connect() function. 

position The number of the ICE_OUT parameter, as specified in the ICE_C_PARAMS 
array that specifies the server function property name. 

Description 

The ICE_C_GetAttribute() function is executed after a call to the 
ICE_C_Fetch() function. It returns the value of the current data row within the 
column (server function property) specified by the ICE_C_PARAMS array. 

The position parameter serves as an index into the ICE_C_PARAMS array, and 
is used to obtain the output parameter name. This is the property name of the 
server function that was previously executed. 



Web Deployment Option C API Reference 

Chapter 7: Using the C API    7–7 

All information returned by Web Deployment Option extension and server 
functions, including numeric values, is in the form of a character string. 

Returns 

If successful, a pointer to the text-converted value is returned; otherwise, 
NULL. 

Example 

The following line of code prints the values selected by the previously executed 
ICE_C_Execute() function: 

printf("%s (%s)\n", ICE_C_GetAttribute(client, 1), 
 ICE_C_GetAttribute(client, 2)); 

The ICE_C_GetAttribute() function calls get the data values in the user_name 
and user_timeout properties columns for the user server function. The “1” and 
“2” parameters act as indexes into the params[ ] array to extract the 
“user_name” and “user_timeout” references. 

ICE_C_Initialize() Function 

Prepares the Web Deployment Option C API for initial use. 

Syntax 

ICE_STATUS ICE_C_Initialize(); 

Returns 

SUCCESS if completed successfully; otherwise, an error code indicating the 
reason for failure. 

Description 

The ICE_C_Initialize() function must be called once before using other 
functions. 

Example 

The following code line initializes the C API: 

ICE_STATUS ICE_C_Initialize(); 



Web Deployment Option C API Reference 

7–8     Web Deployment Option User Guide 

ICE_C_LastError() Function 

Returns a textual error message for the last error that occurred. 

Syntax 

char* ICE_C_LastError(ICE_C_CLIENT client); 

Parameters 

client A reference pointer to a structure containing client connection information, 
returned by the ICE_C_Connect() function. 

Returns 

If successful, a pointer to the textual value is returned; otherwise, NULL, if no 
message is available. 

ICE_STATUS Data Type 

Defines a data type for returning status from a Web Deployment Option C API 
function. 

Syntax 

typedef II_UINT4 ICE_STATUS; 

Description 

The ICE_STATUS data type is used by ICE Server functions and its value must 
be set to NULL initially. If the status becomes a non-NULL (0) value, it 
indicates an error occurred and an error message must be displayed on the 
HTML page. To obtain information about the error, use the ICE_C_LastError() 
function. 

Used By 

ICE_C_Close(), ICE_C_Connect(), ICE_C_Disconnect(), ICE_C_Execute(), 
ICE_C_Fetch(), ICE_C_Initialize() 



Web Deployment Option C API Reference 

Chapter 7: Using the C API    7–9 

ICE_C_CLIENT Structure 

Stores information about a Web Deployment Option connection. 

Syntax 

typedef II_CHAR* ICE_C_CLIENT; 

Description 

When you open a connection to the ICE Server using the ICE_C_Connect() 
function, the ICE_C_CLIENT structure is allocated and a reference pointer is 
returned. This pointer is used in all calls to the Web Deployment Option C API. 

Note: The information is for use internally by the Web Deployment Option C 
API only and should not be modified by an application. 

Used By 

ICE_C_Close(), ICE_C_Connect(), ICE_C_Disconnect(), ICE_C_Execute(), 
ICE_C_Fetch(), ICE_C_GetAttribute(), ICE_C_LastError() 

ICE_C_PARAMS Structure 

Declares input and/or output parameters for the ICE Server and extension 
functions. 

Syntax 

typedef struct __ICE_C_PARAMS 
{ 
 II_INT   type; 
 #DEFINE ICE_IN  1 
 #DEFINE ICE_OUT  2 
 #DEFINE ICE_BLOB 4 
 II_CHAR*   name; 
 II_CHAR*   value; 
} ICE_C_PARAMS; 



Web Deployment Option C API Reference 

7–10     Web Deployment Option User Guide 

Members 

type The type of the parameter represented by an integer expression formed from 
one or more of the following manifest constants: ICE_IN, ICE_OUT, and 
ICE_BLOB. 

name The name of the parameter. 

value The value of the parameter. 

Description 

This structure is used with ICE Server functions to pass parameter 
information. The parameters to a server function are passed as an array of 
ICE_C_PARAMS structures. Each ICE_C_PARAMS entry defines one of the 
properties of the server or extension function. Depending on the action or 
request, the parameters must be specified as a combination of either ICE_IN 
for input, ICE_OUT for output, or ICE_BLOB. 

Used By 

ICE_C_Execute() 

Example 

The following code line assigns values to the params[] array, which will be 
passed to the ICE_C_Execute() function with the name of the “user” server 
function: 

ICE_C_PARAMS params[] =  
{ {ICE_IN, "action", "select"}, 
 {ICE_OUT, "user_name", NULL}, 
 {ICE_OUT, "user_timeout", NULL}, 
 {0, NULL, NULL } 
}; 

The effect will be to choose the action of selecting data from the user_name 
and user_timeout columns in the Web Deployment Option User() server 
function. (For the server function properties, see “Appendix D: ICE Server 
Functions.”) 



Sample C API for Web Deployment Option 

Chapter 7: Using the C API    7–11 

Sample C API for Web Deployment Option 
The following example program will select data from the user_name and 
user_timeout columns within the Web Deployment Option User() server 
function: 

#include <stdio.h> 
#include <ice_c_api.h> 

int 
main (int argc, char** argv) 
{ 
ICE_C_CLIENT client = NULL; 
ICE_STATUS status = 0; 

C_APIInitialize (); 

if ((status = ICE_C_Connect(NULL, argv[1], argv[2], &client)) == SUCCESS) 
 { 
  ICE_C_PARAMS params[] = { {ICE_IN, "action", "select"}, 
   {ICE_OUT, "user_name", NULL}, 
   {ICE_OUT, "user_timeout", NULL}, 
   {0, NULL, NULL}}; 
   if ((status = ICE_C_Execute(client, "user", params)) ==   
    SUCCESS) 
   { 
    int end; 
    do  
    { 
     if ((status = ICE_C_Fetch(client, &end)) ==  
      SUCCESS && !end) 
       printf("%s (%s)\n", 
ICE_C_GetAttribute(client, 1), 
       ICE_C_GetAttribute(client, 2)); 
    } 
    while (status == 0 && !end); 
    ICE_C_Close(client); 
   } 
   ICE_C_Disconnect(&client); 
  } 
return(status); 
} 





  

Chapter 8: Writing ICE Server Extension Functions    8–1 

Chapter 8: Writing ICE Server Extension 
Functions 
 

You can write C-callable ICE Server extension functions that can be invoked 
from an HTML macro page. A strict interface enables the ICE Server to 
construct a list of function names and their parameter names from the loaded 
module (DLL or shared library) and to pass values to and retrieve values from 
an extension function. 

This chapter examines the concepts used when writing server extension 
functions and calling them from within your applications. The examples used 
throughout the chapter are taken from the sample Plays tutorial Web 
application. 

Defining an Initialization Function 
An initialization function called InitICEServerExtension() must be present 
within your extension library in order to provide a description of the extension 
function. It serves as an entry point to determine all other entry points. This 
function provides the address of a structure that holds the function 
description. 

The InitICEServerExtension() function is specified as follows: 

char* InitICEServerExtension(PSERVER_DLL_FUNCTION* 
 ppServerDllFunction); 

The ppServerDllFunction parameter is a pointer that is updated with the 
address of the structure containing a function description table. The section 
that follows discusses the specification of this structure. 

The InitICEServerExtension() must return NULL if it is completed successfully. 
If unsuccessful, the function must return an error string that is displayed via 
the HTML page. 

Example The following initialization function is used in the play_neworder.sc file in the 
src subdirectory under the plays directory. It returns a pointer to the 
FunctionTable structure: 

InitICEServerExtension(PSERVER_DLL_FUNCTION*  ppServerDllFunction) 
{ 
 ICE_STATUS status= NULL; 
 *ppServerDllFunction = FunctionTable; 
 return status; 
} 



Providing a Function Description 

8–2     Web Deployment Option User Guide 

Providing a Function Description 
In your extension library, you must provide a structure that describes the 
function. It defines two members describing the function name and its 
parameters. The structure is specified as follows: 

typedef struct structure_name 
{ 
       char* pszName; 
       char** pszParams; 
}SERVER_DLL_FUNCTION, *PSERVER_DLL_FUNCTION 

The first member shown, pszName, is a string pointer that points to a string 
providing the function name. The function name must be identical to the name 
that is declared in the code within your HTML page. 

The pszParams member is an array of string pointers that point to the list of 
parameter name strings. These names are used to ensure that parameters 
from the macro are passed in the correct order to the function. 

Example This example shows how the newOrder extension function is described within 
the play_newOrder library, using a structure and several static variable 
definitions. Within the play_newOrder.sc file, the ice_function_table structure 
appears as follows: 

typedef struct ice_function_table 
{ 
 char*  pszName; 
 char**  pszParams; 
}SERVER_DLL_FUNCTION, *PSERVER_DLL_FUNCTION; 

Now let us see how the FunctionTable[] array is assigned. The function name 
is newOrder and the pointer to the parameter name list is 
pszNewOrderParams: 

static SERVER_DLL_FUNCTION FunctionTable[] = 
{ 
 { "newOrder", { pszNewOrderParams } }, 
 { NULL } 
}; 

The pszNewOrderParams pointer was assigned in a prior line in the file as 
follows: 

static char* pszNewOrderParams[] = 
 {"out_orderNumber", NULL}; 

In effect, the newOrder function will be called and the value of 
out_orderNumber will be returned to the program through a reference to 
“:orderNumber” in the HTML code. We will look at how the newOrder function 
works in the next section. 



Defining Your Extension Function 

Chapter 8: Writing ICE Server Extension Functions    8–3 

Defining Your Extension Function 
An ICE Server extension function provides the initialization and the termination 
processing for the function in addition to performing the extension function. 

ICE Server Extension 
Function 

You specify a server extension function, extension_name, as follows: 

char* extension_name(char** pszParam, BOOL* bData,  
       char** pContext) 

The parameters specified for an extension function are described below: 

 

Parameter Description 

pszParam A list of parameters used for input and output values. 
An empty string in the first input parameter indicates 
the end of the input parameters. 

bData Flag indicating validity of parameter values on output. 
Only used as an output parameter, TRUE indicates 
output parameters are valid for display. FALSE 
(default) indicates that no output processing is 
required after return. 

pContext A private storage area used by the function and 
should not be modified by the caller. On the first 
invocation of the function, during which initialization 
must be performed, the context pointer is updated 
with the context storage area. This is for exclusive use 
of the function and should not be modified by the 
caller. 

 

Termination 
Processing 

To signal termination, the ICE Server calls the function with an empty string 
for the first input parameter after all values have been processed. This 
indicates to the function to free all allocated memory. 

Since all extension functions run in the context of the ICE Server, it is 
imperative that they are thread-safe and execute as efficiently as possible. 

Example In this example, the newOrder() extension function is shown. It calls an Ingres 
procedure (new_order) to generate an order for an Internet shopping 
application. The procedure sets the out_OrderNumber parameter, which is 
passed back to the calling Web page, play_shopHome.html. 

The newOrder() function appears as follows: 

newOrder(char** out_OrderNumber, BOOL* print, char**  context) 
{ 



Calling an Extension Function from a Web Page 

8–4     Web Deployment Option User Guide 

 ICE_STATUS  status = NULL; 
 *print = FALSE; 
 /* 
** If the context is NULL this is the first invocation. 
** Declare an SQL variable to take the returned value from the 
** procedure and allocate memory for returning the ice result. 
** 
** Connect to the icetutor database, execute the procedure and 
** store the value. 
** 
** Set the print flag to indicate valid data returned. 
*/ 
 if (*context == NULL) 
 { 
  exec sql begin declare section; 
  long x; 
  exec sql end declare section; 

  *context = HeapAlloc(GetProcessHeap(), 
   HEAP_ZERO_MEMORY, MAX_SIZE); 
  if (*context == NULL) 
  { 
   return ("Memory error\n"); 
  } 

  exec sql connect 'icetutor' identified by  
   'icedbuser'; 
  exec sql execute procedure new_order into :x; 

  exec sql commit; 
  exec sql disconnect; 

  sprintf (*context, "%d", x); 

  *out_OrderNumber = *context; 
  *print = TRUE; 
 } 
 else 
 { 
  HeapFree (GetProcessHeap(), 0, *context); 
  *context = NULL; 
 } 

 return (status); 
} 

Calling an Extension Function from a Web Page 
For an example of how extensions are called from within an application, we 
will now take a look at the play_shopHome.html page in the Plays application. 
A Web Deployment Option macro uses the FUNCTION macro keyword to call 
the newOrder extension function within the play_NewOrder library. 

The Web Deployment Option macro appears as follows: 

<!-- #ICE REPEAT IF (DEFINED (e_orderNumber) AND  
 `:e_shopTxn` != `COMPLETE`) 
  THEN=`` 
  ELSE=`<!-- #ICE REPEAT 
   FUNCTION=``play_NewOrder.newOrder`` 
   HTML=``<!-- #ICE 
    DECLARE=````session.e_orderNumber= 



Sample Extension Library 

Chapter 8: Writing ICE Server Extension Functions    8–5 

    :out_orderNumber```` 
    -->`` 
  -->` 
--> 

The HTML keyword is then used to display the value resulting from the 
function call, which is the order number, represented by the out_orderNumber 
variable. 

For a description the FUNCTION macro keyword, see FUNCTION Keyword in 
the chapter “Using the Macro Language.” 

Sample Extension Library 
For your reference, this section contains an example ICE Server extension 
library—including an initialization function, extension function, and supporting 
code. 

Plays Example 
Windows

 
The header file and extension source code file for play_newOrder is shown 
below.  

play_NewOrder.h 

The play_newOrder.h header file appears as follows: 

# include <windows.h> 

# define ICE_EXT_API declspec(dllexport) 

typedef char*  ICE_STATUS; 
typedef ICE_STATUS (*PFNEXTENSION) (char**, BOOL*,  char **); 

typedef struct ice_function_table 
{ 
 char*  pszName; 
 char**  pszParams; 
}SERVER_DLL_FUNCTION, *PSERVER_DLL_FUNCTION; 

typedef ICE_STATUS  (*PFNINITIALIZE)(PSERVER_DLL_FUNCTION*); 

play_newOrder.sc 

The play_newOrder.sc extension source code file appears as follows: 

# include "play_NewOrder.h" 

# define MAX_SIZE 20  /* about the right size  
 for an int */ 
/** 
** Parameter name list. 
** A NULL pointer terminates the list. 



Sample Extension Library 

8–6     Web Deployment Option User Guide 

*/ 
static char* pszNewOrderParams[] = 
 {"out_orderNumber", NULL}; 

/** 
** Function Description 
*/ 
static SERVER_DLL_FUNCTION FunctionTable[] = 
{ 
  { "newOrder", { pszNewOrderParams } }, 
  { NULL } 
}; 

/* 
 * Name: InitICEServerExtension 
 * 
 * Description: 
 *  Mandatory function for providing function  
 *   description to the server. 
 * 
 * Inputs: 
 *  None. 
 * 
 * Outputs: 
 *  ppServerDllFunction: pointer to the function  
 *  description structure. 
 * 
 * Returns: 
 *  pointer to error text 
 *  NULL on success 
 */ 
ICE_EXT_API ICE_STATUS 
InitICEServerExtension(PSERVER_DLL_FUNCTION* 
 ppServerDllFunction) 
{ 
 ICE_STATUS status= NULL; 
 *ppServerDllFunction = FunctionTable; 
 return status; 
} 

/* 
 * Name: newOrder 
 * 
 * Description: 
 *  Return the next order number 
 * 
 * Inputs: 
 *  None. 
 * 
 * Outputs: 
 *  out_OrderNumber 
 * 
 * Return: 
 *  pointer to error text 
 *  NULL on success 
 */ 
ICE_EXT_API ICE_STATUS 
newOrder(char** out_OrderNumber, BOOL* print, char** 
 context) 
{ 
 ICE_STATUS  status = NULL; 

 *print = FALSE; 
 /* 
 ** if first invocation allocate some memory for 
 ** the result 
 */ 
 if (*context == NULL) 



Sample Extension Library 

Chapter 8: Writing ICE Server Extension Functions    8–7 

 { 
  exec sql begin declare section; 
  long x; 
  exec sql end declare section; 

 *context = HeapAlloc(GetProcessHeap(), 
  HEAP_ZERO_MEMORY, MAX_SIZE); 
 if (*context == NULL) 
 { 
  return ("Memory error\n"); 
 } 

 exec sql connect 'icetutor' identified by 
  'icedbuser'; 
 exec sql execute procedure new_order into :x; 

 exec sql commit; 
 exec sql disconnect; 

 sprintf (*context, "%d", x); 

 *out_OrderNumber = *context; 
 *print = TRUE; 
 } 
 else 
 { 
  HeapFree (GetProcessHeap(), 0, *context); 
  *context = NULL; 
 } 

 return (status); 
} 





  

 

Appendix A: XML Primer    A–1 

Appendix A: XML Primer 
 

This appendix provides an introduction to XML (Extensible Markup Language), 
some basic XML syntax, and examples of how the Web Deployment Option 
macro language can be used to create XML applications. 

XML Overview 
XML is a standard that allows users to specify their own tags. Tags can be 
nested, just like in HTML. This means that XML can be used to describe any 
form of data that conforms, or can be transformed to conform, to a tree 
structure. XML is a markup language much like HTML—in fact they have a 
common source: SGML. HTML was designed primarily to describe how to 
present data whereas XML was designed to describe the data itself. Unlike 
HTML, tags are not predefined in XML; the user must define their own. 
Currently users formally describe their tags using a DTD (Document Type 
Definition).  

XML does not replace HTML; the two have different and complementary goals. 
XML was designed to describe data and HTML was designed to describe how to 
display data. 

 

  
Tip: For a complete description of the latest XML standard, you can access 
the URL http://www.xml.org. 
 

Extensible 

In HTML, the tags that can be used and their structure (the order in which 
they can appear) are fixed by the HTML standard. Only by changing the 
standard can new tags be introduced. The only tags an HTML author can use 
are those that are defined by the standard. In contrast, in XML the author first 
defines their own tags and structure, and then they create their documents. 
The tag set can thus be fine-tuned to a particular problem domain.  

http://www.xml.org/


XML Syntax 

A–2     Web Deployment Option User Guide 

Complementary with HTML 

It is worth pointing out that XML should not be seen as a replacement for 
HTML. It seems highly likely that XML will be increasingly used to exchange 
data between computer system, including between a web server and its 
clients. When the data is to be presented to a browser, it will be transformed 
into something that the browser is designed to accept, for example HTML or 
WML. 

XML Syntax 
This section presents some basic XML syntax rules. 

All Elements Have A Closing Tag 

In HTML some elements do not have to have a closing tag. For example, the 
following code is legal in HTML: 

<p>This is my first paragraph 
<p>This is my second paragraph 

In XML all elements must have a closing tag like this: 

<p>This is my first paragraph</p> 
<p>This is my second paragraph</p> 

XML Tags Are Case Sensitive 

XML tags are case sensitive. The tag <Letter> is different from the tag 
<letter>. Opening and closing tags must therefore be written with the same 
case: 

<Letter>This is incorrect</letter> 

<letter>This is correct</letter> 

XML Elements Must Be Properly Nested 

In HTML it is possible to have a construct where the elements intersect one 
another, for example: 

<b><i>bold and italic text</b></i> 

In XML all elements must be properly nested within each other like this: 

<b><i>bold and italic text</i></b> 



XML Example 

Appendix A: XML Primer    A–3 

XML Documents Must Have a Root Tag  

All XML documents must contain a single start/end tag pair to define the root 
element. All other elements must be nested within the root element. Any 
element can contain sub (child) elements. The sub elements must be in pairs 
and correctly nested within their parent element: 

<root_element> 
 <child_element> 
  <subchild> 
   Sub child data 
  </subchild> 
 </child_element> 
</root_element>  

Attribute Values Must Always Be In Quotation Marks 

As in HTML, XML elements can have attributes. Unlike in HTML, in XML, the 
attribute values must always be surrounded by quotation marks. 

XML Example 
Memo Example Here is an example of a simple, but complete, XML document. 

<?xml version="1.0"?> 
<memo> 
 <to>Fred</to> 
 <from>Harriet</from> 
 <subject>Weekend</subject> 
 <memoBody>Would you like to go Yachting on Saturday?</memoBody> 
</memo> 

The first line in the document contains the XML declaration, which should 
always be included. It defines the XML version of the document. In this case, 
the document conforms to the 1.0 specification of XML:  

<?xml version="1.0"?> 

The next line defines the first element of the document (the root element):  

<memo> 

The following lines defines 4 child elements of the root (to, from, Subject, and 
memoBody): 

<to>Fred</to> 
<from>Harriet</from> 
<Subject>Weekend</Subject> 
<memoBody>Would you like to go Yachting on Saturday?</memoBody> 

Finally, the last line defines the end of the root element: 

</memo> 



XML and Web Deployment Option Queries 

A–4     Web Deployment Option User Guide 

Note: The elements simply describe the data. There is no display-related 
information. Display information could be added. 

Memo DTD The following diagram represents the DTD used to validate the above 
example 

memo

to

from

subject

memoBody
 

Here is the same DTD in text form: 

<!ELEMENT memo  (to , from , subject , memoBody )> 
<!ELEMENT to  (#PCDATA )> 
<!ELEMENT from  (#PCDATA )> 
<!ELEMENT subject  (#PCDATA )> 
<!ELEMENT memoBody  (#PCDATA )> 

XML and Web Deployment Option Queries 
An XML vocabulary has been developed to work with Web Deployment Option 
and this has been appended to the XHTML standard. A translation tool is 
provided to process the XML ICE language into a form that Web Deployment 
Option can interpret. The result of this is that a Web author can use any XML-
aware editor to create Web Deployment Option templates. Here is an example 
snippet of code generated with one such tool: 

<i3ce_query i3ce_database="shakespeare">  
 <i3ce_sql i3ce_transaction="MyTransaction“>  
  <i3ce_statement> 
   select title, type from plays 
  </i3ce_statement>  
  <i3ce_headers> 
   <i3ce_header i3ce_column="title" i3ce_text="Play Title"/> 
   <i3ce_header i3ce_column="type" i3ce_text="Type of Play"/>  
  </i3ce_headers> 
  <i3ce_relation_display i3ce_typename="i3ce_table"/>  
 </i3ce_sql>  
</i3ce_query> 



  

Appendix B: HTML Primer    B–1 

Appendix B: HTML Primer 
 

HTML is a collection of styles (indicated by markup tags) that defines the 
components of a Web document. HTML documents are in plain text format 
(also known as ASCII) and can be created using any text editor. 

This appendix uses some brief examples to describe the small subset of the 
HTML standard that is used by Web Deployment Option and in the examples in 
this guide. 

The Development of HTML 
HTML was originally developed by Tim Berners-Lee while at CERN. During the 
1990s, while the Web experienced explosive growth, HTML also grew beyond 
its simple beginnings. The original aim of HTML was to enable research 
workers to share their papers electronically. For this to happen, it was 
sufficient to establish a one-time connection between the browser and the 
server to download the required information and display it to the user. Each 
connection existed on its own and was not related to any other. There was no 
session information and the connections were therefore stateless. This lead to 
problems, especially in the field of database access and transaction control. 
These days, state information is typically held in the form of a so-called 
“cookie,” which is sent by the server to the client. 

In all, there are less than 100 tags in the HTML standard; however, producing 
acceptable results using Web Deployment Option does not require knowledge 
of all of them. In this appendix, only the most important HTML tags from a 
Web Deployment Option point of view are presented. 

 

  
Tip: For a complete description of the HTML 4.01 standard, you can access 
the URL http://www.w3.org/TR/html401/.  
 

Anatomy of an HTML Document 
To begin, we will take a quick tour of the structure of an HTML document. An 
HTML document is made up of two types of content. These are the text itself 
and formatting instructions known as markup. Markup tags may, or may not, 
surround text. The combination of markup tags and their associated text is 
known as an element. 

http://www.w3.org/TR/html401/


Anatomy of an HTML Document 

B–2     Web Deployment Option User Guide 

General Usage of 
HTML Elements 

For example, a level three section heading would be indicated as follows: 

<H3> 
This is a level three section heading 
</H3> 

In this example of a level three heading element, the heading is introduced by 
the tag <H3>. The text of the heading follows and is terminated by the </H3> 
tag. The example could equally well be shown as follows: 

<H3> This is a level three section heading </H3> 

The new lines can be included for clarity (in HTML, new lines count as white 
space). As we can see from this example, text appears as is, without any 
decoration. 

The HTML tags are distinguished from normal text by angle brackets “<” and 
“>”. For example, the <BR> tag denotes a line break. HTML makes no 
distinction about the case of the tags, so the line break tag could also appear 
as <br>. 

Document Header 
and Body 

Generally, an HTML document consists of two parts: a header and a body. A 
limited number of elements are allowed in the header, the rest appear in the 
body. Comments are allowed in both. Here is a simple example of a simple 
HTML page: 

<HTML> 
<HEAD> 
<TITLE> 
Welcome 
</TITLE> 
</HEAD> 
<BODY> 
<H1> 
Welcome 
</H1> 
<!-- This is a comment --> 
<B>Hello World</B> 
</BODY> 
</HTML> 



Anatomy of an HTML Document 

Appendix B: HTML Primer    B–3 

Displaying the HTML 
Document in a 
Browser 

If displayed in a browser, this simple HTML document would appear as 
follows with our main message “Hello World”: 

 

Let’s examine the individual elements in the document. Note that most tags 
come in pairs, though there are notable exceptions (for example, line break, 
denoted by <BR>). 

Document Beginning 
and End Tags 

In this example, the entire document is bounded by the <HTML> tag pair: 

<HTML> 
... 
</HTML> 

Header Following the <HTML> tag is the head element, bounded by the tags: 

<HEAD> 
... 
</HEAD> 

Title The head element contains a title element that appears as follows: 

<TITLE> 
Welcome 
</TITLE> 

The title typically appears in the title bar of the browser window. 



Anatomy of an HTML Document 

B–4     Web Deployment Option User Guide 

Body The head element is followed by the main body element of the document. This 
is bounded by the tags: 

<BODY> 
... 
</BODY> 

Headings The body element can contain a large number of other elements—here it 
contains a heading and some plain text. Traditionally, the level one heading of 
a document is identical to its title. The level one heading in our example is as 
follows: 

<H1> 
Welcome 
</H1> 

Comments The heading is followed by an HTML comment:   

<!-- This is a comment -->  

The comment is not rendered by the browser and is made use of extensively 
by Web Deployment Option. 

Document Output Our main message, “Hello World,” appears as output in a browser. 

HTML Rendering and 
Code Readability 

It is worth remembering that the HTML browser is responsible for formatting 
the text according only to the directives laid down by the HTML tags 
accompanying the text. In particular, new lines count as white space. 
Therefore, a browser will render a very long source text line in the same way 
as it would a source text with one word per line. The text of our example 
could equally well have appeared as follows: 

<B> 
Hello 
World 
</B> 

It would have been displayed exactly as before. To preserve readability in 
HTML files, headings should be placed on separate lines and blank lines (in 
addition to the <P> tags) should separate paragraphs. 

The body element is terminated with the </BODY> tag and the entire 
document is terminated with the </HTML> tag. 

It is worthwhile spending a couple of minutes typing this example in with a 
text editor and then checking that the rendered result in a browser looks like 
that depicted previously in this appendix. 



Elements Used by Web Deployment Option 

Appendix B: HTML Primer    B–5 

Elements Used by Web Deployment Option 
An HTML document can be made dynamic—that is, so that its content is 
updated automatically to reflect the contents of the database by passing 
requests to the ICE Server. This is typically achieved by submitting the request 
as an HTML form. Parameters can be passed by setting Web Deployment 
Option variables in the form. 

An HTML form is an element containing, in addition to the normal markup 
elements, special elements called controls. These controls allow a user to fill in 
a form prior to submitting it for processing by, for example, Web Deployment 
Option through a web server. The following code sample produces a dynamic 
SQL input form: 

<HTML> 
<HEAD>  
<TITLE>Web Deployment Option Dynamic SQL Demo</TITLE>  
</HEAD>  
<BODY>  
<FORM ACTION="/bin/oiice.exe" METHOD="GET">  
<H1>  
Web Deployment Option Dynamic SQL Console  
</H1>  
User Id: <INPUT TYPE=text NAME="ii_userid" MAXLENGTH=32 VALUE="ingres">  
Password: <INPUT TYPE=password NAME="ii_password">  
<HR>  
<INPUT TYPE=hidden NAME="ii_database" VALUE="icedb">  
<TEXTAREA ROWS=6 COLS=80 NAME="ii_query_statement">  
select * from <my_table>  
</TEXTAREA>  

<INPUT TYPE=SUBMIT VALUE="Execute Query">  
<INPUT TYPE=RESET VALUE="Start Again">  
</FORM>  
</BODY>  
</HTML>  

In this example, the HEAD section is essentially the same as in the previous 
one. We will therefore only examine the new features. This is the form that 
appears in the body of the document. The following tag introduces the form 
element: 

<FORM ACTION="/bin/oiice.exe" METHOD="GET" 
 TARGET="SQL_OUT">  

A form provides a way of gathering user input. This form tag has two 
attributes. The first, ACTION, specifies the entity responsible for dealing with 
the form once it has been submitted. In this case, a binary executable, 
/bin/oiice.exe, processes the data submitted. The second attribute, METHOD, 
denotes how the data will be presented to the oiice.exe program. The GET 
method appends the form data set to the form URI (specified by the ACTION 
attribute) and the new URI is sent upon submission. The POST method 
includes the data set in the body of the form. 

 The Get() method is used when the form has no side effects. For example, 
database searches have no visible side effects and make ideal applications 
for the Get() method. 



Elements Used by Web Deployment Option 

B–6     Web Deployment Option User Guide 

 If the service associated with the processing of a form causes side effects 
(for example, if the form updates a database), the Post() method should 
be used. 

Following the level one heading “Web Deployment Option Dynamic SQL Demo” 
the next new feature is apparent, an input control: 

<INPUT TYPE=text NAME="ii_userid" MAXLENGTH=32 
 VALUE="ingres">  

This INPUT tag specifies a default (text) input control, which accepts one line 
of input limited to a maximum length of 32 characters with the MAXLENGTH 
attribute. The text the user types in is associated with the named variable 
ii_userid and a default value of ingres is supplied. The next input control is of a 
different type, namely “password”: 

<INPUT TYPE=password NAME="ii_password"> 

The control is basically the same as for “text”, but the user input is rendered in 
such a way as to obscure what the user typed (e.g., by echoing a series of 
asterisks). Note that the password text is sent over the network as clear text. 

Another type of input control, the HIDDEN type, appears next: 

<INPUT TYPE=hidden NAME="ii_database" 
 VALUE="icedb"> 

Here the author wants to set a variable but not render it, hiding the value from 
the user. In this case, the ii_database variable contains the value “icedb.”  The 
user sees nothing on the rendered page. Following the hidden input control is 
an element that allows more than one line of input, an area of text: 

<TEXTAREA ROWS=6 COLS=80 NAME="ii_query_statement"> 
 select * from <my_table> </TEXTAREA> 

The <TEXTAREA> tag specifies the size of the visible input area, here 6 rows 
by 80 columns (if the user needs more space, the browser scrolls) and the 
variable is named ii_query_statement. An initial value is set to be “select * 
from <my_table>”, the angle brackets indicating that the user should supply a 
table name to complete the statement. The element is completed by a 
mandatory </TEXTAREA> tag. 

Finally, the form is completed by having a SUBMIT and a RESET button. These 
appears as: 

<INPUT TYPE=SUBMIT VALUE="Execute Query"> 
<INPUT TYPE=CANCEL VALUE="Start Again">  

The SUBMIT control causes the form’s data set (that is, the control name-
value pairs) to be submitted to the oiice.exe program. 

The RESET control causes the controls on the form to be reset to their initial 
values; if a control does not have an initial value, the effect of a reset is not 
defined. 



Elements Generated by Web Deployment Option 

Appendix B: HTML Primer    B–7 

The form element is terminated by the </FORM> tag. 

An input form is used to gather user input and to act upon it. In this example, 
we have seen how to mimic the action of the Terminal Monitor in a browser, 
but we could just as easily have run a report or executed a database 
procedure. Other chapters in this guide deal with these topics; the basics of 
the HTML remain the same. 

Elements Generated by Web Deployment Option 
To reduce the burden on the Web author still further, Web Deployment Option 
can generate some popular HTML elements automatically. These include the 
following: 

 Table 

 Selector control  

 Parameterized hyperlink 

In addition, Web Deployment Option can generate all the HTML tags required 
to present a standard report (for example, generated by RBF) to a Web 
browser. It wraps the report on your behalf. The result is “What You Got Is 
What You See” (WYGIWYS). 

The Web Deployment Option macro processor generates the table, selector 
control, and parameterized hyperlink elements. For more information, see  
“Chapter 6: Creating Web Applications: An Example.” 

Accessing Web Deployment Option Pages 
Finally, you can access a Web Deployment Option document through an 
address that is formatted with the following syntax. 

Windows
 On Windows, the syntax is:  

/ice-bin/oiice.[dll|exe]/[session_group/][business_unit[]{location_name/}document_name[]] 

For example: 

/ice-bin/oiice.dll/mygroup/myunit[myloc/mydoc.html]  



Accessing Web Deployment Option Pages 

B–8     Web Deployment Option User Guide 

UNIX
 On UNIX, the syntax is: 

/ice-bin/oiice.1.so/[session_group/][business_unit[]{location_name/}document_name[]] 

For example: 

/ice-bin/oiice.1.so/mygroup/myunit[myloc/mydoc.html]  



  

Appendix C: Reserved Words    C–1 

Appendix C: Reserved Words 
 

HTML variables are defined using the HTML <INPUT> tag. A Web Deployment 
Option reserved word and corresponding value can be specified for the NAME 
and VALUE options, as shown below: 

<INPUT TYPE="input_type" NAME="ice_reserved_word" VALUE="value"> 

Reserved Words 
The following table summarizes the HTML variables Web Deployment Option 
recognizes. The reserved words provided with Web Deployment Option 
(formerly Ingres/ICE) Version 2.0 are supported for compatibility purposes. 
When applicable, you should use Version 2.5 reserved words because they 
provide enhanced functionality. 

 

Reserved Word Description 

http_remote_addr (2.5) The IP address of the requestor. 

http_remote_host (2.5)  The resolved name of the requestor. If DNS 
resolution is not available, the value will be the 
same as http_remote_addr. 

http_user_agent (2.5) The browser type of the requestor. 

ii_action (2.5) The action to be taken when opening or closing a 
Web Deployment Option session. Valid values are: 

declare—used to create a new Web user with a 
specified user name, password, and profile (using 
the ii_userid, ii_password, and ii_profile variables).

connect—used to open a session with the ICE 
Server with a specified user and password (using 
the ii_userid and ii_password variables). 

disconnect—used to close a session with the ICE 
Server. 

ii_application The user application to execute in the web server’s 
CGI directory. 

ii_authtype (2.5) The password authentication type. Possible values 
are ICE, for Web Deployment Option 
authentication, and OS, for operating system 
authentication. 



Reserved Words 

C–2     Web Deployment Option User Guide 

Reserved Word Description 

ii_binary_ext The default file extension to use when storing a 
BLOB from a database to disk. This extension is 
used when Web Deployment Option is unable to 
determine the file type stored in a database. 

ii_cookie (2.5) The cookie used to maintain session context on 
variable-based pages. 

ii_database The name of the database used when executing a 
report or an SQL-based request. 

If a value for ii_database is not defined, an error is 
generated and returned to the client. 

ii_error_message (2.5) The message to be displayed to the client when a 
Web Deployment Option request has not completed 
successfully. 

If the Web author does not provide a value, a 
default error message is displayed. It is 
recommended that a value for ii_error_message be 
assigned so that clients do not become confused as 
to why a particular error message (an internal error 
message, for example) has appeared. 

To display this message to the Web client, 
ii_error_url must not be defined. 

ii_error_url (2.5) The HTML page to be loaded by the web server if 
an Ingres request has not completed successfully. 

If this is not defined, the value of ii_error_message 
is displayed. 

ii_output_dir The label of the directory to be used for Web 
Deployment Option file output. 

ii_page_header The Report-Writer output page heading. 

The value for this variable is equivalent to the 
.HEADER page report structure statement. It is 
printed at the top of the report. This variable is 
used when processing report specifications that do 
not have HTML tags embedded in them. 



Reserved Words 

Appendix C: Reserved Words    C–3 

Reserved Word Description 

ii_password The password for a Web user. If no user or 
password is supplied, the product attempts to use 
HTTP basic authentication, if enabled on the web 
server; otherwise, the default user alias stored in 
the configuration file is used. 

For Version 2.0, ii_password and ii_userid are used 
to verify the user executing a request. A value for 
ii_password is required only if ii_userid is supplied. 

ii_procedure The name of the database procedure to be 
executed by Web Deployment Option. 

This is a more secure way to execute SQL 
statements and is recommended if you plan on 
having your Ingres installation accessible by the 
general public. If you are passing variables to a 
procedure, ii_procvar_count must be defined and 
the number of variable names, data types, and 
lengths must equal the number of variables that 
are being passed to the procedure. 

ii_procvar_count The number of variables that are going to be 
passed into the procedure to be executed, which is 
defined in ii_procedure. 

ii_procvar_datan The data that is to be assigned to a procedure 
variable name (defined in ii_procvar_namen) when 
it is passed to a database procedure. 

The letter n represents the data item that 
corresponds to each procedure variable name (such 
as ii_procvar_data1, ii_procvar_data2, etc.). The 
number of data items must equal the value 
assigned to ii_procvar_count. 

ii_procvar_lengthn The procedure variable length to be passed to a 
database procedure. 

The letter n represents the procedure variable 
length number (such as, ii_procvar_length1, 
ii_procvar_length2, etc.). The number of procedure 
variable lengths must equal the value assigned to 
ii_procvar_count. 



Reserved Words 

C–4     Web Deployment Option User Guide 

Reserved Word Description 

ii_procvar_namen The name of the procedure variable to be passed to 
a database procedure. 

The letter n represents the procedure variable 
number (such as, ii_procvar_name1, 
ii_procvar_name2, etc.). The number of procedure 
variable names must equal the value assigned to 
ii_procvar_count. 

ii_procvar_typen The procedure variable data type to be passed to a 
database procedure. 

The letter n represents the procedure variable data 
type number (such as, ii_procvar_type1, 
ii_procvar_type2, etc.). The number of procedure 
variable data types must equal the value assigned 
to ii_procvar_count. Valid data types are: 

integer1 

integer2 

integer4 

float4 

float8 

byte 

varchar 

char 

long byte 

long varchar 

text 

ii_profile (2.5) The name of a profile for a newly created user 
(created by setting ii_action=`declare`). This gives 
the user privileges to access the remaining 
documents. 

ii_query_statement The dynamic SQL statement to be executed by Web 
Deployment Option. 

Variables provided for ii_query_statement are case-
sensitive. The following example indicates to Web 
Deployment Option that there are two different 
variable names being used in the query statement, 
value1 and VALUE1: 

insert into table1 values 
 (:value1, :VALUE1); 



Reserved Words 

Appendix C: Reserved Words    C–5 

Reserved Word Description 

ii_report The report to be executed by the Report Writer 
utility. 

If the report name stored in ii_report does not exist 
in the database, an error is returned to the client. If 
ii_report is defined, ii_report_location is ignored. 

ii_report_header The Report-Writer output report heading. 

The value for this variable is equivalent to the 
.HEADER report structure statement. It becomes 
the title of the HTML page. This variable is used 
when processing report specifications that do not 
have HTML tags embedded in them. 

ii_report_location The full path and file name of the report 
specification to use when generating a report. 

When using this variable, the report specification 
does not have to be stored in the database. If the 
report specification defined in ii_report_location 
does not exist, an error is returned to the client. 

ii_rowcount (2.5) The row count of the last SQL query. 

ii_rwdir The directory in which to store Report-Writer 
output. This variable is supported for backward 
compatibility for 2.0 only. It has been replaced by 
ii_output_dir. 

ii_status_info (2.5) Additional information associated with the last 
error. 

ii_status_number (2.5) The status number of the last executed macro. 

ii_status_text (2.5) The text associated with the status number. 

ii_success_message (2.5) The message to be displayed to a Web client when 
a Web Deployment Option request has completed 
successfully. 

This variable is ignored if ii_success_url has been 
defined. If a value for ii_success_message is not 
supplied, a default message is returned to the 
client. 

ii_success_url (2.5) The URL to be loaded by the web server if an 
Ingres request has completed successfully. 

ii_system The location of the Ingres installation. 

If the location is not defined, an attempt is made to 
retrieve the value from the environment settings. 



Reserved Words 

C–6     Web Deployment Option User Guide 

Reserved Word Description 

ii_unit (2.5) The business unit associated with the active 
session. 

ii_userid The name of a Web user (an aliased name). If no 
user or password is supplied, basic authentication is 
used (if enabled on the web server); otherwise, the 
default user alias stored in the configuration file is 
used. 

For Version 2.0, ii_userid and ii_password are used 
to verify the user executing a request. 



  

Appendix D: ICE Server Functions    D–1 

Appendix D: ICE Server Functions 
 

This appendix provides the properties and actions that are associated with 
each of the available ICE Server functions. Using these functions, you can 
write an application that accesses, manages, and monitors all the information 
contained in the Web Deployment Option repository. 

Security Functions 
The functions in this section allow you to access the security information in 
Web Deployment Option, which pertains to database users, database 
connections, roles, Web users, profiles, and the associations between some of 
these objects. 

DBUser() Function 

Provides access to the properties of one or more database user(s). 

The properties and actions for the DBUser() function are described as follows: 

 

Properties Action     Description 

 select retrieve insert update delete  

 4 4 4 4 4  

dbuser_id out in in in in Unique database user identifier 

dbuser_name out out in in none Database user name 

dbuser_alias out out in in none Web Deployment Option name for 
database user 

dbuser_password1 out out in in none Database user password 

dbuser_password2 out out in in none Database user password 
confirmation 

dbuser_comment out out in in none Comment for database user 



Security Functions 

D–2     Web Deployment Option User Guide 

Database() Function 

Provides access to the properties of a database connection. 

The properties and actions for the Database() function are described as 
follows: 

 

Properties Action     Description 

 select retrieve insert update delete  

 4 4 4 4 4  

db_id out in in in in Unique database connection identifier 

db_name out out in in none Virtual database name 

db_dbname out out in in none Actual database name 

db_dbuser out out in in none Unique identifier for database user 

db_comment out out in in none Comment for database connection 

Role() Function 

Provides access to the properties of a role. 

The properties and actions for the Role() function are described as follows: 

 

Properties Action     Description 

 select retrieve insert update delete  

 4 4 4 4 4  

role_id out in in in in Unique role identifier 

role_name out out in in none Role name 

role_comment out out in in none Comment for role 

User() Function 

Provides access to the properties of a Web user. 

The properties and actions for the User() function are described as follows: 

 



Security Functions 

Appendix D: ICE Server Functions    D–3 

Properties Action     Description 

 select retrieve insert update delete  

 4 4 4 4 4  

user_id out in in in in Unique Web user identifier 

user_name out out in in none Web user name 

user_authtype out out in in none Authentication type (default = ICE)

user_password1 out out in in none Web user password 

user_password2 none none in in none Web user password confirmation 

user_dbuser out out in in none Unique database user identifier 

user_comment out out in in none Comment 

user_administratio
n 

out out in in none Member of administrators; enabled 
if TRUE 

user_security out out in in none Member of security managers; 
enabled if TRUE 

user_unit out out in in none Member of business unit 
managers; enabled if TRUE 

user_monitor out out in in none Allowed to monitor; enabled if 
TRUE 

user_timeout out out in in none The maximum idle time, in 
seconds, between requests to the 
server 

User_Role() Function 

Provides access to the properties for a role associated with a Web user. 

The properties and actions for the User_Role() function are described as 
follows: 

 

Properties Action     Description 

 select retrieve insert update delete  

 4 7 4 7 4  

ur_user_id out none in none in Unique Web user identifier 

ur_role_id out none in none none Unique identifier of role associated 
with Web user 

ur_role_name out none none none none Name of role associated with Web 



Security Functions 

D–4     Web Deployment Option User Guide 

user 

User_Database() Function 

Provides access to the properties for a database connection associated with a 
Web user. 

The properties and actions for the User_Database() function are described as 
follows: 

 

Properties Action     Description 

 select retrieve insert update delete  

 4 7 4 7 4  

ud_user_id in none in none in Unique user identifier 

ud_db_id out none in none none Unique identifier of database 
connection associated with user 

ud_db_name out none none none none Name of database connection 
associated with user 

Profile() Function 

Provides access to the properties of a profile. 

The properties and actions for the Profile() function are described as follows: 

 

Properties Action     Description 

 select retrieve insert update delete  

 4 4 4 4 4  

profile_id out in in in in Unique profile identifier 

profile_name out out in in none Profile name 

profile_dbuser out out in in none Unique database user 
identification 

profile_administration out out in in none Member of administrators; 
enabled if TRUE 

profile_security out out in in none Member of security managers; 
enabled if TRUE 

profile_unit out out in in none Member of business unit 



Security Functions 

Appendix D: ICE Server Functions    D–5 

managers; enabled if TRUE 

profile_monitor out out in in none Allowed to monitor; enabled if 
TRUE 

profile_timeout out out in in none The maximum idle time, in 
seconds, between requests to the 
server 

Profile_Role() Function 

Provides access to the properties for a role associated with a profile. 

The properties and actions for the Profile_Role() function are described as 
follows: 

 

Properties Action     Description 

 select retrieve insert update delete  

 4 7 4 7 4  

pr_profile_id out none in none in Unique profile identifier 

pr_role_id out none in none none Unique identifier of role associated 
with profile 

pr_role_name out none none none none Name of role associated with profile 

Profile_Database() Function 

Provides access to the properties for a database connection associated with a 
profile. 

The properties and actions for the Profile_Database() function are described as 
follows: 

 

Properties Action     Description 

 select retrieve insert update delete  

 4 7 4 7 4  

pd_profile_id in none in none in Unique profile identifier 

pd_db_id out none in none none Unique database identifier 

pd_db_name out none none none none Database name 



Business Unit Functions 

D–6     Web Deployment Option User Guide 

Business Unit Functions 
The functions in this section allow you to access the business unit information 
within Web Deployment Option, which pertains to business units, documents, 
session groups, and the associations between some of these objects and 
others such as roles, Web users, and locations. In addition, a function is 
provided that allows you to back up your business unit. 

Unit() Function 

Provides access to the properties of a business unit. 

The properties and actions for the Unit() function are described as follows: 

 

Properties Action     Description 

 select retrieve insert update delete  

 4 4 4 4 4  

unit_id out in in in in Unique business unit identifier 

unit_name out out in in none Virtual business unit name 

unit_owner out out none none none Actual business unit name 

Unit_Role() Function 

Provides access to the properties of a role access definition for a business unit. 

The properties and actions for the Unit_Role() function are described as 
follows: 

 

Properties Action     Description 

 select retrieve insert update delete  

 7 4 7 4 7  

ur_unit_id none in none in none Unique business unit identifier 

ur_role_id none out none in none Unique identifier for role associated 
with business unit 

ur_role_name none out none none none Name of role associated with 
business unit 

ur_role_execute none out none in none Visible permission; enabled if 
visible 



Business Unit Functions 

Appendix D: ICE Server Functions    D–7 

Properties Action     Description 

 select retrieve insert update delete  

 7 4 7 4 7  

ur_read none out none in none Read permission; enabled if 
readable 

ur_insert none out none in none Insert permission; enabled if 
insertable 

Unit_User() Function 

Provides access to the properties of the Web user access definition for a 
business unit. 

The properties and actions for the Unit_User() function are described as 
follows: 

 

Properties Action     Description 

 select retrieve insert update delete  

 7 4 7 4 7  

uu_unit_id none in none in none Unique business unit identifier 

uu_user_id none out none in none Unique identifier of Web user 
associated with business unit 

uu_user_name none out none none none Name of Web user associated with 
business unit 

uu_execute none out none in none Visible permission; enabled if visible 

uu_read none out none in none Read permission; enabled if 
readable 

uu_insert none out none in none Insert permission; enabled if 
insertable 

Unit_Location() Function 

Provides access to the properties for a location associated with a business unit. 

The properties and actions for the Unit_Location() function are described as 
follows: 

 



Business Unit Functions 

D–8     Web Deployment Option User Guide 

Properties Action     Description 

 select retrieve insert update delete  

 4 7 4 7 4  

ul_unit_id in none in none in Unique business unit identifier 

ul__location_id out none in none none Unique identifier for location 
associated with business unit 

ul_location_name out none none none none Name of location associated with 
business unit 

Unit_Copy() Function 

Copies a business unit to a file to back it up or move it to another system. 

The properties and actions for the Unit_Copy() function are described as 
follows: 

 

Properties Action  Description 

 in out  

 4 4  

unit_id in in Unique business unit identifier 

copy_file in none Name of the file that contains the 
business unit documents and their 
descriptions 

default_loc in none Default location used when the original 
one does not match the new location 

Document() Function 

Provides access to the properties of a document. 

The properties and actions for the Document() function are described as 
follows: 

 



Business Unit Functions 

Appendix D: ICE Server Functions    D–9 

Properties Action     Description 

 select retrieve insert update delete  

 4 4 4 4 4  

doc_id out in in in in Unique document identifier 

doc_type out out in none none Type of object: page or facet 

doc_unit_id out out in in none Associated business unit identifier 

doc_unit_name out out in none none Associated business unit name 

doc_name out out in in none Document name 

doc_suffix out out in in none Document extension 

doc_public out out in in none Access flag tag; enabled if public 

doc_pre_cache out out in in none Access flag tag; enabled if pre-
cached 

doc_perm_cache out out in in none Access flag tag; enabled if 
permanent 

doc_session_cache out out in in none Access flag tag; enabled if session 

doc_file none none in in none name of the remote user file 

doc_ext_loc out out in in none Location identifier of the external file 
on the server 

doc_ext_file out out in in none Name of the external file on the 
server 

doc_ext_suffix out out in in none Extension of the external file on the 
server 

doc_owner out out none none none Document owner 

doc_transfer none none none in none Request to transfer an external 
document into the repository 

Document_Role() Function 

Provides access to the properties for a role associated with a document. 

The properties and actions for the Document_Role() function are as follows: 

 



Business Unit Functions 

D–10     Web Deployment Option User Guide 

Properties Action     Description 

 select retrieve insert update delete  

 7 4 7 4 7  

dr_doc_id none in none in none Unique document identifier 

dr_role_id none out none in none Unique identifier for role associated 
with document 

dr_role_name none out none none none Name of role associated with 
document 

dr_role_execute none out none in none Visible permission; enabled if visible 

dr_read none out none in none Read permission; enabled if readable 

dr_insert none out none in none Insert permission; enabled if 
insertable 

Document_User() Function 

Provides access to the properties for a Web user associated with a document. 

The properties and actions for the Document_User() function are as follows: 

 

Properties Action     Description 

 select retrieve insert update delete  

 7 4 7 4 7  

du_doc_id none in none in none Unique document identifier 

du_user_id none out none in none Unique identifier of user associated 
with Web user 

du_user_name none out none none none Name of Web user associated with 
document 

du_execute none out none in none Execute permission; enabled if 
document is executable 

du_read none out none in none Read permission; enabled if document 
is readable 



Server Function 

Appendix D: ICE Server Functions    D–11 

Properties Action     Description 

 select retrieve insert update delete  

 7 4 7 4 7  

du_update none out none in none Update permission; enabled if 
document can be updated 

du_delete none out none in none Delete permission; enabled if document 
can be deleted 

Session_Grp() Function 

Provides access to the properties of a session group. 

The properties and actions for the Session_Grp() function are as follows: 

 

Properties Action     Description 

 select retrieve insert update delete  

 4 4 4 4 4  

sess_id out in in in in Unique session group identifier 

sess_name out out in in none Session group name 

Server Function 
The function in this section allows you to access the server information in Web 
Deployment Option, including locations. 

ICE_Locations() Function 

Provides access to the properties of a location. 

The properties and actions for the ICE_Locations() function are as follows: 

 



Monitoring Functions 

D–12     Web Deployment Option User Guide 

Properties Action     Description 

 select retrieve insert update delete  

 4 4 4 4 4  

loc_id out in in in in Unique location identifier 

loc_name out out in in none Location name 

loc_path out out in in none File system directory specification for 
the location 

loc_extensions out out in in none List of supported extensions 

loc_http out out in in none Location type; enabled if HTTP visible 

loc_ice out out in in none Location type; enabled if HTTP invisible 

doc_public out out in in none Location type; enabled if public 

Monitoring Functions 
The functions in this section allow you to access information within Web 
Deployment Option that allows you to monitor activity. This includes active 
users, connected users, transactions, cursors, cached documents, and 
database connections. 

Active_Users() Function 

Provides access to the properties of an active user. 

The properties and actions for the Active_Users() function are as follows: 

 

Properties Action  Description 

 select delete  

 4 4  

name out in Unique active session identifier 

ice_user out none Remote user cookie and unique user 
session identifier 

host out none HTTP server or C client which issued the 
request 

query out none The SQL statement(s) issued by the active 
user 



Monitoring Functions 

Appendix D: ICE Server Functions    D–13 

err_count out none The number of errors that occurred during 
the active session 

ICE_Users() Function 

Provides access to the properties of a connected Web user. 

The properties and actions for the ICE_Users() function are as follows: 

 

Properties Action  Description 

 select delete  

 4 4  

name out in Unique user session identifier (cookie) 

user out none Web user name 

req_count out none Number of active users who are using this 
user session 

timeout out none The maximum idle time, in seconds, 
between requests to the server 

ICE_User_Transactions() Function 

Provides access to the properties of a user transaction. 

The properties and actions for the ICE_User_Transactions() function are as 
follows: 

 

Properties Action  Description 

 select delete  

 4 4  

key out in Unique user identifier 

name out none Transaction name 

owner out none Transaction owner 

connection out none Identifier of the database connection for 
the transaction 



Monitoring Functions 

D–14     Web Deployment Option User Guide 

ICE_User_Cursors() Function 

Provides access to the properties of a user cursor. 

The properties and actions for the ICE_User_Cursors() function are as follows: 

 

Properties Action  Description 

 select delete  

 4 4  

key out in Unique user identifier 

name out none Cursor name 

owner out none Cursor owner 

query out none SQL statement(s) that initiated the 
cursor 

ICE_Cache() Function 

Provides access to the properties of a cached file (page or facet). 

The properties and actions for the ICE_Cache() function are as follows: 

 

Properties Action  Description 

 select delete  

 4 4  

key out in Unique file identifier 

name out none The name of the file in the cache 

loc_name out none The name of the location in which the 
cached file resides 

status out none Indicates whether the file is usable or 
unusable 

exist out none Indicates that the file is from the file 
system, rather than the repository. The 
value is 0 if the file is stored in the 
database or is a temporary file. 

file_counter out none The number of times the file has been 
requested currently 

owner out none User session that is using this file 



Monitoring Functions 

Appendix D: ICE Server Functions    D–15 

Properties Action  Description 

 select delete  

 4 4  

timeout out none The amount of time (in seconds) before 
the file is removed from the cache 

in_use out none Indicates whether the session is using 
this file. If in use, the file cannot be 
deleted or refreshed. 

req_count out none The number of requests made to the file 
by the session identified by the requestor 
(cookie) 

ICE_Connect_Info() Function 

Provides access to the properties of a database connection. 

The properties and actions for the ICE_Connect_Info() function are as follows: 

 

Properties Action  Description 

 select delete  

 4 4  

key out in Unique identifier for the database 
connection 

driver out none The driver that Web Deployment 
Option is using to communicate with 
the data source 

dbname out none Database or database connection name

used out none Indicates whether the database 
connection is currently active (value = 
1). 

timeout out none The amount of time, in seconds, before 
the database connection will be closed 



Additional Functions 

D–16     Web Deployment Option User Guide 

Additional Functions 
The functions in this section provide additional functionality in the Web 
Deployment Option environment. 

TagToString() Function 

Replaces reserved HTML characters by their string equivalents. 

The properties and actions for the TagToString() function are as follows: 

 

Properties Action Description 

tag in String with tags 

string out Converted string 

Dir() Function 

Lists the files in a specified location. 

The properties and actions for the Dir() function are as follows: 

 

Properties Action Description 

location_id in Location identifier 

prefix in/out File name 

suffix out File extension 

GetVariables() Function 

Obtains the properties for the variables that are currently declared for the 
specified scope. 

The properties and actions for the GetVariables() function are as follows: 

 



Additional Functions 

Appendix D: ICE Server Functions    D–17 

Properties Action Description 

page in/out “checked” if the variable is a page variable 

session in/out “checked” if the variable is a session variable 

server in/out “checked” if the variable is a server variable 

name out Variable name 

value out Variable value 





  

 

Appendix E: Using an XML Authoring Tool    E–1 

Appendix E: Using an XML Authoring 
Tool 
 

With an XML content enabling application, such as SoftQuad XMetaL, you can 
add Web Deployment Option XML elements to your documents with ease. The 
Web Deployment Option XML elements from the DTD are accessible through 
these types of tools, allowing you to construct your Web applications using the 
visual interface of your choice. 

In this chapter, the SoftQuad XMetaL 2.0 tool is used to demonstrate the use 
of Web Deployment Option tags in this type of development environment. 

Note: To use a particular tool with Web Deployment Option extensions, it must 
support the xhtml1-transitional DTD that is published by the W3C. 

Starting XMetaL 

Windows  
To open the XMetaL application and begin working, navigate to and select the 
XMetaL program through the Start menu in Windows. 



Creating a New Document 

E–2     Web Deployment Option User Guide 

The application window appears with the last saved workspace configuration. 
For example: 

 

In this workspace, the Structure view pane appears to the left of the 
Document window. Also shown is the Element List window, which displays the 
various elements (based on the current DTD) that can be added to the 
document. 

The next step involves creating a new application. 

Creating a New Document 
The first steps you will want to perform are to create a new document and 
attach the Web Deployment Option DTD. To do this: 

1. Choose File, New. 

The New dialog appears. 

2. Select the Blank XML Document icon and click OK. 

The Choose a DTD or Rules File dialog appears. 

3. Locate and select the xhtml1-transitional.dtd file, which resides in the 
following path: 

Ingres system drive and directory\ingres\ice\DTD 



Creating a New Document 

Appendix E: Using an XML Authoring Tool    E–3 

4. Click Open. 

The workspace appears similar to the following, with the Web Deployment 
Option macro tags displayed in the Element List: 

 
 

  
Tip: In the Element List window, all the Web Deployment Option 
elements are prefixed by “i3ce_”, causing them to appear together, 
making them easier to find. 
 

Note: Your workspace may appear different than this one, depending on 
how it was configured when you last saved a document. 

5. We are going to change our workspace a little, adding the Attribute 
Inspector window, disabling the Structure view, and enabling the Tags On 
view in the Document window. Use the View menu commands to 
accomplish this. 

6. Using the File, Save command, save the document using the name 
my_query. 



Building Macro Elements 

E–4     Web Deployment Option User Guide 

Building Macro Elements 
Next, we will use the XMetaL environment to reproduce one of the query 
elements shown in the example in the i3ce_query tag section in “Chapter 5: 
Using the Macro Language.” 

The example, shown below, selects all columns from the plays table in the 
iceTutor database. It creates a transaction and a cursor. Then, it retrieves five 
rows at a time and formats them into an XHTML table. 

<i3ce_query i3ce_database="icetutor"> 
 <i3ce_sql i3ce_transaction="myTransaction" i3ce_cursor="myCursor"> 
  <i3ce_statement> 
   select * from plays 
  </i3ce_statement> 
  <i3ce_rowsPerRequest i3ce_rowcount="5"/> 
  <i3ce_relation_display i3ce_typename="i3ce_table"/> 
 </i3ce_sql> 
</i3ce_query>  

Now, let’s move on to inserting this macro tag into the XMetaL document. 

Using the XMetaL Environment 

Adding the 
<i3ce_query> 
Element 

In the Element List window, select the <i3ce_query> element and, with the 
Insert option selected, click Apply. The element is inserted into the Document 
window as follows: 

 



Building Macro Elements 

Appendix E: Using an XML Authoring Tool    E–5 

Defining 
<i3ce_query> 
Attributes 

You will notice that in Tags On view, you can see a graphical view of the tags 
and child tags associated with i3ce_query. 

Before we get to the SQL statement, let us define the attributes associated 
with the <i3ce_query> element. To do this, place the insertion point directly 
after the <i3ce_query> element, which displays the definable attributes for 
this element in the Attribute Inspector: 

 

Now, let’s enter the value for the i3ce_database attribute, as defined in the 
example. Click in the area next to the i3ce_database attribute. Type iceTutor 
and press Enter (or click outside the field). 

Note: You do not have to include the quotation marks around the attribute 
values, as this is done automatically for you. 

i3ce_query attributes 



Building Macro Elements 

E–6     Web Deployment Option User Guide 

Defining <i3ce_sql> 
Attributes 

Now, we’ll define the attributes for the child element, <i3ce_sql>. Again, 
place the insertion point in the <i3ce_sql> element, displaying the 
i3ce_transaction and i3ce_cursor attributes. Enter the values 
myTransaction and myCursor for these attributes: 

 
 



Building Macro Elements 

Appendix E: Using an XML Authoring Tool    E–7 

Defining the 
<i3ce_sql> Statement 

Within the <i3ce_sql> element, you will see the <i3ce_statement> element. 
Select this element and enter the statement select * from plays directly 
into the Document window pane where the {i3ce_statement} placeholder 
appears, as follows: 

 
 



Building Macro Elements 

E–8     Web Deployment Option User Guide 

Adding <i3ce_sql> 
Child Tags 

The next elements that need to be added are the <i3ce_rowsPerRequest> 
and <i3ce_relation_display> elements. In Tags On view, click on the 
diamond icon after <i3ce_relation_display> and you will see that the 
i3ce_typename attribute is already set to i3ce_table, which is the value we 
need (if necessary, you could have clicked in this edit control, displaying a 
drop-down list of other valid values). 

 



Building Macro Elements 

Appendix E: Using an XML Authoring Tool    E–9 

Clicking before the <i3ce_relation_display> element, notice the Element List 
displays a list of valid elements at this point in the <i3ce_query> element.  

 



Building Macro Elements 

E–10     Web Deployment Option User Guide 

In the Element List window, select the <i3ce_rowsPerRequest> element and, 
while Insert is selected, click Apply. The <i3ce_rowsPerRequest> element is 
added to the Document window. In the Attribute Inspector window, you will 
notice that attribute i3ce_rowcount appears: 

 

In the i3ce_rowcount text box, enter “5” and press Enter (or click outside the 
field). This completes the creation of the first <i3ce_query> element in the 
example. You can save the document by choosing File, Save.   

Translating the XML 
File 

You are now ready to translate the XML file into an ICE Template file. To do 
this, you must use the ICETranslate utility, whose syntax is shown below. 
Note that the HTML file must also be registered with the Web server. 

input_xml_file.xml > output_ICE_HTML_macro_file.html 

Type the following at the command prompt (assuming you saved the file as 
“my_query.xml”): 

ICETranslate my_query.xml > my_query.html 

Note: On UNIX, the first four letters of this command must be uppercase.  On 
Windows, it is not necessary. 



Building Macro Elements 

Appendix E: Using an XML Authoring Tool    E–11 

The my_query.html file should contain the following: 

<!-- #ICE  
 DATABASE=`icetutor` 
 TRANSACTION=`my_Transaction` 
 CURSOR=`my_Cursor` 
 SQL=`select * from plays` 
 ROWS=`5` 
 TYPE=`TABLE` 
--> 

Note: The error checker in XMetaL detects if there are any problems in your 
document and notifies you so that you can make debug the program on the 
fly. 

So you see how quick and easy the process is to build XML programs and 
translate them into HTML macro template files! You can use the same 
procedure to construct other XML elements that will make up your XML 
document.  





  

 

    Index–1 
 

Index 
 

A 

accessing Web Deployment Option pages, B-7 

Active_Users() function, D-12 

Apache Web Server, 2-11 

applications 
creating, 6-1 
example of a data browsing application, 6-
28 
example of an Internet shopping 
application, 6-54 

associating 
business units with Web users, 4-4 
database connections with profiles, 6-27 
database connections with Web users, 4-4 
facets with business units, 6-22 
locations with business units, 4-18, 6-21 
pages and facets with Web users, 4-4 
pages with business units, 6-21 
roles with business units, 6-27 
roles with profiles, 6-26 
roles with Web users, 4-4 

B 

business unit functions 
Document() function, D-8 
Document_Role() function, D-9 
Document_User() function, D-10 
Session_Grp() function, D-11 
Unit() function, D-6 
Unit_Copy() function, D-8 
Unit_Location() function, D-7 
Unit_Role() function, D-6 
Unit_User() function, D-7 

business units 
associating with facets, 6-22 
associating with locations, 6-21 
associating with pages, 6-21 

associating with roles, 6-27 
creating, 6-20 
defined, 4-13 
managing, 4-13 
registering and deregistering multiple files, 
4-14 
use of, 4-14 

C 

C API 
ICE_C_CLIENT structure, 7-9 
ICE_C_Close() function, 7-1 
ICE_C_Connect() function, 7-2 
ICE_C_Disconnect() function, 7-3 
ICE_C_Execute() function, 7-3 
ICE_C_Fetch() function, 7-5 
ICE_C_GetAttribute() function, 7-6 
ICE_C_Initialize() function, 7-7 
ICE_C_LastError() function, 7-8 
ICE_C_PARAMS structure, 7-9 
ICE_STATUS data type, 7-8 
using, 7-1 

C API, sample, 7-11 

COMMIT keyword, 5-22 

Configuration Manager, 2-15 

configuring 
ICE Server, 2-14 
IIS, 2-5 
the Apache Web Server, 2-11 
the HTTP server, 2-1 

creating 
applications, 6-1 
business units, 6-20 
database connections, 6-24 
locations, 6-18 
profiles, 6-24 
roles, 6-25 
session groups, 6-18 



  

 

Index–2     Web Deployment Option User Guide 

D 

data sources, granting access to, 4-3 

database connections 
associating with profiles, 6-27 
creating, 6-24 
defined, 4-6 
managing, 4-6 
usage of, 4-7 

database users 
defined, 4-5 
managing, 4-5 
usage of, 4-6 

Database() function, D-2 

DBUser() function, D-1 

DECLARE keyword, 5-23 

designing applications pages, 6-1 

dialogs 
Associate a Location to Business Unit, 6-21 
Associate DB Connection to ICE Profile, 6-
27 
Associate Role to ICE Profile, 6-26 
Create ICE Business Unit, 6-20 
Create ICE Database Connection, 6-24 
Create ICE Facet for Business Unit, 6-23 
Create ICE Location, 6-19 
Create ICE Page for Business Unit, 6-22 
Create ICE Profile, 6-25 
Create ICE Role, 6-26 
Create ICE Session Group, 6-18 
Enter Login/Password for Accessing ICE 
Information, 4-2 
Role Access Definition for Business Unit, 6-
28 

Dir() function, D-16 

Document() function, D-8 

Document_Role() function, D-9 

Document_User() function, D-10 

documents, defined, 4-15 

E 

extension functions 
calling from a Web page, 8-4 
description, 8-2 
initialization, 8-1 
sample, 8-5 
syntax description, 8-3 

F 

facets 
associating with business units, 6-22 
defined, 4-15 
managing, 4-15 
usage of, 4-16 

FUNCTION keyword, 5-25 

G 

GetVariables() function, D-16 

granting access to Web resources, 4-3 

H 

HTML 
basics, B-1 
documents, B-1 
elements generated by Web Deployment 
Option, B-7 
elements used by Web Deployment Option, 
B-5 

HTTP server. See web server 

I 

ICE server 
addressing, 6-2 

ICE Server 



  

    Index–3 

configuring, 2-14 
extension functions, 8-1 

ICE_C_CLIENT structure, 7-9 

ICE_C_Close() function, 7-1 

ICE_C_Connect() function, 7-2 

ICE_C_Disconnect() function, 7-3 

ICE_C_Execute() function, 7-3 

ICE_C_Fetch() function, 7-5 

ICE_C_GetAttribute() function, 7-6 

ICE_C_Initialize() function, 7-7 

ICE_C_LastError() function, 7-8 

ICE_C_PARAMS structure, 7-9 

ICE_Cache() function, D-14 

ICE_Connect_Info() function, D-15 

ICE_Locations() function, D-11 

ICE_STATUS data type, 7-8 

ICE_User_Cursors() function, D-14 

ICE_User_Transactions() function, D-13 

ICE_Users() function, D-13 

IF keyword, 5-27 

IIS, 2-5 

INCLUDE keyword, 5-28 

installing web server, 2-1 

K 

keywords, used with Web Deployment Option 
macros, 5-22 

L 

locations 
associating with business units, 6-21 
creating, 6-18, 6-19 
defined, 4-10 

managing, 4-11 
usage of, 4-11 
use for, 4-14 
use of, 4-10 

logging into the Web Deployment Option, 4-2 

M 

macro language 
keywords, 5-22 
macro tag syntax, 5-2 
macro tags, 5-2 
statement syntax, 5-21 
using macros, 5-21 

macro language keywords, 5-22 
COMMIT, 5-22 
DECLARE, 5-23 
FUNCTION, 5-25 
IF, 5-27 
INCLUDE, 5-28 
ROLLBACK, 5-30 
SQL, 5-31 
SWITCH, 5-39 
VAR, 5-41 

managing 
business units, 4-13 
database connections, 4-6 
database users, 4-5 
locations, 4-11 
pages and facets, 4-15 
profiles, 4-8 
role access definitions, 4-16 
roles, 4-7 
server variables, 4-12 
session groups, 4-9 
Web Deployment Option objects, 4-1, 6-18 
Web user access definitions, 4-17 
Web users, 4-3 

Microsoft Internet Information Server, 2-5 

monitoring functions 
Active_Users() function, D-12 
ICE_Cache() function, D-14 
ICE_Connect_Info() function, D-15 
ICE_User_Cursors() function, D-14 
ICE_User_Transactions() function, D-13 



  

 

Index–4     Web Deployment Option User Guide 

ICE_Users() function, D-13 

monitoring Web Deployment Option 
information, 4-19 

P 

pages 
associating with business units, 6-21 
creating for applications, 6-1 
defined, 4-15 
managing, 4-15 
usage of, 4-16 

Performance Monitor, viewing Web Deployment 
Option information, 4-19 

permissions, for pages and facets, 4-18 

Plays tutorial application 
data used, 6-73 
re-creating, 6-2 
touring, 6-2 

Profile() function, D-4 

Profile_Database() function, D-5 

Profile_Role() function, D-5 

profiles 
associating with database connections, 6-
27 
associating with roles, 6-26 
creating, 6-24 
defined, 4-8 
managing, 4-8 
use of, 4-9 

public files, setting up, 6-19 

R 

reserved words in Web Deployment Option, C-
1 

role access definitions 
defined, 4-16 
managing, 4-16 
usage of, 4-17 

Role() function, D-2 

roles 
associating with business units, 6-27 
associating with profiles, 6-26 
creating, 6-25 
defined, 4-7 
managing, 4-7 
usage of, 4-8 

ROLLBACK keyword, 5-30 

S 

security 
managing, 4-3 
setting up, 6-1 

security functions 
Database() function, D-2 
DBUser() function, D-1 
Profile() function, D-4 
Profile_Database() function, D-5 
Profile_Role() function, D-5 
Role() function, D-2 
User() function, D-2 
User_Database() function, D-4 
User_Role() function, D-3 

server extension functions 
ICE_Locations() function, D-11 

server functions, miscellaneous 
Dir() function, D-16 
GetVariables() function, D-16 
TagToString() function, D-16 

server variables 
defined, 4-11 
managing, 4-12 
usage of, 4-12 

session groups 
creating, 6-18 
defined, 4-9 
managing, 4-9 
usage of, 4-10 

Session_Grp() function, D-11 

SQL keyword, 5-31 

SWITCH keyword, 5-39 



  

    Index–5 

syntax 
for macro statements, 5-21 
for macro tags, 5-2 

T 

TagToString() function, D-16 

tutorial application, 6-1 

U 

Unit() function, D-6 

Unit_Copy() function, D-8 

Unit_Location() function, D-7 

Unit_Role() function, D-6 

Unit_User() function, D-7 

User() function, D-2 

User_Database() function, D-4 

User_Role() function, D-3 

V 

VAR keyword, 5-41 

variables, using, 4-12 

Visual DBA, using with Web Deployment 
Option, 4-1 

W 

Web Deployment Option 

architecture, 3-3 
business unit functions. See business unit 
functions 
C API. See C API 
description of users, 3-2 
logging into, 4-2 
macro language. See macro language 
miscellaneous functions. See server 
functions, miscellaneous 
monitoring functions. See monitoring 
functions 
overview, 3-1 
reserved words, C-1 
security functions. See security functions 
server extension functions. See server 
extension functions 
viewing and managing information, 4-1 
web site components, 3-4 
XML tag set, using, 5-1 

Web resources, managing, 4-3 

web server 
configuring, 2-1 
Document Root Directory, 2-15 
installing, 2-1 
supported, 2-1 

Web user access definitions 
defined, 4-17 
managing, 4-17 
usage of, 4-18 

Web users 
defined, 4-3 
managing, 4-3 
usage of, 4-4 

X 

XML macro tags, 5-1, 5-2 

 


	Bookshelf
	Ingres Web Deployment Option User Guide
	Contents
	1: Introduction
	What You Need to Know
	Where to Go from Here

	2: Getting Started
	HTTP Server
	Configuring the HTTP Server
	What the Web Server Needs to Know
	Adding Virtual Directories
	Enabling the Native HTTP Server Extensions
	Rebooting Windows
	Value of II_System

	Microsoft Internet Information Server (IIS)
	Environment (IIS)
	Create a User for Web Deployment Option
	How You Configure IIS for Web Deployment Option
	Virtual Directories (IIS)
	ICE File Type (IIS)
	Using Your Web Server as a Windows Service

	Apache Web Server
	Environment (Apache)
	Virtual Directories (Apache)
	ICE File Type (Apache)
	Using Your Web Server as a Windows Service

	Setting Up Your ICE Server
	Web Server Document Directory


	3: Understanding the Web Deployment Option
	Overview
	Users
	Architecture
	Web Site Components
	Web Browser
	Web Deployment Option Client
	ICE Server
	Information Systems


	4: Managing the Web Deployment Option
	Accessing Web Deployment Option Information
	Managing Security
	Web Users
	Working with Web User Objects
	How Web Users Are Used

	Database Users
	Working with Database User Objects
	How Database Users Are Used

	Database Connections
	Working with Database Connections
	How Database Connections Are Used

	Roles
	Working with Role Objects
	How Role Objects Are Used

	Profiles
	Working with Profile Objects
	How Profiles Are Used


	Managing Server Information
	Session Groups
	Working with Session Groups
	How Session Groups Are Used

	Locations
	Working with Locations
	How Locations Are Used

	ICE Server Variables
	Working with ICE Server Variables
	How Server Variable Objects Are Used


	Managing Business Units
	Business Units
	Working with Business Units
	Adding Multiple Files to a Business Unit
	How Business Units Are Used

	Documents, Pages, and Facets
	Working with Page and Facet Objects
	How Pages and Facets Are Used

	Role Access Definitions
	Working with Role Access Definitions
	How Role Access Definitions Are Used

	Web User Access Definitions
	Working with Web User Access Definitions
	How Web User Access Definitions Are Used

	Associating a Location with a Business Unit

	Monitoring Web Deployment Option Information
	Shutting Down

	5: Using the Macro Language
	Web Deployment Option XML Tag Set
	Web Deployment Option XML Macro Tag Format
	Web Deployment Option Macro Tags
	Tag Hierarchy

	Macro Tags
	<i3ce_commit> Tag
	<i3ce_declare> Tag
	<i3ce_extend> Tag
	<i3ce_function> Tag
	<i3ce_if> Tag
	<i3ce_include> Tag
	<i3ce_query> Tag
	<i3ce_rollback> Tag
	<i3ce_switch> Tag
	<i3ce_var> Tag 

	Macro Statements
	Macro Statement Format
	Macro Keywords

	Macro Keywords
	COMMIT Keyword
	DECLARE Keyword
	FUNCTION Keyword
	IF Keyword
	INCLUDE Keyword
	ROLLBACK Keyword
	SQL Keyword
	SWITCH Keyword
	VAR Keyword


	6: Creating Web Applications: An Example
	Before You Begin
	A Tour of the Plays Application
	Plays Welcome Page
	Plays Login Page
	Automatic Declaration Page
	Plays Home Page
	Plays View Options
	Globe Boutique

	Creating Application Directories
	Creating Directories for Non-Web Deployment Option Registered Files
	Creating Directories for Web Deployment Option-Registered Files

	Creating Application Files
	Creating the Starting Application Page
	Creating the Welcome Page and Facets
	Creating the Remaining Pages and Facets
	Using Style Sheets

	Gaining Access to Web Deployment Option Information
	Registering Your Files and Location
	Creating a Session Group
	Setting Up Public Files
	Creating a Server Location for Secured Pages
	Creating a Business Unit
	Associating the Server Location with the Business Unit
	Associating Pages with the Business Unit
	Associating Facets with the Business Unit
	Creating a Database Connection
	Creating a Profile
	Creating a Role
	Associating a Role with a Profile
	Associating a Database Connection with a Profile
	Associating a Role with a Business Unit

	Designing a Data Browsing Application
	Creating a Welcome Page
	Creating a Login Page
	Creating a Home Page
	Creating a User Account Automatically
	Displaying All Table Rows
	Displaying All Table Rows with Wrapping
	Creating an Automatically-Generated Selector Control
	Displaying a Subset of Table Rows by Selector
	Creating Automatically-Generated Hyperlinks
	Displaying a Subset of Table Rows by Hyperlink
	Creating Graphical Hyperlinks
	Creating Switch Image Links

	Designing an Internet Shopping Application
	The Globe Boutique Home Page
	Creating the Tables for the Globe Boutique Application
	Creating the New Order Procedure
	Creating the New Order Extension Header File
	Creating the New Order Extension
	Building the New Order Extension
	Displaying an Item Description
	Adding an Item to the Shopping Bag
	Displaying Shopping Bag Contents
	Confirming an Order
	Rolling Back a Transaction

	Plays Tutorial Application Data

	7: Using the C API
	Web Deployment Option C API Reference
	ICE_C_Close() Function
	ICE_C_Connect() Function
	ICE_C_Disconnect() Function
	ICE_C_Execute() Function
	ICE_C_Fetch() Function
	ICE_C_GetAttribute() Function
	ICE_C_Initialize() Function
	ICE_C_LastError() Function
	ICE_STATUS Data Type
	ICE_C_CLIENT Structure
	ICE_C_PARAMS Structure

	Sample C API for Web Deployment Option

	8: Writing ICE Server Extension Functions
	Defining an Initialization Function
	Providing a Function Description
	Defining Your Extension Function
	Calling an Extension Function from a Web Page
	Sample Extension Library
	Plays Example


	A: XML Primer
	XML Overview
	Extensible
	Complementary with HTML

	XML Syntax
	All Elements Have A Closing Tag
	XML Tags Are Case Sensitive
	XML Elements Must Be Properly Nested
	XML Documents Must Have a Root Tag 
	Attribute Values Must Always Be In Quotation Marks

	XML Example
	XML and Web Deployment Option Queries

	B: HTML Primer
	The Development of HTML
	Anatomy of an HTML Document
	Elements Used by Web Deployment Option
	Elements Generated by Web Deployment Option
	Accessing Web Deployment Option Pages

	C: Reserved Words
	Reserved Words

	D: ICE Server Functions
	Security Functions
	DBUser() Function
	Database() Function
	Role() Function
	User() Function
	User_Role() Function
	User_Database() Function
	Profile() Function
	Profile_Role() Function
	Profile_Database() Function

	Business Unit Functions
	Unit() Function
	Unit_Role() Function
	Unit_User() Function
	Unit_Location() Function
	Unit_Copy() Function
	Document() Function
	Document_Role() Function
	Document_User() Function
	Session_Grp() Function

	Server Function
	ICE_Locations() Function

	Monitoring Functions
	Active_Users() Function
	ICE_Users() Function
	ICE_User_Transactions() Function
	ICE_User_Cursors() Function
	ICE_Cache() Function
	ICE_Connect_Info() Function

	Additional Functions
	TagToString() Function
	Dir() Function
	GetVariables() Function


	E: Using an XML Authoring Tool
	Starting XMetaL
	Creating a New Document
	Building Macro Elements
	Using the XMetaL Environment


	Index


