Ingres 2006 Release 2

Weh Deployment Option User Guide

INGR=S

rrrrrrrrrrrr

This documentation and related computer software program (hereinafter referred to as the "Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Ingres Corporation (“Ingres”)
at any time.

This Documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of Ingres. This Documentation is proprietary information of Ingres and protected
by the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this Documentation for
their own internal use, provided that all Ingres copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of

the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. The user consents to Ingres obtaining injunctive relief precluding any unauthorized use of the
Documentation. Should the license terminate for any reason, it shall be the user’s responsibility to return to Ingres
the reproduced copies or to certify to Ingres that same have been destroyed.

To the extent permitted by applicable law, INGRES PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IN NO EVENT WILL INGRES BE LIABLE TO THE
END USER OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF INGRES IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The use of any product referenced in this Documentation and this Documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this Documentation is Ingres Corporation.

For government users, the Documentation is delivered with “Restricted Rights” as set forth in 48 C.F.R. Section
12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor
provisions.

Copyright © 2007 Ingres Corporation.
All Rights Reserved.

Ingres, OpenROAD, and EDBC are registered trademarks of Ingres Corporation. All other trademarks, trade names,
service marks, and logos referenced herein belong to their respective companies.

Contentis

Chapter 1: Introduction

What You Need to KNOW 1-1
Where to GO from Here 1-1

Chapter 2: Getting Started

Installing the HT TP Server 2-1
Configuring the HT TP Server e 2-1
What the Web Server Needs to KNOW e 2-2
Adding Virtual Directories 2-2
Enabling the Native HTTP Server EXtensions i 2-3
Rebooting WINAOWS 2-3
Microsoft Internet Information Server (IIS). 2-3
Environment (11S) 2-4
Virtual Directories (I1S) 2-8
ICE File Type (I1S) . .ottt e e e e e e e e e e e e e e e e e 2-11
Using Your Web Server as a Windows ServiCe. 2-11
Apache Wb SerVer . .. o 2-11
Environment (Apache) 2-12
Virtual Directories (Apache) 2-12
ICE File Type (Apache) o e e e e e e e 2-12
Using Your Web Server as a Windows ServiCe. e 2-14
Setting Up Your ICE Server. e e 2-14
Web Server Document Dir€Ctory o 2-15

Chapter 3: Understanding the Web Deployment Option

OV IV W .o 3-1
USES .ottt e e 3-2
ArChiEEC U E . . 3-3
Web Site CoOmMPONENtS 3-4
D BrOWS T . . ot 3-5
Web Deployment Option Client 3-5
TCE SIVer . .o 3-6
Information Systems 3-6

Contents iii

Chapter 4. Managing the Web Deployment Option

Accessing Web Deployment Option Information 4-1
Managing SeCUNTY 4-3
WED USEIS . 4-3
Database USers 4-5
Database CONNECLIONS e e e e e e e 4-6
ROIES . . 4-7
PrOfilEs . . . 4-8
Managing Server Information 4-9
SESSION GrOUPS ..ottt e 4-9
LOCatioNS . . 4-10
ICE Server Variables. 4-11
Managing Business Units 4-13
BUSINESS UNItS ... 4-13
Documents, Pages, and Facets 4-15
Role Access Definitions 4-16
Web User Access Definitions 4-17
Associating a Location with a Business Unit 4-18
Monitoring Web Deployment Option Information 4-19
ShUttiNg DOWN . .. o 4-19

Chapter 5: Using the Macro Language

Web Deployment Option XML Tag Set 5-1
Web Deployment Option XML Macro Tag Format. 5-2
Web Deployment Option Macro Tags.ottt e e e 5-2
Tag HierarChy 5-3

MaCIO TaGS . .ottt 5-4
<I3CE_COMMIE> Tag . . oo 5-4
<i3Ce _declare™ Tago 5-4
<i3ce_extend> Tag 5-6
<iBce_fUNCHioON> Tag ... o 5-8
<UBCE > Tag . . o 5-9
<i3ce_include> Tag 5-11
<IBCE _QUENY > TaQ . ittt e 5-13
<i3ce_rollback> Tag 5-19
<i3ce_sWiItch> Tag 5-19
<UBCE VA TaAg . . o ittt e e e 5-20

Macro Statements 5-21
Macro Statement Format 5-21
Macro KEYWOIdS 5-22

iv. Web Deployment Option User Guide

Macro KEYWOIAS 5-22

COMMIT KEYWOK . . o oottt et e 5-22
DECLARE KeYyWOrd e e e e e e 5-23
FUNCTION KeYWOId . . . oottt e e e e e e e e e e e e e e e e e 5-25
IF KeYWOId . . . 5-27
INCLUDE KeYWOId . ..o e e e e e e e e e e e e e e e e 5-28
ROLLBACK KEYWOId . . . oottt ettt et e e e e e e e e e e e e e e e e e e 5-30
SQL KeYWOrd 5-31
SWITCH KeYWOIdo e e e e e e e e e e e e e e 5-39
VAR KeYyWOrd . . . 5-41

Chapter 6: Creating Web Applications: An Example

Before YoUu Begin 6-2
A Tour of the Plays Application 6-2
Plays Welcome Page e 6-3
Plays Login Page 6-4
Automatic Declaration Page 6-5
Plays HOMmeE Page o 6-6
Plays View Options 6-7
Globe BoUtiqUEe 6-10
Creating Application Directories. 6-12
Creating Directories for Non-Web Deployment Option Registered Files....................... 6-12
Creating Directories for Web Deployment Option-Registered Files 6-13
Creating Application Files 6-13
Creating the Starting Application Page 6-14
Creating the Welcome Page and Facets. i 6-15
Creating the Remaining Pages and Facets 6-16
Using Style Sheets 6-17
Gaining Access to Web Deployment Option Information 6-18
Registering Your Files and Location 6-18
Creating @ SessioN GrOUP e e e 6-18
Setting Up Public Files. o 6-19
Creating a Server Location for Secured Pages. i 6-19
Creating a Business Unit 6-20
Associating the Server Location with the Business Unit 6-21
Associating Pages with the Business Unit 6-21
Associating Facets with the Business Unit. 6-22
Creating a Database Connection i e 6-24
Creating a Profile 6-24
Creating @ RoOle 6-25
Associating a Role with a Profile 6-26

Contents v

Associating a Database Connection with a Profile 6-27

Associating a Role with a Business Unit 6-27
Designing a Data Browsing Application 6-28
Creating a Welcome Page 6-28
Creating @ Login Page 6-29
Creating @ Home Page 6-31
Creating a User Account Automatically 6-32
Displaying All Table ROWS 6-33
Displaying All Table Rows with Wrapping e 6-40
Creating an Automatically-Generated Selector Control 6-43
Displaying a Subset of Table Rows by Selector 6-45
Creating Automatically-Generated Hyperlinks 6-47
Displaying a Subset of Table Rows by Hyperlink 6-48
Creating Graphical Hyperlinks 6-50
Creating Switch Image Links 6-52
Designing an Internet Shopping Application 6-54
The Globe Boutique Home Page 6-54
Creating the Tables for the Globe Boutique Application....... 6-54
Creating the New Order Procedure. e 6-55
Creating the New Order Extension Header File. 6-55
Creating the New Order EXtension e 6-56
Building the New Order EXtension 6-58
Displaying an Item Description 6-62
Adding an Item to the Shopping Bag i 6-64
Displaying Shopping Bag Contents. 6-67
Confirming an Order. 6-70
Rolling Back a Transaction 6-72
Plays Tutorial Application Data 6-73

Chapter 7: Using the C API

Web Deployment Option C API Reference e 7-1
ICE_C_Close() FUNCHion 7-1
ICE_C_Connect() FUNCHION e 7-2
ICE_C_Disconnect() FUNCLION e 7-3
ICE_C_Execute() Function 7-3
ICE_C_Fetch() FUNCtioN. o 7-5
ICE_C_GetAttribute() Function 7-6
ICE_C_Initialize() FuncCtion 7-7
ICE_C_LastError() FUNCHION o e 7-8
ICE_STATUS Data Typeo e e e e 7-8
ICE_C _CLIENT Structure s i, 7-9

vi Web Deployment Option User Guide

ICE_C_PARAMS StruCtUIre 7-9
Sample C API for Web Deployment Option 7-11

Chapter 8: Writing ICE Server Extension Functions

Defining an Initialization Function. 8-1
Providing a Function Description 8-2
Defining Your Extension Function 8-3
Calling an Extension Function from a Web Page. i 8-4
Sample Extension Library 8-5

Plays Example 8-5

Appendix A: XML Primer

XML OVEIVIBW .« o e e e e e A-1
EXEENSIble . . A-1
Complementary with HTML e e A-2

XML Sy N X . oo A-2
All Elements Have A CloSiNg Tagottt e e e e A-2
XML Tags Are Case SenSitiVe A-2
XML Elements Must Be Properly Nested A-2
XML Documents Must Have a Root Tag i e A-3
Attribute Values Must Always Be In Quotation Marks A-3

XML EXamPle . . . A-3

XML and Web Deployment Option QUEES A-4

Appendix B: HTML Primer

The Development of HTML B-1
Anatomy of an HTML DOCUMENT e e B-1
Elements Used by Web Deployment Option. B-5
Elements Generated by Web Deployment Option B-7
Accessing Web Deployment Option Pages B-7

Appendix C: Reserved Words

Reserved Words C-1

Contents vii

Appendix D: ICE Server Functions

SecUrity FUNCHIONS ... D-1
DBUser() FUNCHION e D-1
Database() FUnCtion D-2
Role() FUNCHIONo e e e e D-2
User() FUNCEION e D-2
User_Role() FUNCtion D-3
User_Database() FUNCHiON D-4
Profile() FUNCHiON D-4
Profile_Role() FUNCtion. D-5
Profile_Database() FUNCLION D-5

Business Unit FUNCHIONS e e e D-6
Unit() FUNCHiON D-6
Unit_Role() FUNCEiON o D-6
Unit_User() FUNCLiON D-7
Unit_Location() FUNCLiON D-7
Unit_Copy() FUNCHION o e D-8
Document() FUNCLION D-8
Document_Role() Function D-9
Document_User() FUNCHiON. D-10
Session_Grp() Function D-11

Server FUNCHION ... D-11
ICE_Locations() FUNCLION e e e D-11

Monitoring FUNCHIONS D-12
Active_Users() FUNCHion D-12
ICE_Users() FUNCEION e e e e e e D-13
ICE_User_Transactions() Function D-13
ICE_User_Cursors() Function. D-14
ICE_Cache() FUNCHiON e e D-14
ICE_Connect_Info() Function. D-15

Additional FUNCEIONS o D-16
TagToString() FUNCHiON D-16
Dir() FUNCHION .. . D-16
GetVariables() Function D-16

Appendix E: Using an XML Authoring Tool

Starting XMetal E-1
Creating @ New DOoCUMENt e e e e E-2
Building Macro Elements. E-4

Using the XMetal Environment e E-4

vii - Web Deployment Option User Guide

Index

Contents ix

Chapter 1: Infroduction

Ingres® Web Deployment Option provides the foundation for Internet-based
electronic commerce. It allows developers to build World Wide Web (Web)
applications that can access enterprise-wide corporate data.

This guide provides information on how to configure and manage your Web
Deployment Option environment. It also walks you through the development
of a sample application, from start to finish.

What You Need to Know

If you are a Web Deployment Option application developer, this guide assumes
that you are familiar with:

m Basic HTML/XML form development concepts

m Embedded SQL for setting up queries on a Web page

m SQL for executing SQL statements from a Web page

m C/C++ programming language

If you are a Web Deployment Option administrator, you should be familiar with
the following:

m Ingres network administration

m Ingres system administration

m Web server administration

m Database administration

In addition, you should be familiar with Windows, including terminology,
navigational techniques, and working with standard items, such as menus and

dialogs. Some knowledge of networking concepts and the Web is also
assumed.

Where to Go from Here

To gain a better understanding of the Web Deployment Option, all users—both
novice and advanced—should read the remainder of this guide, including
“Chapter 6: Creating Web Applications: An Example,” which shows you how to
design Web applications that interact with Ingres databases.

Chapter 1: Infroduction 1-1

Chapter 2: Getting Started

This chapter describes post-installation steps for Web Deployment Option. It
shows you how to set up your Web (HTTP) server and your Web Deployment
Option application environment.

Note: You should already have installed Web Deployment Option as part of
your Ingres installation, and started the ICE Server. For more information
about starting servers, see the chapter "Managing Your System and Monitoring
Performance” in the System Administrator Guide.

HTTP Server

Before you can run a Web Deployment Option application, you must have one
of the following Web (HTTP) servers installed:

m Microsoft Internet Information Server

m Apache Web Server
For installation instructions, see the documentation for your particular server.

After testing to see that the web server is working properly, you must
configure the web server to work with Web Deployment Option.

Configuring the HTTP Server

You must configure your web server so that it will communicate with the Web
Deployment Option client. Many of the Web Deployment Option client files—
including the binary file and images files used in your applications—are located
under the II_SYSTEM directory structure. To enable the referencing of these
files, you must include additional virtual directories in the web server
configuration.

Chapter 2: Getting Started 2-1

Configuring the HTTP Server

What the Web Server Needs to Know

Your web server must know how to locate and invoke the Web Deployment
Option custom extension appropriate for it. You must provide the following two
pieces of information to the server so that it can invoke the Web Deployment
Option system:

m Location of the extension file (Dynamic Link Library or Shared Object)

m Location of the public files (Web Deployment Option picture directory)

In addition, it may be necessary on some systems to ensure that the
environment is correctly set and passed on. You should ensure that the web
server process can access the environment variable II_SYSTEM and that the
appropriate additions have been made to your operating system search paths
for programs and shared or dynamic libraries.

Adding Virtual Directories

Directory /ice-bin

indows |

To let the web server know the location of the above files, the following virtual
directory aliases must be added to your web server configuration:

m /ice-bin
m /iceimages

The virtual directories are mapped to the actual directories where the files
reside.

The Web Deployment Option client binaries (extension files) are located in the
following directory:

%]II_SYSTEM%\ingres\ice\bin\<web server directory> =
$II_SYSTEM/ingres/ice/bin/<web server directory> ™

where <web server directory> is the name of the subdirectory where the server
extension is located. For the supported server extensions, the possible
subdirectories are microsoft and apache.

The HTTP server invokes the requested binary when it is specified in the URL
or from a Web page. For more information on the Web Deployment Option
client, see “"Chapter 3: Understanding the Web Deployment Option.”

2-2 Web Deployment Option User Guide

Microsoft Internet Information Server (lIS)

Directory /iceimages

The public image files are located in the following directory:

m %II_SYSTEMP®%\ingres\ice\images ™
UNIX $I1_SYSTEM/ingres/ice/images ™

This directory is used for the non-secured, initial images presented in the
sample Plays tutorial application, in addition to the My_Plays application that
you will create.

Enabling the Native HTTP Server Extensions

In addition to the virtual directories, you must configure your web server to
enable use of the Web Deployment Option native HTTP server extensions.
Instructions are in the following sections.

Rebooting Windows

Important! After you have installed and configured the web server, you must
reboot Windows systems. This ensures that Ingres is included in the path for
the Windows Service Control Manager.

Value of II_System

This chapter uses the notation <II__ SYSTEM>, which refers to the value of the
II_SYSTEM environment variable for your Ingres installation. You must know
this value to complete certain configuration tasks.

To learn this value, enter the following at a command prompt:
ingprenv II_SYSTEM

Microsoft Internet Information Server (lIS)

To configure IIS to work with Web Deployment Option, complete the following
tasks:

1. Create a user for Web Deployment Option
2. Configure IIS
3. Reboot

Chapter 2: Getting Started 2-3

Microsoft Internet Information Server (lIS)

Environment (lIS)

Windows systems allow a global environment to be set for all processes on the
machine.

The Web Deployment Option installation should have set the following
environment variables, which allow IIS to connect to the ICE Server:
m II_SYSTEM

s PATH

The PATH variable should include entries for Ingres binary and dynamic link
library directories.

Create a User for Web Deployment Option

A user must be created that has both anonymous Web site and anonymous
application access.

To create a local operating system user for Web Deployment Option

1. Start the Computer Management Console (CMC) by selecting Start, Run.
Type the command:
mmc C:\WINDOWS\system32\compmgmt .msc

a. Create a new user. IIS Web Deployment Option extensions and
application pool will be identified by this user.

b. Give this user a password that cannot be changed and never expires.
c. Make this user a member of the Guests and IIS_WPG groups.

2. Start the Local Security Console (LSC) by selecting Start, Run. Type the
command:

mmc C: \WINDOWS\system32\secpol.msc
a. Under Local Policies, User Rights Assignments, add the previously

created user to the rights "Replace process-level token" and "Adjust
memory quotas for a process."

2-4 Web Deployment Option User Guide

Microsoft Internet Information Server (lIS)

How You Configure IIS for Web Deployment Option

You configure the Microsoft Internet Information Server from the Internet
Service Manager.

Both the CGI and ISAPI standards are supported for IIS.

The overall procedure is as follows:

1.
2
3.
4

5.

Create a named application pool and assign WDO user to identity.
Create a separate web site.
Add ice_index.html to Documents property for the web site.

Add virtual directories for ice-bin and iceimages. Set application settings
for the ice-bin directory.

Create new Web services extensions oiice.exe and oiice.dll.

To create a named application pool and assign Web Deployment
Option user to identity

1.

Start Internet Information Services (IIS) Manager from the Administrative
Tools folder.

Right click on Application Pools and select New, Application Pool, as shown
here:

l:, Internet Information Services {IIS) Manager H=]
¥g Fle action View Window Help | — = =]
& = |Em| e [HE| 2| 2] 50
P‘g I!jternet Information Services Description | State | Status |

9 0 INGDEY-WINZKS {local cam Q';&DefaultnppF‘ool Stopped

= e e
Application Poal...

[) web Si

. - Al Tasks 2 Application Pool {From file)...

..... _'_J Web Sf

iew 3
Mew Window From Here

Refresh
Export List...

Properties
N Help
Create Application Fool |

Enter a name for this pool (which you will use later) and accept the “Use
default settings for new application pool.”

Chapter 2: Getting Started 2-5

Microsoft Internet Information Server (IIS)

Application pool identity property uses the identity of the operating sytem
user created previously.

Ingres Pool Propetties ﬂil

Recyclingl Perfnrmancel Health = Idenkity |

—Application poaol identity

Select & security account For this application pool:

" Predefined INetw-:-rk Service j

' Configurable

User name: I inqusr_wdo Browse |

Passwiord: I eSS

QK I Cancel Apply Help

To create a new Web site

1. Right click on Web Sites, and select New, Web Site, as shown here:

{ Internet Information Services (IIS) Manager

"':g Fle Action Wiew window Help |;|i|5|

¢ = @I XFRE |22y =0

Eg Ir_nternet Infarmation Services | Description | Path

E...&ii INGDEV-.WII‘.-J2K3 {local com ;&}Ingres WO <Ingres =

[Tphcatlon Pools .“jice—bin «Ingres =fice-bin

."._'.J :'I_Z_)eFaultAppPooI Wiceimages <Ingres xficeimages
i

All Tasks 3 ‘web Site (From file). ..

Bl Webde ey Wirdaw From Here

Refresh

Properties

Help

(| | { H

|Create new Web site |

2-6 Web Deployment Option User Guide

Microsoft Internet Information Server (lIS)

2. Follow the instructions displayed by the Web Site Wizard. Choose a port
other than 80. For example:

Web Site Creation Wizard]

IP Address and Port Settings &
Specify an IP address, port zetting, and host header for the new Web site.

Enter the IP address to uze for this Web site:
{41l Unassigned) =l

TLCP port this Web site should uze [Default: 80):
|25521

Huost header for this ‘Weh site [Default: Hone]:

For more infarmation, read the |15 product documentation.

< Back I Hext » I Cancel |

To add ice_index.html to Documents property for the web site

Update the default documents properties to include ice_index.html. For

example:
Ingres Web Deployment Option Properties ﬂil
‘Webh Site | Perfarmance I ISAPI Filters I Harme Directary
Documents | Direckory Security I HTTP Headers I Custarn Errars

I Enable default content page:

Default. htm

Default. asp Add...
indez, bt

ice_indesx. bkl Remave |

[Maye L o Do |

1 Enable document Fooker

Append an HTML Formatted Footer to every document yvour Web
sErver returns,

I Browse. .. |

Ok I Cancel Apply Help

Chapter 2: Getting Started 2-7

Microsoft Internet Information Server (lIS)

To add virtual directories

1. Add virtual directories, as described in Virtual Directories (IIS).

When configuring the ice-bin directory, set Executable permissions to
Scripts and Executables, and set Application pool to the name you entered
previously.

ice-bin Properties ﬂﬂ

Yirtual Direckary IDDcuments | Direckory Security | HTTP Headers I Cuskam Errors I

The content For this resource should come From:

{* i direckory located on this computer:

" A share located on anather computer
A redirection ko a URL

Local path: I Cs\Program FilesiIngres IngresIlingres Browse,,, |
[Scripk source access "2 Lag wisits

v Read [Index this resource

[write

[Directary browsing

Application settings

Application name: I ice-bin Remove |
Starting paink: <Ingres Weh Deploymen. ..

Configuration. .. |
Execute permissions: IScripts and Executables j
Application pool: IIngres Pool j Unlaad |

(0]4 I Cancel | Amply | Help |

To create new Web services extensions

1. Right click Web Service Extensions and select Add a new Web service
extension. Enter a name for the extension. Add required files, namely
oiice.dll and oiice.exe. Check the box "Set extension status to allowed.”

2. Reboot the machine.

Virtual Directories (lIS)

To add virtual directories, follow these steps:

1. Click Start on the Windows taskbar, and then choose Settings, Control
Panel, Administrative Tools, Internet Services Manager.

The Internet Information Services window appears.

2. Expand the branch of the server you want to configure.

2-8 Web Deployment Option User Guide

Microsoft Internet Information Server (IIS)

3. Right-click the Default Web Site branch.
4. Choose New, Virtual Directory.

The Welcome to the Virtual Directory Creation Wizard window appears.
5. Click Next.

The Virtual Directory Alias dialog appears:

Yirtual Directory Creation Wizard

Yirtual Directory Alias
You must give the wirtual directory a short name, or alias, for quick reference.

6. In the Alias field, enter ice-bin and click Next.

The Web Site Content Directory dialog appears.

Chapter 2: Getting Started 2-9

Microsoft Internet Information Server (IIS)

7. In the Directory field, enter the name of the directory where the server
extension resides. For example:
Yirtual Directory Creation wWizard

Web Site Content Directory
YWhere is the content pou want to publizh on the 'Web site’?

C:%Program Files\Casngres [Ningresticesbintmicrosof]

8. Click Next.
The Access Permissions dialog appears:

Yirtual Directory Creation Wizard

Access Permizzions
What access permizsions do pou want to zet for thiz virtual directony?

Al Al G Y

9. Keep the default values, and then select the Execute check box.

10. Click Next.

2-10 Web Deployment Option User Guide

Apache Web Server

11. Click Finish.
These directories are added to the list under the Default Web Site.

12. Repeat steps 3-11, creating the following directory for the /iceimages
alias:

drive:\<II_SYSTEM>\ingres\ice\images

Note: Do not select the Execute check box when creating this directory.

ICE File Type (lIS)

The Web path name indicates the ICE file type.

Using Your Web Server as a Windows Service

If you are using your web server as a service, you should restart Windows to
ensure that the Services manager incorporates all settings.

Apache Web Server

To configure the Apache Web Server, edit the httpd.conf file in the Apache
conf/ directory.

Note: After you update the configuration file you must restart the Apache Web
Server.

Tip: The Apache Web Server supports an include directive that lets
multiple configuration files be included in the server configuration. You can
keep configuration information either in the httpd.conf file or in one that
is included by it. This feature allows web server administrators to store
changes for particular services in individual conf files.

An example include conf file for the ICE Server is on the distribution media
in <II_SYSTEM>/ingres/ice/bin/apache/ice.conf. This file uses the virtual
server capability of the Apache Web Server, which listens on a different
port. You can use this file as an example to set up your Apache Web
Server as quickly as possible.

Chapter 2: Getting Started 2-11

Apache Web Server

Environment (Apache)

indows |

See Environment (IIS) in this chapter. ®

The following environment variables are required for the Apache Web Server
to connect to the ICE Server:

m I _SYSTEM
m LD_LIBRARY_PATH

You must make sure that the process that starts the web server has the usual
Ingres environment variables set either for the process or in the server startup
script.

If you intend to use the CGI interface, in addition to having these environment
variables available to the Apache Web Server process, you must insert the
following directive in the httpd.conf file to explicitly instruct Apache to pass
them on:

PassEnv II_SYSTEM LD_LIBRARY PATH M

Virtual Directories (Apache)

Windous.

To add virtual directories for the Apache Web Server, edit the httpd.conf file.

You must add virtual directories for ice-bin and iceimages using the Alias
directive (there is an Alias section in the configuration file). For example:
Alias /ice-bin/ “C:/Ingresll/ingres/ice/bin”

Alias /iceimages/ "C:/IngresIl/ingres/ice/images" ™

Alias /ice-bin/ "/IngresIIl/ingres/ice/bin"
Alias /iceimages/ "/IngresII/ingres/ice/images" ™

ICE File Type (Apache)

You must register the ICE module with the Apache Web Server by loading the
ICE module and setting a handler for a particular location. Permissions are
assigned using the Directory element. The ICE extension is loaded using the
LoadModule directive. The handler is specified in a Location element as
illustrated below.

Note: Modules in the form of shared libraries or dynamic link libraries should
be identified by absolute path name, for example:

<II SYSTEM>/ingres/ice/bin/apache

where <II _SYSTEM> represents the value of the environment variable
II_SYSTEM for your installation.

2-12 Web Deployment Option User Guide

Apache Web Server

Add the ICE extension module.
LoadModule ice_module <II SYSTEM>/ingres/ice/bin/apache/oiice.dll

#Locations
<Location /ice-bin>
SetHandler ice-ext

</Location>

<Directory <II _SYSTEM>/ingres/ice/bin/apache>
AllowOverride None
Options None

</Directory> ™

Add the ICE extension module.
LoadModule ice_module <II SYSTEM>/ingres/ice/bin/apache/oiice.l.so

Enable the apapi module:
AddModule apapi.c

Locations
<Location /ice-bin>
SetHandler ice-ext

</Location>

<Directory <II _SYSTEM>/ingres/ice/bin/apache>
AllowOverride None
Options None

</Directory>

Environment variables

PassEnv II_SYSTEM LD_LIBRARY_PATH

Chapter 2: Getting Started 2-13

Setting Up Your ICE Server

Automatic Recognition of File Type

The Apache Web Server lets you create “virtual servers.” A virtual server can
process pages automatically with the ICE Server. An example of how to do this
is presented in the ice.conf file, located in the following directory:

m %II_SYSTEM®%\ingres\ice\bin\apache ™

UNIX $I1_SYSTEM/ingres/ice/bin/apache ™

Using Your Web Server as a Windows Service

m If you are using your web server as a service, you should restart Windows to
ensure that the Services manager incorporates all settings.™

Setting Up Your ICE Server

The ICE Server and its supporting library files are installed in the following
directory:

m %]II_SYSTEM%\ingres\ice\bin ™
UNIX $II_SYSTEM/ingres/ice/bin =

It is not necessary to configure the ICE Server files. You can, however, set up
your own default system parameters for Internet Communication in the
Configuration Manager.

To access Configuration Manager, do the following:

= On Windows, click Start on the taskbar, and then choose Programs,
Ingres, Configuration Manager.

m On UNIX, enter vebf at the command line. (For information on the vcbf
command, see the Command Reference Guide.)

2-14 Web Deployment Option User Guide

Setting Up Your ICE Server

The Configuration Manager is invoked, as shown next. Select the Internet
Communication component in the left pane of the window. The configurable
parameters for the ICE Server are displayed in the right pane.

* Configuration Manager [I1]
I_INSTALLATION Il Host [GLOBE II_SY'STEM |C:\F'rogram Files\CaAhIngres [Il]
Configure | History of Ehangesl
=-§33 Ingres Configuration Parameters I Startup Count |

-] DBMS Servers Parameter | alue | Uit -

-] Data Access Servers

(] JDBC Servers allowy_dbowr boolean

-1 Net Servers allowe_dsql boolean —

(-0 Star Servers allovs_exeapp boaolean
..... N g
_____ g S::ue[ityerver app_dir CA\Program... | full directorny path

Internet Communication apps_table 10 entries
13 Remote Command Block_court 100 blocks
""" #) Lacking System block_size 2048 bytes
----- Logging System
..... Frimary Transaction Log client_lib oiice client library =
----- Dual Transaction Log | | ’I
----- & Recovery Server
""" @ Archiver Frocess Editsalue | ezt |
Help I Cloze |

For information on the individual parameters, see the online help by pressing
F1 while the Internet Communication component and the Parameters tab are
selected. Also see the Using the Configuration Manager topic in the Procedures
section.

Web Server Document Directory

If you did not set the Web Server Document Root Directory at Web
Deployment Option install time, you must set this parameter now. A valid
value is essential for communication with your Ingres database. The
parameter name is html_home, and the value is the full path to the primary
HTML document directory of your web server.

Chapter 2: Getting Started 2-15

Chapter 3: Understanding the Web
Deployment Option

This chapter provides an overview of the Web Deployment Option, including its
powerful database web server and the facilities it provides for managing a
web/client/server environment.

Overview

The Web Deployment Option provides a host of features that allow the
application developer to create dynamic web-based applications that are
independent of the web user’s browser and the data sources with which they
communicate. Essentially, applications can be developed with only HTML code.

The Web Deployment Option also offers solutions to important problems
currently encountered by web application developers today. These include the
flexibility to deliver solutions through dynamic HTML pages, while protecting
and managing access to their enterprise’s data.

The main features of the Web Deployment Option include:
m Session capability

Web access is usually stateless, starting new connections with the request
of each HTML page. When developing applications for the Web, it is
desirable that state information is maintained between pages. Using
session management, it is possible to maintain a session context by using
a unique cookie identifier. A cookie is the unique data that identifies a
remote user.

m Security management

Since the volume of users in a web environment can become very large,
creating a system or database account for each potential client on the
operating system is unrealistic. Therefore, a logical user or “web user” is
created for the Web Deployment Option, enforcing user authentication
before a session to the Web Deployment Option is opened. User rights can
be established in the system and access to HTML pages can be assigned.

Chapter 3: Understanding the Web Deployment Option 3-1

Users

Users

Transaction processing

The Web Deployment Option allows HTML developers to open, commit,
and roll back transactions through the Web Deployment Option macro
language. A named transaction allows the handling of query operations
performed by a user (for example, browsing or selecting items from a list)
over many HTML pages, and then the committal of the transaction only
when the user is finished.

Macro language

The Web Deployment Option provides an extensive macro language that
allows the web author to embed Web Deployment Option macros in HTML
documents to execute SQL statements and automatically format the result
sets. In addition, a connection protocol is used that authenticates a user
before establishing a Web Deployment Option session.

Document caching

When dealing with web documents, it is possible for a single HTML page to
reference many different facets; each facet may vary in size and
complexity. Using the ICE Server, there can be many facets stored within
the database and extracted each time they are needed. Adding a
document to the cache reduces the number of database accesses.

Administration and management tools

Visual DBA enables you to administer your Web Deployment Option
system, including security, business unit, and server information. You can
also monitor various entities, such as connected and active users, cached
pages, HTTP and database connections, transactions, and cursors.

The users of Web Deployment Option fall into three major categories including
the roles of administrator, web author, or web user.

These roles are defined as follows:

Web Deployment Option administrator

There are several types of administrators in the Web Deployment Option,
including:

- Privileged user

Has all permissions and privileges on the ICE Server. This user is
equivalent to the Ingres administrator (installation owner) or the root
user on UNIX.

— Server administrator

Manages session groups, locations, and server variables.

3-2 Web Deployment Option User Guide

Architecture

Architecture

- Security administrator

Manages all security components, including web users, database
users, roles, profiles, and database connections.

- Business unit manager

Creates and manages a business unit—which entails defining the list of
locations available through this business unit, declaring authorizations,
and managing the unit’s backup.

- Monitor
Views and keeps track of Web Deployment Option system information.
m Web author

Someone who is responsible for analyzing user and enterprise
requirements, as well as designing and implementing Web Deployment
Option application programs to meet those requirements. The web author
is also responsible for validating that the application programs meet those
requirements, and for handing them over to the Web Deployment Option
business unit manager for installation.

Web authors can also be given authorization to manage security, projects,
HTML pages, and multimedia documents in the system.

m Web user

Any user declared in the Web Deployment Option repository and who is
permitted to request documents from the ICE Server. This includes
administrators, developers, and end-users of applications.

Note: A default database user alias is associated with each web user,
which determines the data source the user accesses. Through database
connections, a web user can also be associated with other database users
and data sources.

ICE Server architecture is based on the Ingres DBMS Server architecture and
allows multiple users access to databases through connections to one or more
ICE Server processes. The ICE Server is also a multi-threaded daemon process
that generates dynamic page content and manages resource pooling with data
sources (such as Ingres).

The ICE Server architecture provides a separate application layer that can pass
information to any web browser. The browser is then responsible for
interpreting the information for the web user. Web Deployment Option is
designed to enforce security in the web environment, allow scalability for more
users, integrate with emerging products, and leverage existing business logic.

Chapter 3: Understanding the Web Deployment Option 3-3

Architecture

Web Site Components

The primary components of a Web Deployment Option web site are:
m Browser

m HTTP server and Web Deployment Option client

m ICE Server

m Information systems

The figure below illustrates a Web Deployment Option web site:

SRRy

Network

T

LTTP Server Weh Deployment

Optian Client

S

F 3
h 4

ICE Server

+——»

Ingres

File System User Functions

3-4 Web Deployment Option User Guide

Architecture

Web Browser

A web browser allows a user to interact with a web application. It also allows
any web user with the proper privileges to configure and manage the Web
Deployment Option. The Web Deployment Option allows the development of
web applications with essentially only HTML code. Therefore, the browser is
independent of the web application.

Web Deployment Option Client

CGl Extensions

Native Extensions

The web server executes programs in response to browser requests. CGI is the
standard protocol that defines the way the server executes the programs. The
communication between the HTTP server and the ICE Server can occur
through a CGI external executable or an internal native HTTP server extension.
CGI and native drivers act as “communications pipes” sending requests to and
receiving results from the ICE Server.

The Web Deployment Option is supplied as a CGI-compliant executable file
and should support any web server that also supports CGI. In addition, the
Web Deployment Option client is also supplied as a native extension to some
of the more common HTTP servers.

There are a number of limitations to the CGI approach, and for this reason,
web server vendors have defined their own methods for extending the
capabilities of their products. The Web Deployment Option is also supplied in a
form compatible with three of the most widely supported web server native
API driver interfaces, including:

m ISAPI—Microsoft Internet Server API
m Apache API—Apache Server API

In Windows environments, Web Deployment Option components written to
these interfaces are supplied in the form of a Windows Dynamic Link Library
(DLL). =

In UNIX, Web Deployment Option components written to these interfaces are
supplied in the form of a UNIX shared library. ®

These interfaces are otherwise functionally identical to the CGI executable.
They provide performance benefits and allow HTML developers freedom to
develop standard Web Deployment Option web applications or pages without
providing a separate interface for each environment.

Chapter 3: Understanding the Web Deployment Option 3-5

Architecture

ICE Server

When you create a Web Deployment Option application, you need to refer to
the CGI client or native extension in your HTML. Typically, this will be in the
Uniform Resource Identifier (URI) you supply in the FORM ACTION tag. The
name of the executable to which you refer depends on the web server
interface you have chosen.

The following table lists the possible interfaces for the supported web servers:

Web Server Interface Windows File Name UNIX File Name
CGI application oiice.exe oiice

Microsoft ISAPI library oiice.dll Not available
Apache oiice.dll oiice.1

The multi-threading ICE Server communicates with the HTTP server either by
using a CGI executable or a server extension. It communicates with the data
source passing requests to the source and returning the results to the
browser.

The ICE Server manages all connections, session information, and security for
those areas of the web site under its control. It maintains a list of users, their

privileges, and roles (used for simplifying the maintenance of the privileges for
a group of users).

The documents that can be viewed by users fall into a three-layer hierarchy:
the documents themselves, business units (which are a collection of active
pages and facets), and session groups (which are a logical grouping of
business units).

In addition to the powerful Web Deployment Option macro language, support
for running Ingres reports, database procedures, and user written applications,
the ICE Server offers built-in functions, a C API, and user-defined functions.

The ICE Server maintains all of this information in a repository, which is
maintained by the ICE Server administrator.

Information Systems

The Web Deployment Option supports Ingres databases and all Enterprise
Access products (gateways), which provide access to other data sources such
as Microsoft SQL Server, Sybase, Informix, Oracle, CA-IDMS, CA-Datacom,
among others.

3-6 Web Deployment Option User Guide

Chapter 4: Managing the Web
Deployment Option

This chapter describes the Web Deployment Option objects that you can
manage, including security, business unit, and server objects. The following
topics are discussed:

m Accessing Web Deployment Option information

m Managing database users, database connections, roles, profiles, and Web
users

m Managing user and role access for a business unit, pages, facets, and
associations to locations

m Managing session groups, locations, and server variables

m Monitoring Web Deployment Option information

The server administrator, security administrator, and business unit
administrator will be managing the various objects in the Web Deployment

Option system. A user with the monitor privilege can monitor the Web
Deployment Option system.

Accessing Web Deployment Option Information

[l

Visual DBA allows you to view and manage your Web Deployment Option
objects. On Windows, you start Visual DBA by clicking Start on the taskbar,
and then choosing Programs, Ingres, Visual DBA. On UNIX, enter vdba at the
command prompt.

To open a Database Object Manager window, expand the Nodes branch and
select a virtual node. Then, click the Connect DOM toolbar button.

Chapter 4: Managing the Web Deployment Option 4-1

Accessing Web Deployment Option Information

To access the Web Deployment Option objects on your installation, you
expand the ICE root branch in the Database Object Manager. This reveals the
following sub-branches, which represent Web Deployment Option object

categories:
H_EI [local] - Hormal - 1 H=] =

M EI |<aIIDwners> j I<a||Dwners> j ™ Systemn Obj ||| I—é
7-_1 Databases |
70 Profiles

7-C1 Users
H-C1 Groups
7-1 Roles
7-C Locations

e
B Security
&3 Business Units

#-C0 Server
-0 Installation Level Settings

E
[
[
[
[
[

If you expand one of the sub-branches further, you either see other object
categories or you are prompted with the following dialog:

Enter Login/Password for Accessing ICE Information

[
User I

Cancel |
Password: I

Enter the name and password associated with the Web Deployment Option
privileged user. This user is the installation owner set up during installation
(default ID is ingres), and must be defined as an operating system user. When
you are finished, click OK.

Note: The Web Deployment Option privileged user is defined in the config.dat
file and can be changed to another Ingres administrator using the
Configuration Manager utility.

The objects appear under the branch, provided you have access privileges to
the information. The section Managing Security describes how Web users are
granted privileges to resources once they are defined.

4-2 Web Deployment Option User Guide

Managing Security

Managing Security

Web Users

The Web Deployment Option provides a variety of mechanisms for managing
Web resources and granting access to them. It also allows for the security of
the data sources in the installation.

If you are a Web Deployment Option privileged user or a security
administrator, you can create the following:

m Web users

m Database users

m Database connections
m Roles

m Profiles

A Web user is any user declared in the Web Deployment Option repository and
is permitted to request documents from the ICE Server. The user may be an
administrator, developer, or end user of an application. The security
administrator manages Web users and their associations to roles and database
connections.

There are two different ways in which Web users can be created. A security
administrator can manually create a Web user definition through Visual DBA.
Web users can also be automatically defined through a series of “auto
declaration” statements defined in a Web page. A new Web user is instructed
by an application to enter a user name and password—resulting in the user
being auto-declared through a profile created by the security administrator
that defines the user type and attributes.

Working with Web User Objects

In Visual DBA, Web users are implemented using Web user objects. A Web
user object specifies the user’s name, password, the type of user, and several
other attributes.

Using the Web Users branch in the Database Object Manager window, you
can:
m Create and alter Web user objects

m View existing Web user objects, including the detailed properties of
individual objects

m Drop Web user objects

Chapter 4: Managing the Web Deployment Option 4-3

Managing Security

How Web Users Are Used

Associate role objects with Web user objects

Associate database connection objects with Web user objects

The detailed steps for performing these procedures can be found in the
Procedures section of the online help. See the following topics:

Creating a Web User

Altering a Web User

Viewing Object Properties

Associating a Role with a Web User

Associating a Database Connection with a Web User

Dropping Objects

Once a Web user is created, you can associate several types of objects with it.
The associations define which data sources the user can access and what
access permissions the user has to Web resources. The following types of
objects can be associated with a Web user:

Role

A role can be associated with a Web user and privileges associated with it
for a business unit.

Database connection

One or more database connections can also be associated with a Web user
to identify which database connections the user can use.

Business unit

A business unit can also be associated with a Web user, which gives the
user access to the pages and facets in the business unit.

Pages and facets

To provide a finer granularity of security based on the page or facet the
user is trying to access, individual pages and facets can be associated with
a Web user.

For details on how to create associations between these types of objects and a
Web user, see Role Access Definitions in this chapter.

4-4

Web Deployment Option User Guide

Managing Security

Database Users

When accessing the information system, the Web Deployment Option uses a
database user definition. A database user is a user alias that maps to an actual
user (such as “ingres”), for which a database administrator grants
permissions.

One default database user can be used by a large humber of Web users (or
profiles) to access a data source. This allows the number of users known to
the data source to be minimized, while the number of Web users can be quite
large.

The database user is aliased by the Web Deployment Option to an Ingres
database user. The user can be specified in a Web Deployment Option macro
for public access—although this is not recommended. (This is provided for Web
Deployment Option (formerly Ingres/ICE) Version 2.0 compatibility, however
the use of the features in versions 2.5 and higher is preferred.)

Working with Database User Objects

In Visual DBA, Web Deployment Option database users are defined using
database user objects. A database user object specifies the user’s alias, name,
password, and an optional comment.

Using the Database Users branch in the Database Object Manager window,
you can:
m Create and alter database user objects

m View existing database user objects, including the detailed properties of
individual objects

m Drop database user objects

The detailed steps for performing these procedures can be found in the
Procedures section of the online help. See the following topics:

m Creating a Database User

m Altering a Database User

m Viewing Object Properties

m Dropping Objects

Chapter 4: Managing the Web Deployment Option 4-5

Managing Security

How Database Users Are Used

Once a database user is created, you can assign it as the default database
user when creating a new Web user or profile. This instructs the Web
Deployment Option to use the user name and password defined in the
database user definition by default when connecting to a data source. This is
how the Web Deployment Option administrator arranges for multiple Web
users to access the data source using one user name for that source.

One or more database connections can also be associated with a database
user. For more information, see Database Connections in this chapter.

Database Connections

A database connection allows the Web author to use an alias for a database
and a database user. A Web user is associated with a database user for the
purpose of convenience and to abstract internal names.

Working with Database Connections

In Visual DBA, database connections are defined using database connection
objects. A database connection object specifies the database connection’s
name, virtual node, database, database user, and an optional comment.

Using the Database Connections branch (beneath the ICE Security sub-branch)
in the Database Object Manager window, you can:
m Create and alter database connection objects

m View existing database connection objects, including the detailed
properties of individual objects

m Drop database connection objects

The detailed steps for performing these procedures can be found in the
Procedures section of the online help. See the following topics:

m Creating a Database Connection

m Altering a Database Connection

m Viewing Object Properties

m Dropping Objects

4-6 Web Deployment Option User Guide

Managing Security

How Database Connections Are Used

Roles

Database connections are used to control access to the database and to make
the database location and user transparent, thus concealing the true names of
the database and the database user from the Web. In addition to providing
abstraction, database connections allow for simpler code since a developer
needs only to reference a database connection in a page.

For each Web user, you can define the database connections the user will be
able to use. A Web user is defined with a default database connection with
which to use if none is specified.

You can streamline the user authorization process using roles. A Web
Deployment Option role is a logical entity that allows a security administrator
to give authority to a set of Web users.

You can define a set of permissions for the role on the business unit, page, or
facet level.

Working with Role Objects

In Visual DBA, Web Deployment Option roles are defined using role objects. A
role object specifies the role’s name and an optional comment.

Using the Roles branch (under the ICE Security sub-branch) in the Database
Object Manager window, you can:
m Create and alter role objects

m View existing role objects, including the detailed properties of individual
objects

m Drop role objects

The detailed steps for performing these procedures can be found in the
Procedures section of the online help. See the following topics:

m Creating a Role

m Altering a Role

m Viewing Object Properties

m Dropping Objects

Chapter 4: Managing the Web Deployment Option 4-7

Managing Security

How Role Objects Are Used

Profiles

Once a role is created, a role can be associated with many existing Web users
instead of defining and updating the security privileges individually for each
user. A set of predefined permissions can be defined for a role through a role
access definition for a particular business unit, page, or facet.

Business units define which sort of permissions are to be allowed on a per-role
or per-user basis. A user associated with a role will therefore automatically be
assigned the permissions of that role. A user can be granted other permissions
individually.

For more information, see Role Access Definitions in this chapter.

Note: When defining a role, the security administrator typically works with the
Web author, so that they can agree on the identifier and the permissions the
role has for specific applications.

A profile is used to set up a default level of access to a business unit for a Web
user. It does this by associating the Web user with a role. The business unit
then defines the level of access for that role. Profiles allow for simpler user
management—predefining Web user definitions.

Working with Profile Objects

In Visual DBA, profiles are implemented using profile objects. A profile object
specifies the profile’s name, default database user, type of user, and time-out
duration between requests from the server.

Using the Profiles branch in the Database Object Manager window, you can:

m Create and alter profile objects

m View existing profile objects, including the detailed properties of individual
objects

m Drop profile objects

m Associate a role object with a profile object

m Associate a database connection object with a profile object

The detailed steps for performing these procedures can be found in the
Procedures section of the online help. See the following topics:

m Creating a Profile

m Altering a Profile

4-8 Web Deployment Option User Guide

Managing Server Information

How Profiles Are Used

m Viewing Object Properties
m Associating a Role with a Profile
m Associating a Database Connection with a Profile

m Dropping Objects

Once a profile is defined, a role or database connection can be associated with
it. With a role, permissions for a business unit or specific Web resource can be
defined. Database connections allow you to control which data sources can be
accessed for a profile.

For more information on these objects, see Roles and Database Connections in
this chapter.

Managing Server Information

Session Groups

Several entities relate to the ICE Server and provide the ability to group
document elements together logically, specify server locations that can be
used to store pages and facets, and store server variables that can be
referenced in documents.

A session group defines a logical group of business units. Each business unit
must belong to a session group. No additional security or access permissions
are associated with a session group. A session group identifies a unique cookie
for a session.

Working with Session Groups

In Visual DBA, session groups are defined using session group objects. A
session group object specifies the name of the session group.

Using the Session Groups branch (beneath the ICE Security sub-branch) in the
Database Object Manager window, you can:
m Create and alter session group objects

m View existing session group objects, including the detailed properties of
individual objects

m Drop session group objects

Chapter 4: Managing the Web Deployment Option 4-9

Managing Server Information

The detailed steps for performing these procedures can be found in the
Procedures section of the online help. See the following topics:

m Creating a Session Group
m Viewing Object Properties

m Dropping Objects

How Session Groups Are Used

A session group specifies a set of Web Deployment Option documents. It is
used in the generation of a Web Deployment Option session cookie. Using a
session group enables a client to open multiple session groups on the same
client with multiple instances of the browser.

The Web Deployment Option uses sessions to manage connections. For a
secured site, each user has to identify himself by opening a connection on the
ICE Server. This named connection allows the server to keep track of multiple
session contexts from a single client running different Web applications
concurrently. When a user logs in to the Web Deployment Option, a cookie is
assigned. The session group then becomes valid.

To work with session groups, you need to be a Web Deployment Option
privileged user or server administrator. The privileged user can create a
location for use by a business unit manager or owner for Ingres II 2.0
compatibility access. For more information, see Managing Security in this
chapter.

After you have created a session group object, you can use the new session
group to reference a page mapped to a location through a Web Deployment
Option address. For the syntax of this address, see “Appendix B: HTML
Primer.”

Note: Login and auto-declare pages are public and should not specify session
groups whereas secure pages should.

Locations

The ICE Server references each active web resource, whether it is a page or
facet, using a location. There are two main types of locations: an HTTP-visible
location, and a Web Deployment Option location, which is invisible to HTTP. A
location that is controlled by the Web Deployment Option is invisible to the
HTTP server.

In addition, locations can be marked public (anyone can view their contents),
or not public, in which case only those users who have logged in can view their
contents.

4-10 Web Deployment Option User Guide

Managing Server Information

Working with Locations

In Visual DBA, locations are defined using location objects. A location object
specifies the location’s name, path, location type, extension priorities, a
comment, and whether it is public.

Using the Locations sub-branch under the ICE Server branch in the Database
Object Manager window, you can:
m Create and alter Web Deployment Option location objects

m View existing Web Deployment Option location objects, including the
detailed properties of individual objects

m Drop Web Deployment Option location objects

The detailed steps for performing these procedures can be found in the
Procedures section of the online help. See the following topics:

m Creating a Web Deployment Option Location

m Altering a Web Deployment Option Location

m Viewing Object Properties

m Dropping Objects

To work with Web Deployment Option locations, you need to be a Web
Deployment Option privileged user or a server administrator. The privileged
user can grant the privilege to a Web user by associating the administrator

profile, through profile or Web user definitions. For more information, see
Managing Security in this chapter.

How Locations Are Used

Locations allow you to group related resources into specific directories and
abstract the file system through aliasing. Files held in these directories can be
accessed by the Web Deployment Option or by the HTTP server.

After you have set up the path and mapped it to a location by creating a
location object, you can use the new location to reference a page mapped to a
location through a Web Deployment Option address. For the syntax of this
address, see “Appendix B: HTML Primer.”

ICE Server Variables

A server variable is a reference value associated with the ICE Server and is
held internally by the ICE Server.

Chapter 4: Managing the Web Deployment Option 4-11

Managing Server Information

Working with ICE Server Variables

In Visual DBA, server variables are defined using server variable objects. A
server variable object specifies the variable’s name and value.

Using the Server Variables branch in the Database Object Manager window,
you can:
m Create and alter server variable objects

m View existing server variable objects, including the detailed properties of
individual objects

m Drop server variable objects

The detailed steps for performing these procedures can be found in the
Procedures section of the online help. See the following topics:

m Creating a Server Variable

m Altering a Server Variable

m Viewing Object Properties

m Dropping Objects

To work with ICE Server variables, you need to be a Web Deployment Option
privileged user or a server administrator. The privileged user can create a
server variable that is accessible through the document content, or a

developer may allow a server variable to be set from a Web page. For more
information, see Managing Security in this chapter.

How Server Variable Objects Are Used

Server variables are used by the Web Deployment Option to hold static
information concerned with the installation (such as contact information, this
month’s include file name, browser type, or possibly the date). The variable is
loaded when the ICE Server starts and persists as long as the repository
database is not deleted. A reference to a variable is replaced by the actual text
when Web Deployment Option parses the file.

Session variables are used to pass values between pages, and page variables
are used in a page. All server, session, and page variables share the same
name space.

Important! Since all server, session, and HTML variables share the same
name space, you should not create a server variable with the same name as a
session or page variable. We recommend that your site adopt a convention
similar to that in the Web Deployment Option Plays tutorial, discussed in the
chapter “Creating Web Applications: An Example.”

4-12

Web Deployment Option User Guide

Managing Business Units

Managing Business Units

Business Units

Working with Business

The Web Deployment Option uses business units to manage Web resources,
including pages and facets, and to simplify the management of security
associated with them.

A business unit is a group of pages and facets that provide a similar function.
For a business unit, a set of locations is defined, which is used to reference
and hold the page and facet files. Defining business units enables simpler
document management.

Each file must belong to a business unit to reference it in URIs or your HTML
code. You can think of the business unit as being like an operating system
directory (that contains files like pages, facets, or both).

Units

In Visual DBA, business units are defined using business unit objects. A
business unit object specifies the name of the business unit.

Using the Business Units branch in the Database Object Manager window, you
can:
m Create and alter business unit objects

m View existing business unit objects, including the detailed properties of
individual objects

m Drop business unit objects

m Create and alter role access definitions for a business unit
m Create and alter user access definitions for a business unit
m Associate page or facet objects with business unit objects
m Back up business unit objects

The detailed steps for performing these procedures can be found in the
Procedures section of the online help. See the following topics:
m Creating a Business Unit

m Viewing Object Properties

m Dropping Objects

m Creating a Role Access Definition for a Business Unit

m Altering a Role Access Definition for a Business Unit

Chapter 4: Managing the Web Deployment Option 4-13

Managing Business Units

m Creating a User Access Definition for a Business Unit
m Altering a User Access Definition for a Business Unit
m Associating a Page with a Business Unit
m Associating a Facet with a Business Unit

m Backing Up a Business Unit

Adding Multiple Files to a Business Unit

When first creating a business unit, you may want to register many files to a
business unit simultaneously. The Web Deployment Option provides a
command line utility, regdocs, to do this and a companion utility, deregdocs,
to deregister the documents from a business unit. Using these commands
makes it unnecessary to add or remove files individually using Visual DBA.

For the syntax of the regdocs and deregdocs commands, see the Command
Reference Guide.

How Business Units Are Used

Once a business unit is identified, the business unit administrator can apply
security to the business unit as a whole, or to its individual pages or facets.
Roles and users can be associated with business units, pages, or facets.

For example, a company might have an accounting business unit to identify
the accounting department Web resources as a whole, and a payroll business
unit to identify the payroll department Web resources as a whole. To define
these business units, the business unit administrator would create them, and
then add all the pages and facets for the associated department. The business
units could then be easily maintained by adding and dropping resources as
they are needed or not needed by the departments.

After you have set up the path for a page file, and mapped it to a location by
creating a location object, you can use the new location to reference the page
through a Web Deployment Option address. For the syntax of this address, see
“Appendix B: HTML Primer.”

Note: Pages or facets that are kept as files in the file system can be included in
more than one business unit. This is not true for objects that are held in the
database.

4-14 Web Deployment Option User Guide

Managing Business Units

Documents, Pages, and Facets

A document is comprised of pages and their related objects, called facets.
Pages and facets are managed by Web Deployment Option to produce the
document the end user sees in a browser. The pages and facets can be stored
directly on the file system or in Ingres.

A page is a text file containing Web application language statements (for
instance, HTML statements) and copy. A facet is any other type of object that
is used on a page (such as an image, style sheet, audio, or multimedia
object).

Tip: The Web Deployment Option processes pages, not facets. Therefore, if
a style sheet needs to be parsed, it should be treated as a page rather
than as a facet.

The Web author creates page and facet objects for use in an application.

Working with Page and Facet Objects

In Visual DBA, Web Deployment Option pages and facets are defined using
facet objects and page objects. A page or facet object specifies the name of
the page or facet, path to the file, storage type, and caching method.

Using the Pages and Facets branches in the Database Object Manager window,
you can:

m Create and alter page and facet objects for business units

m Create and alter role access definitions for page objects

m Create and alter user access definitions for facet objects

m View existing page and facet objects, including the detailed properties of
individual objects

m Drop page and facet objects

The detailed steps for performing these procedures can be found in the
Procedures section of the online help. See the following topics:

m Creating a Page for a Business Unit

m Altering a Page for a Business Unit

m Creating a Facet for a Business Unit

m Altering a Facet for a Business Unit

m Creating a Role Access Definition for a Page

Chapter 4: Managing the Web Deployment Option 4-15

Managing Business Units

m Altering a Role Access Definition for a Page
m Creating a User Access Definition for a Page
m Altering a User Access Definition for a Page
m Creating a Role Access Definition for a Facet
m Altering a Role Access Definition for a Facet
m Creating a User Access Definition for a Facet
m Altering a User Access Definition for a Facet
m Viewing Object Properties

m Dropping Objects

How Pages and Facets Are Used
Once created, you can reference page and facet objects from within a page.
After you have created a page or facet, you can reference the new page or

facet through a Web Deployment Option address. For the syntax of this
address, see “Appendix B: HTML Primer.”

Role Access Definitions

Role access definitions can be created that define the permissions that are
associated with the role for an entire business unit, or an individual page or
facet in a business unit.

Working with Role Access Definitions

In Visual DBA, role access definitions are defined using role access definition
objects. These definitions specify the role’s name and the permissions
associated with the role.

Using the Roles branches (under the Business Units Security sub-branch, or
the Pages and Facets branches) in the Database Object Manager window, you
can:

m Create and alter role access definition objects for business units
m Create and alter role access definition objects for pages and facets

m View existing role access definition objects, including the detailed
properties of individual objects

m Drop role access definition objects

4-16 Web Deployment Option User Guide

Managing Business Units

The detailed steps for performing these procedures can be found in the
Procedures section of the online help. See the following topics:

m Creating a Role Access Definition for a Business Unit
m Altering a Role Access Definition for a Business Unit
m Creating a Role Access Definition for a Page or Facet
m Altering a Role Access Definition for a Page or Facet
m Viewing Object Properties

m Dropping Objects

How Role Access Definitions Are Used

For a particular business unit, page, or facet, a role access definition can be
created that associates permissions with a role. This provides the flexibility to
assign different permissions to a role used in different business units.

The object permissions that are applied to the role for a business unit include
the ability to create, read, and execute documents. Those permissions for a
facet or page include the ability to create, read, update, or delete.

Web User Access Definitions

Web user access definitions can be created that define the permissions that
are associated with a Web user for an entire business unit, or an individual
page or facet in a business unit.

Working with Web User Access Definitions

In Visual DBA, user access definitions are defined using user access definition
objects. These definitions specify the user’'s name and the permissions
associated with the user.

Using the Users branch (under the Business Units Security sub-branch) in the
Database Object Manager window, you can:

m Create and alter user access definition objects for business units

m Create and alter user access definition objects for pages and facets

m View existing user access definition objects, including the detailed
properties of individual objects

m Drop user access definition objects

Chapter 4: Managing the Web Deployment Option 4-17

Managing Business Units

The detailed steps for performing these procedures can be found in the
Procedures section of the online help. See the following topics:

m Creating a User Access Definition for a Business Unit
m Altering a User Access Definition for a Business Unit
m Creating a User Access Definition for a Page or Facet
m Altering a User Access Definition for a Page or Facet
m Viewing Object Properties

m Dropping Objects

How Web User Access Definitions Are Used

For a particular business unit, page, or facet, an access definition can be
created for the Web user that associates permissions with the user. These
permissions, set directly at the Web user level, override any access definition
settings at the role level.

The object permissions that are applied to the Web user for a business unit
include the ability to create, read, and execute documents. Those permissions
for a page or facet include the ability to create, read, update, or delete.

Associating a Location with a Business Unit

You can establish an association between a location and a business unit in
order to map Web resources to an actual physical disk location.

Using the Locations branch (under the Business Units branch) in the Database
Object Manager window, you can:
m Create associations between locations and business unit objects

m View existing associations between locations and business unit objects,
including the detailed properties of individual objects

m Drop associations between location and business unit objects

The detailed steps for performing these procedures can be found in the
Procedures section of the online help. See the following topics:

m Associating a Business Unit with a Location

m Viewing Object Properties

m Dropping Objects

4-18 Web Deployment Option User Guide

Monitoring Web Deployment Option Information

Monitoring Web Deployment Option Information

The Performance Monitor window in Visual DBA can be used to view
information on the ICE Server. It provides information on the activity that is
occurring on the server at any time. The following entities can be monitored:

m ICE Server properties

m Connected users

m Active users

m Cached files

m HTTP server connections

m Database connections

m Transactions

m Cursors

To access this information, select the ICE Server under the Servers branch. In
the right pane, you can view detailed information on various entities. For more

information, see the Viewing Performance Information topic in the Procedures
section of the online help.

Shutting Down

Before shutting down an Ingres installation that includes an ICE Server, you
must first terminate any connections that exist between the HTTP server and
the ICE Server.

The Web Deployment Option HTTP server extensions maintain a pool of client
connections with the ICE Server. The ICE Server detects these connections as
active sessions. To disconnect these sessions, the HTTP server extension
should be unloaded. If this is not possible, either the HTTP server can be shut
down or the Web Deployment Option can be forcibly shut down before shutting
down the remainder of the Ingres installation.

For instructions on how to shut down Ingres, see the System Administrator
Guide.

Chapter 4: Managing the Web Deployment Option 4-19

Chapter 5: Using the Macro Language

This chapter contains reference information that provides instruction on how to
embed Web Deployment Option macros into your XML or HTML documents,
including descriptions of the Web Deployment Option XML tags and the macro
language keywords that are available.

You can use the Web Deployment Option language to do the following:

m Create template documents that retrieve their content directly from the
database

m Store images and other multimedia content in an Ingres database and
share them as XML or display them with HTML

m Show the results of multiple queries on a single page

Note: The new XML tag language provides the same functionality as the macro
keywords presented later in the chapter. However, by using an XML-aware
editor, it is much easier to create documents that do the same thing and are
valid Web Deployment Option. The macro language keywords are still
supported for backward compatibility reasons.

Web Deployment Option XML Tag Set

The Web Deployment Option XML tag set has been defined to be well-formed
and conformant XML. It allows XML editors to be used to create Web
Deployment Option macro language document templates in a seamless way.
The Web Deployment Option Document Type Description (DTD) file can be
used stand-alone or in conjunction with the HTML DTD to create HTML/ICE
templates to be used in Web Deployment Option web sites.

Chapter 5: Using the Macro Language 5-1

Web Deployment Option XML Tag Set

Web Deployment Option XML Macro Tag Format
The format of a Web Deployment Option macro tag is as follows:

<i3ce_taglattributes]>

<i3ce_child_tag[attributes]>

</i3ce_child_tag>

</i3ce_tag>

In this syntax representation:

m tag is a valid Web Deployment Option XML tag

m child_tag is any XML tag that is legal in the context of the parent tag

m attributes represents any attributes that are legal in the context of the tag

Web Deployment Option Macro Tags
The following Web Deployment Option macro tags are available and are
described in more detail in the sections that follow:
m <i3ce_commit>
m <i3ce_declare>
m <i3ce_extend>
m <i3ce_function>
m <i3ce_if>
m <i3ce_include>
m <i3ce_query>
m <i3ce_rollback>

m <i3ce_switch>

5-2 Web Deployment Option User Guide

Web Deployment Option XML Tag Set

Tag Hierarchy

Some Web Deployment Option macro tags can contain children. The tag

hierarchy is shown below:

root -4 —

iJce_Children

idce_child

—| iJce_function

i3ce_parameter

i3ce_if

i3ce_include
i3ce_parameters

i3ce_parameter

—| iJce_guery

iJce_attribute

i3ce_nullvar

idce_html

i3ce_default

[3ce_var

Notes:

*

i3ce_staternent —

Legend
Content
Any tag
& Leaftag

m "“No children” indicates a leaf tag. This tag takes no content, and is an
Empty Tag. Any information that needs to be supplied to the Web
Deployment Option at this point is specified in the Tag Attributes.

Chapter 5: Using the Macro Language 5-3

Macro Tags

m “Any tag” is used to refer to any HTML or Web Deployment Option tag that
would be legal in the current context. The i3ce_HTML tag uses this, for
example, to allow flexibility in completing HTML elements. Since it
effectively opens a loophole in the DTD and subverts the normal XML
syntax checking, it should be used with caution!

Macro Tags

This section presents the syntax for each Web Deployment Option macro tag.

<i3ce_commit> Tag

Purpose
Commits a previously started transaction.
Syntax
<i3ce_commit i3ce_transaction="transaction_name" />
Description
The <i3ce_commit> tag commits the named transaction, transaction_name.
The transaction name must have been defined previously using the
i3ce_transaction attribute of the <i3ce_sql> tag.
Example
<i3ce_commit i3ce_transaction="myTransaction"/>
See Also

i3ce_query, i3ce_rollback

<i3ce_declare> Tag

Purpose

Assigns a value to a named variable, enabling the value to be reused.

5-4 Web Deployment Option User Guide

Macro Tags

Syntax

Description

<i3ce_declare i3ce_name="variable_name" i3ce_value="value"
i3ce_scope="/evel" />

The ICE Server extends the availability of variables over standard HTML
variables. HTML variables must be passed as part of the invoking URIL. A
reference to the HTML variable is replaced by the actual text when the Web
Deployment Option parses the file. Web Deployment Option variables are more
convenient in that they are maintained by the server and are not part of the
Web Deployment Option address. Also, Web Deployment Option variables
cannot have their values altered by a user changing the value in the Web
Deployment Option address (URI) in the browser window.

The following table lists the syntax elements used with the <i3ce_declare>
macro tag:

Syntax Element Description

i3ce_name Specifies the name of a variable.

i3ce_value Specifies the value assigned to the variable.

i3ce_scope Specifies the lifetime of the variable. The available
choices are:

server—loaded when the ICE Server starts and
available for use until the ICE Server is shut down. A
server variable persists as long as the repository
database is not deleted.

session—available for use while the Web user is logged
in and has not timed out.

page—available for use anywhere in the document.
Once the document has been passed back to the
browser, the variable becomes invalid.

Because all the variable lifetime values use the same name space, they are all
accessed in the same way. For example:
:ServerVariable

:SessionVariable
:PageVariable

Chapter 5: Using the Macro Language 5-5

Macro Tags

Example

See Also

The declared variable can be used in a document by referring to it in a Web
Deployment Option tag. Any variable can be used by preceding its name with
the colon (:), but you cannot have a session-level variable with the same
name as a server-level variable. This is why it is a good idea to establish a
naming convention such as that suggested in the section Committing
Transactions on the Home Page of the chapter “Creating Web Applications: An
Example.”

This example declares a page level variable containing the text: Static Text”

<i3ce_declare i3ce_name="varl" i3ce_scope="page" i3ce_value="Static Text"/>

This example declare a session level variable containing the contents of the
variable anotherVariable:

<i3ce_declare i3ce_name="var2" i3ce_scope="session"
i3ce_value=":anotherVariable"/>

<i3ce_var>

<i3ce_extend> Tag

Purpose

This tag enables the page designer to intermix HTML elements with Web
Deployment Option elements to extend the functionality provided by the Web
Deployment Option. The <i3ce_extend> tag is able to incorporate any content
whenever it is used. The designer can use this to take closer control over the
HTML that is generated by the Web Deployment Option. As a result it is up to
the designer to ensure that the resultant HTML is syntactically correct.

5-6 Web Deployment Option User Guide

Macro Tags

Syntax

Description

Example

<i3ce_extend i3ce_tagName="tag to be inserted">
<i3ce_Attributes>
<i3ce_Attribute>
<i3ce_AttributeName>tag_attribute_name</i3ce_Attribute
Name>
<i3ce_AttributeValue>tag_ attribute_value</i3ce_Attribute
Value>
</i3ce_Attribute>
</i3ce_Attributes>
<i3ce_Children>
<i3ce_Child>child< /i3ce_Child>
</i3ce_Children>
</i3ce_extend>

Use the <i3ce_extend> element to build custom designed HTML constructs or
even constructs that would be illegal at design time but legal once Web
Deployment Option has processed the page. You must take great care using
this element. The tag that is to be inserted is named in the i3ce_tagName
attribute. This tag can have attributes and children. The children can be other
tags or text. Attributes are further specified by setting both name and value
using the <i3ce_AttributeName> and <i3ce_AttributeValue> tags,
respectively. Any children or text can be individually inserted in the children
list one per child element in the <i3ce_children> and <i3ce_child> tags
respectively.

The following example introduces an HTML anchor tag, which links to the
Ingres home page on the Internet. The link is customized by giving it a red
background.

<i3ce_extend i3ce_tagName="A">
<i3ce_Attributes>
<i3ce_Attribute>
<i3ce_AttributeName>HREF</i3ce_AttributeName>
<i3ce_AttributeValue>http://www.ingres.com</i3ce_AttributeValue>
</i3ce_Attribute>
<i3ce_Attribute>
<i3ce_AttributeName>bgcolor</i3ce_AttributeName>
<i3ce_AttributeValue>"red"</i3ce_AttributeValue>
</i3ce_Attribute>
</i3ce_Attributes>
<i3ce_Children>
<i3ce_Child>L7ink to Ingres home page</i3ce_Child>
</i3ce_Children>
</1i3ce_extend>

Chapter 5: Using the Macro Language 5-7

Macro Tags

See Also

<i3ce_query>

<i3ce_function> Tag

Purpose

Syntax

Description

Invokes the specified Web Deployment Option user extension function.

<i3ce_function i3ce_name="function_name"
i3ce_location="/ibrary_name"
[<i3ce_parameters>
<i3ce_parameter i3ce_name="parameter_name"
i3ce_value="parameter_value"/>...
</i3ce_parameters> |
[<i3ce_HTML>markup_text_with_variables </i3ce_HTML>]
</i3ce_function>

The following table lists the syntax elements used with the <i3ce_function>
tag:

Syntax Element Description

i3ce_name Specifies the name of the function.

i3ce_location Specifies the name of the library containing the function.
It can be either a DLL (on Windows) or shared library
(on UNIX).

i3ce_name Specifies the name of a parameter being passed to the
function.

i3ce_value Specifies the value assigned to the parameter.

<i3ce_HTML> Specifies any allowable markup text. A format string

containing markup tags and column names. This option
provides the ability to describe a line of markup
language syntax and embed within it variable
placeholders.

5-8 Web Deployment Option User Guide

Macro Tags

Example

<i3ce_function i3ce_name="funcl"
i3ce_location="1ibl">
<i3ce_parameters>
<i3ce_parameter i3ce_name="pl" i3ce_value="v1"/>
<i3ce_parameter i3ce_name="p2" i3ce_value="v2"/>
</i3ce_parameters>
<i3ce_HTML>
<p>Random HTML & text including Web Deployment Option variables. e.g.:
cp2, cpl</p>
</i3ce_HTML>
</i3ce_function>

See Also

<i3ce_query>, <i3ce_function>
<i3ce_if> Tag

Purpose

Evaluates a conditional expression.

Syntax

<i3ce_if> <i3ce_condition i3ce_condop="conditional_operator"
i3ce_condlhs="/eft_hand_side" i3ce_condrhs="right_hand_side" />
<i3ce_then>
Text for then-branch

</i3ce_then>
[<i3ce_else>

Text for else-branch

<i3ce_else>]
<i3ce_if>

Chapter 5: Using the Macro Language 5-9

Macro Tags

Description

The <i3ce_if tag> can test the value of a conditional expression. It has three
child tags, <i3ce_condition>, <i3ce_then>, and <i3ce_else>. The first two
tags are mandatory, and the last one is optional. The <i3ce_condition> tag
has three attributes to specify a conditional expression. Depending on the
results of evaluating this expression, either the <i3ce_then> or the
<i3ce_else> branch is activated. The <i3ce_condition> tag attributes are
described in the table below.

The following table lists the syntax elements used with the <i3ce_if macro>

tag:

Syntax Element Description

i3ce_condop Specifies a conditional operator, one of "==",
\\!=II, A\ <II, or \\>II

i3ce_condlhs Specifies the left-hand side of the conditional
expression.

i3ce_condrhs Specifies the right-hand side of the conditional
expression.

<i3ce_then> Specifies the text that is activated if the condition
evaluates to “true”.

<i3ce_else> Specifies the text that is activated if the condition

evaluates to “false”.

Comparisons are performed as string compares.

Comparison Operator Description
== Equal

1= Not equal

< Less than

> Greater than
> Greater than

5-10 Web Deployment Option User Guide

Macro Tags

Example

See Also

<i3ce_if> <i3ce_condition i3ce_condop = "==" i3ce_condlhs=":VariableA"
i3ce_condrhs="String"/>
<i3ce_then>The expression evaluates to true, the variable 'VariableA'
contains the text 'String'.</i3ce_then>
<i3ce_else>The expression evaluates to false.</i3ce_else>
</i3ce_if>

<i3ce_if> <i3ce_condition i3ce_condop="=="1i3ce_condlhs=":varl"
i3ce_condrhs=":pl"/>

<i3ce_then> then text

</1i3ce_then>

<i3ce_else> else text

</i3ce_else>
</i3ce_if>

<i3ce_switch>

<i3ce_include> Tag

Purpose

Syntax

Description

Includes a specified fragment/page or macro fragment/page into the current
document.

<i3ce_include i3ce_name="document_name"
i3ce_location="business_unit_name"
i3ce_process="true"|"false">
<i3ce_parameters>
<i3ce_parameter i3ce_name="parameter_name"
i3ce_value="parameter_value" />
</i3ce_parameters>
</i3ce_include>

The <i3ce_include> tag enables you to include other Web Deployment Option
macro documents into the current document. This promotes code reuse: you
could, for example, design a common menu to be included on every page. You
could collect variable definitions into a single page and include that at the start
of a user’s session. Furthermore, you can pass parameters on to the document
that is being included; this allows you to pass parameters to the included
document thus altering its behavior.

Chapter 5: Using the Macro Language 5-11

Macro Tags

Example

SeeAlso

The following table lists the syntax elements used with the <i3ce_include>
tag:

Syntax Element Description

i3ce_name Specifies the name of the document to be included.

i3ce_location Specifies the name of the business unit containing the
document to be included.

i3ce_process If “true” is specified, the include file will also be processed
by Web Deployment Option, interpreting any macros as
required. If “false” is specified, the include file will not be
processed by Web Deployment Option.

i3ce_name Specifies the name of a parameter being passed to the
included document.

i3ce_value Specifies the value assigned to the parameter.

This example shows the cascading style sheet file that is included in most of
the documents within the plays business unit:

<i3ce_include i3ce_name="play_styleSheet.css" i3ce_location="plays">
<i3ce_parameters></i3ce_parameters> </i3ce_include>

The following code sample is included in most of the Globe Shop documents. It

displays an action bar that has various parts activated under parameter

(variable) control:

<i3ce_include i3ce_name="play_shopAction-h.HTML" i3ce_location="plays">
<i3ce_parameters><i3ce_parameter i3ce_name="View" i3ce_value="Yes"/>

</i3ce_parameters>
</i3ce_include>

i3ce_function

5-12 Web Deployment Option User Guide

Macro Tags

<i3ce_query> Tag

Purpose

Syntax

Description

Executes the SQL query provided and returns the result as specified.

<i3ce_query

[i3ce_database="database_name"]

[i3ce_vnode="vnode _name"]

[i3ce_class="connection_class"]

[i3ce_user="user_name"]

[i3ce_password="password"]>

<i3ce_sql
[i3ce_transaction="transaction_name"]
[i3ce_cursor="cursor_name"]>
<i3ce_statement>SQL_statement</i3ce_statement>
[<i3ce_rowsPerRequest i3ce_rowcount="row_number"/>]
[<i3ce_links>

<i3ce_link i3ce_column="/ink_column_name"
i3ce_target="/ink_target URI"[/>

</i3ce_links>]

[<i3ce_headers>
<i3ce_header i3ce_column="relation_column_name"
i3ce_text="replacement_name_for_column" />

</i3ce_headers>]
[<i3ce_attribute>HTML_attribute_specification
</i3ce_attribute>]
[<i3ce_extension i3ce_name="file_extension" />]
[<i3ce_nullvar i3ce_value="value for_ NULLS_ on_insert"[>]
[<i3ce_relation_display i3ce_typename=
"i3ce_table"| "i3ce_selector” | "i3ce_plain" |
"i3ce_unformatted” | "i3ce_xml" | "i3ce_xmlpdata"/>]
</i3ce_sql>
</i3ce_query>

The i3ce_query element allows the user to specify an SQL statement. The
parent i3ce_query element contains an i3ce_statement tag, which contains the
query text. The <i3ce_query> statement contains a number of attributes that
are used to specify options other than the current defaults.

Chapter 5: Using the Macro Language 5-13

Macro Tags

Web Deployment Option executes the SQL statement and formats the results
as specified by the i3ce_typename attribute of the <i3ce_relation_display>
tag. If the statement is not a select, a message is displayed. The message can
be specified using the ii_success_message and ii_error_message HTML
variables. The SQL statement can contain parameter markers of the form
:variable, where variable is a defined HTML variable. HTML variables are
defined using the <INPUT> tag. Note that variables set in an HTML form are
not defined until that form is submitted; variables defined in a form on the
same page as a Web Deployment Option macro will not be defined.

The following table lists the syntax element used with the <i3ce_query>
macro tag:

Syntax Element

Description

i3ce_database

Specifies the database to which the query will be directed.

i3ce_vnode Specifies the vnode to which the query will be directed. This element is used
in combination with the i3ce_database attribute.

i3ce_class Specifies the name of one of the Ingres servers or Enterprise Access
products. See the Standard Command Line Flags and Parameters section in
the Command Reference Guide.

i3ce_user Specifies the name of the Web Deployment Option database user with which

to associate the query. Web Deployment Option maps this user name to an
actual Ingres user to run the query. See Database Users in the chapter
“Managing the Web Deployment Option.”

This option must be specified with the i3ce_password attribute as a pair.

Note: This option is provided for backward compatibility with Ingres/ICE 2.0
and is depreciated.

i3ce_password

Specifies the password for the user specified with the i3ce_user attribute.

Note: This option is provided for backward compatibility with Ingres/ICE 2.0
and is depreciated.

i3ce_transaction

Specifies a unique name for a transaction.

See the i3ce_transaction option description in this section for more
information.

i3ce_cursor

Specifies a unique name for a cursor. If not used, a cursor is created by
specifying the number of rows required (using the <i3ce_typename> tag).

This option can only be specified when associated with a transaction (that is,
the i3ce_transaction attribute is also specified). There is a limitation of one
cursor per transaction.

See the i3ce_cursor option description in this section for more information.

5-14 Web Deployment Option User Guide

Macro Tags

Syntax Element

Description

<i3ce_statement>

Specifies one or more SQL statements.

<i3ce_rowsPerRequest
>

Specifies the number of rows for retrieval with the cursor.

<i3ce_links>

Generates a hypertext link to the URI for each item in the column.

This option can only be specified when the i3ce_typename attribute is not
set to “i3ce_unformatted”.

See the i3ce_link option description in this section for more information.

<i3ce_headers>

Allows the definition of the text used in column headers. By default, the
relational table column name is used.

This option can only be specified when the i3ce_typename attribute is not
set to “i3ce_unformatted”.

<i3ce_attribute>

Specifies a string representing any valid HTML attribute in the context of the
i3ce_typename option.

This option can only be specified when the i3ce_typename attribute is not
set to “i3ce_unformatted”.

See the <i3ce_attribute> option description in this section for more
information.

<i3ce_extension>

Specifies an extension that overrides the extension used for the temporary
file when referring to a binary object. It is only valid when the output of a
query contains a single column of binary objects.

This option applies to all extracted binary columns.

<i3ce_nullvar>

Specifies the text that should be used when retrieving data from a table and
the column contains NULL values.

<i3ce_relation_display>

Specifies the type of HTML formatting for the output.

See the i3ce_typename option description in this section for information on
the valid choices.

<i3ce_HTML>

Specifies a format string containing markup tags and column names.

When using this option, the i3ce_typename attribute must be set to
“i3ce_unformatted”.

See the <i3ce_HTML> option description in this section for more
information.

Chapter 5: Using the Macro Language 5-15

Macro Tags

i3ce_typename
Option

i3ce_transaction
Attribute

i3ce_cursor Attribute

The i3ce_typename option specifies the type of HTML formatting for the
output. The valid values are:

m i3ce_table (default)—formats the result rows as an HTML table. The
column headers are the names of the result columns. Each table cell
contains a single item in the result set. If the result set contains Binary
Large Objects (BLOBs), Web Deployment Option writes the BLOBs to
temporary files and generates tags to refer to them, indicating
that the files contain image data. This output type supports the
<i3ce_links> option.

m i3ce_selector—formats the results using the HTML SELECT tag. If the
query contains multiple columns, the columns in each row are
concatenated. This output type does not support the <i3ce_links>option.

m i3ce_plain—formats each row of the result set as a paragraph. If the result
set contains BLOBs, Web Deployment Option writes the BLOBs to
temporary files and generates tags to refer to them, indicating
that the files contain image data. This output type is particularly useful for
placing images on a page. This output type supports the <i3ce_links>
option.

m i3ce_unformatted—outputs the data with no HTML formatting or
separators. If the result set contains BLOBS, Web Deployment Option
writes the BLOBs to temporary files and places the URIs of the files on the
output page. This output type is useful when you want to embed
references to BLOBs in another HTML tag, for example, to fetch a
background image for a page from a database. This output type does not
support the <i3ce_links> option.

m i3ce_xml—XML generated from the query is formatted according to the
Ingres DTD and XML literal characters are converted into CDATA.

m i3ce_xmlpdata—XML generated from the query is formatted according to
the Ingres DTD. The data is not processed and it is the responsibility of the
developer to ensure the generated output is well formed and valid.

The i3ce_transaction attribute allows the association of a name with a
transaction.

When writing Web Deployment Option queries, “auto commit” is the default
action. Queries are committed if they complete successfully. With applications
that require browsing and selecting items from a list (like a shopping cart), it
is necessary to maintain a transaction over many pages and only commit the
transaction when the user has finished. A transaction is terminated with either
the <i3ce_commit> or the <i3ce_rollback> option with the transaction name.

The i3ce_cursor attribute specifies a unique name for a cursor. When used, a
named cursor is created which allows the full result set to be displayed page-
by-page until the transaction is ended. If not specified, an anonymous cursor
is created and which is closed when the rows have been returned.

5-16 Web Deployment Option User Guide

Macro Tags

<i3ce_links> Element

<i3ce_aftribute>
Element

<i3ce_HTML> Option

Using this attribute, the number of rows on a page is defined by the Web
author. This reduces the volume of data that is transmitted and the amount of
time the browser spends waiting for the data.

The i3ce_links element contains a list of i3ce_link elements. Each i3ce_link
element has two attributes, i3ce_column and i3ce_target. Each column
(specified by i3ce_column) can by linked with a URL target (specified by
i3ce_target) and the contents of the column are passed as a variable to the
target. The variable name is an HTML variable name and the value is the value
of the named column for the current (or chosen) row (from the DTD file).

The <i3ce_attribute> element allows the user to change the appearance of
the page by specifying HTML attributes that will be applied to the generated
HTML. The Web Deployment Option does not parse the value—it simply
passes it through to the output page.

Valid children for the i3ce_attribute element include any HTML that is legal in
the context of the specified output type, specified by the i3ce_typename
attribute:

Value of i3ce_typename Attribute Use of <i3ce_attribute>Value

i3ce_table Specify the table border width, color, cell
spacing, alignment, or any of the other
HTML table attributes.

i3ce_selector Specify the name of the HTML variable
into which the browser will place the
selected value.

i3ce_plain Specify the attributes for image output.

i3ce_unformatted Not available.

The <i3ce_HTML> option allows the developer to include a line of HTML or
markup language with embedded variable placeholders. This enables a
developer to program using HTML tools that provide WYSIWYG rendering.
The Web Deployment Option macros can then be added using the HTML
already generated.

This removes dependence of Web Deployment Option on knowledge of HTML
or other markup syntax when building output.

Chapter 5: Using the Macro Language 5-17

Macro Tags

Example
The following example selects all columns from the table plays in the iceTutor
database. It creates a transaction and a cursor. It retrieves 5 rows at a time
and formats them into an HTML table.
<i3ce_query i3ce_database="iceTutor">
<i3ce_sql i3ce_transaction="myTransaction" i3ce_cursor="myCursor">
<i3ce_statement>
select * from plays
</i3ce_statement>
<i3ce_rowsPerRequest i3ce_rowcount="5"/>
<i3ce_relation_display i3ce_typename="1i3ce_table"/>
</i3ce_sql>
</i3ce_query>
This example code selects the play, performed date, and author name from
the plays table. It creates links based on the author and play names to the
template files Authors.HTML and play_types.HTML, respectively. It also
changes the header of the ‘performed’ column to be “"Date of First
Performance”. The attribute tag sets the table border width to be “3".
<i3ce_query i3ce_database="playsdb" i3ce_vnode="globe"
i3ce_user="user_name" 1i3ce_password="password">
<i3ce_sql i3ce_transaction="Complete" i3ce_cursor="Works">
<i3ce_statement>
select name as 'Play Name', performed, playwright as 'Author', type
from plays
</i3ce_statement>
<i3ce_rowsPerRequest i3ce_rowcount="5"/>
<i3ce_links>
<i3ce_link i3ce_column="Author" i3ce_target=
"http://www.globe.com/ice-bin/oiice.d11/Author_gp[Authors.HTML]"/>
<i3ce_link i3ce_column="type" i3ce_target="plays[play_types.HTML]"/>
</i3ce_links>
<i3ce_headers>
<i3ce_header i3ce_column="performed" i3ce_text="Date of First
Performance"/>
</i3ce_headers>
<i3ce_attribute>border=3</i3ce_attribute>
<i3ce_relation_display/>
</1i3ce_sql>
</i3ce_query>
See Also
<i3ce_commit>, <i3ce_rollback>, <i3ce_function>, <i3ce_include>
5-18 Web Deployment Option User Guide

Macro Tags

<i3ce_rollback> Tag

Purpose
Rolls back a previously started transaction.
Syntax
<i3ce_rollback i3ce_transaction="transaction_name"/>
Description
The <i3ce_rollback> tag rolls back the transaction specified by
transaction_name. The transaction hame must have been defined previously
using the i3ce_transaction option of the <i3ce_sql> tag.
Note: This is the default action for a session that times out.
Example
<i3ce_rollback i3ce_transaction="myTransaction"/>
See Also

<i3ce_query>, <i3ce_commit>

<i3ce_switch> Tag

Purpose

Tests the value of an expression against a number of constant values and
executes an associated expression based on the value that matches.

Syntax

<i3ce_switch i3ce_value="switch_expression">
<i3ce_case i3ce_value="constant;" >Action for case 1</i3ce_case>

<i3ce_case i3ce_value="constantp" >Action for case n</i3ce_case>
<i3ce_default>Action for default case</i3ce_default>
</i3ce_switch>

Chapter 5: Using the Macro Language 5-19

Macro Tags

Description

Example

See Also

<i3ce_var> Tag

Purpose

Syntax

The following table lists the syntax elements used with the <i3ce_switch>
macro tag:

Syntax Element Description

switch_expression The value you want to compare to the constant values.
It is usually an expression containing one or more
variables.

constantp A constant value to be compared to switch_expression.

action for case n An action for the particular case. It can be any markup

text, including variables or Web Deployment Option
XML language commands.

action for default The default action, if none of the compared values
case match switch_expression.

<i3ce_switch i3ce_value=":shape">
<i3ce_case i3ce_value="T">Triangle </i3ce_case>
<i3ce_case i3ce_value="S">Square </i3ce_case>
<i3ce_case 1i3ce_value="P">Pentagon </i3ce_case>
<i3ce_default>Circle </i3ce_default>
</i3ce_switch>

<i3ce_if>

Replaces a variable within a string with its actual value.

<i3ce_var i3ce_name="variable_name" />

5-20 Web Deployment Option User Guide

Macro Statements

Description

Example

See Also

This tag can be used to replace the named variable, variable_name, with its
textual value.

<i3ce_var i3ce_name="myVariable"/>

<i3ce_declare>

Macro Statements

The Web Deployment Option allows macro statements to be embedded in
HTML documents, specifying SQL statements that are executed and whose
result sets are automatically formatted by Web Deployment Option.

Macro Statement Format

The format of a Web Deployment Option macro statement is as follows:
<!I-- #ICE [keyword="value~] -->

In this syntax representation:

m "<I--"and “-->" are the HTML comment delimiters
m #ICE is the Web Deployment Option macro marker
m keyword is a valid Web Deployment Option keyword

m value is the value assigned to the keyword, delimited by grave (back)
quotes ()

Web Deployment Option macros can be embedded anywhere in an HTML
document. Because they are always contained within the HTML comment
delimiters, Web Deployment Option macros remain valid in all HTML
documents.

By using a grave quote as the delimiter, you are free to include both single (')
and double quote (") characters in the values of macro language keywords. If
you need to include a grave quote character in a macro value, double the
grave quote character ().

Chapter 5: Using the Macro Language 5-21

Macro Keywords

Note: All keywords except for SQL and VAR require a session. However, there
are certain options for the SQL keyword that do require a session. For
information about these SQL options, see the SQL Keyword in this chapter.

Macro Keywords

The following macro language keywords are available and are described in
more detail in the sections that follow:

n COMMIT

m DECLARE
m FUNCTION
m IF

m INCLUDE

= ROLLBACK
m SQL

s SWITCH

= VAR

Macro Keywords

This section presents the syntax for each Web Deployment Option macro
keyword.

COMMIT Keyword

Purpose

Commits a previously started transaction.
Syntax

<!-- #ICE COMMIT="transaction_name==->
Description

The COMMIT keyword commits the transaction specified by transaction_name.

5-22 Web Deployment Option User Guide

Macro Keywords

The transaction name must have been defined previously using the
TRANSACTION option of the SQL keyword.

Example
<!-- #ICE COMMIT="myTransaction”™ -->

See Also

SQL keyword, ROLLBACK keyword

DECLARE Keyword

Purpose

Assigns a value to a named variable, enabling the value to be re-used.
Syntax

<!-- #ICE [REPEAT] DECLARE="[/evel.]variable_name=value~ -=>
Description

The ICE Server extends the availability of variables over standard HTML
variables. HTML variables must be passed as part of the invoking URI. A
reference to the HTML variable is replaced by the actual text when Web
Deployment Option parses the file.

The Web Deployment Option variables are more convenient in that they are
maintained by the server and are not part of the Web Deployment Option
address (URI). Also, Web Deployment Option variables cannot have their
values altered by a user changing the value in the Web Deployment Option
URI within the browser address window.

The following table lists the parameters used with the DECLARE keyword:

Chapter 5: Using the Macro Language 5-23

Macro Keywords

REPEAT Option

Parameter Description

level The lifetime of the variable. The valid values are:

server—loaded when the ICE Server starts and available
for use until the ICE Server is shut down. A server
variable persists as long as the repository database is not
deleted.

session—available for use while the Web user is logged in
and has not timed out.

page—available for use anywhere within the document.
Once the document has been passed back to the browser,
the variable becomes invalid.

variable_name The name of a variable.

value The value assigned to the variable.

Because all the variable lifetime values use the same name space, they are all
accessed in the same way. For example:
:ServerVariable

:SessionVariable
:PageVariable

The declared variable can be used within a document by referring to it in a
Web Deployment Option macro. Any variable can be used by preceding its
name with the colon (:), but you cannot have a session-level variable with the
same name as a server-level variable. This is why it is a good idea to establish
a naming convention such as that suggested in the section Committing
Transactions on the Home Page of the chapter “Creating Web Applications: An
Example.”

The REPEAT option allows the recursive parsing of macros. This allows multiple
queries and macros to be embedded within a single macro. It must be used in
conjunction with another macro option and has no meaning when used on its
own.

Since the grave quote (~) and the colon (:) characters are used as delimiters,
they must be duplicated when used with the REPEAT option. This option has
the effect of disabling the delimiting effect when used with the REPEAT option
to preserve the delimiting effect.

Note: The REPEAT option must be used carefully with the DECLARE keyword. It
implies that further macros must be resolved, the results of which will be used
by the DECLARE keyword. It is possible to declare variables containing large
strings or to issue a repeated declare that recurses and takes memory. All
declared information will permanently reside in memory.

5-24 Web Deployment Option User Guide

Macro Keywords

Examples

<!-- #ICE DECLARE=page.myVar=static string’ -->

<!-- #ICE DECLARE=page.myVar=:anotherVariable' -->

<!-- #ICE DECLARE="page.myVar=:anotherVariable +
static string’ -->

<!-- #ICE DECLARE="session.myVar=static string"® -->

<!-- #ICE DECLARE=session.myVar=:anotherVariable -->

<!-- #ICE REPEAT DECLARE='session.myRepeatVar=="<!-- #ICE SQL=""select BgColor
from Style where Style_id = 4°° -->°

FUNCTION Keyword

Purpose

Syntax

For Extension
Functions

For Server Functions

Description

Parameters

Invokes the specified Web Deployment Option extension function or server
function.

<!-- #ICE [REPEAT] FUNCTION=
~Uibrary_name.]function_name?{variable_name=value}[&...]"
[HTML="HTML text with variables~]

->

<!1-- #ICE [REPEAT]

FUNCTION="server_function_name?action=action
[&property=value][{&property=value}]*

The following table lists the parameters used with the FUNCTION keyword:

Parameter Description

library_name The name of the library containing the function. It
can be either a DLL (on Windows NT) or shared
library (on UNIX).

Note: This parameter should not be included when
specifying server functions.

function_name The name of the function.

variable_name The name of a variable being passed to the function.

Chapter 5: Using the Macro Language 5-25

Macro Keywords

REPEAT Option

Example

Parameter Description

value The value assigned to the variable. For server
functions, value is only specified if the requested
action/property combination is associated with an
output value.

action For ICE Server functions, specifies the query
operation to be executed. Possible values include
select, retrieve, insert, update, and delete,
depending on the function. (For valid action
parameters, see “Appendix D: ICE Server
Functions.”)

property The ICE Server parameter to which the action
applies. (For valid property values, see “Appendix D:
ICE Server Functions.”)

HTML text with Any allowable HTML text. A format string containing

variables markup tags and column names. This option
provides the ability to describe a line of HTML or
markup language syntax and embed within it
variable placeholders.

Also, for a description of the possible functions and variables that can be used
with the FUNCTION keyword to access the ICE Server, see “Appendix D: ICE
Server Functions.” Server functions can also be invoked through the Web
Deployment Option C API; for more information, see “Chapter 7: Using the C
APL.”

The REPEAT option allows the recursive parsing of macros. This allows multiple
queries and macros to be embedded within a single macro. It must be used in
conjunction with another macro option and has no meaning when used on its
own.

Since the grave quote () and the colon (:) characters are used as delimiters,
they must be duplicated when used with the REPEAT option. This option has
the effect of disabling the delimiting effect when used with the REPEAT option
to preserve the delimiting effect.

The following example invokes the “unit” ICE Server function, which changes
the play’s unit ID to 3 and unit name to Shakespeare:

<!-- #ICE FUNCTION="unit?action=

update&unit_id=3&unit_name=Shakespeare’
-->

5-26 Web Deployment Option User Guide

Macro Keywords

IF Keyword
Purpose
Evaluates a conditional expression.
Syntax
<!-- #ICE [REPEAT]
IF “condition=
THEN="..."
[ELSE="...~]
->
Description
Parameters The following table lists the parameters used with the IF keyword:
Parameter Description
condition A single or a compound conditional expression where:

condition = comparison {AND | OR}
comparison

and:

comparison = ~..> {==|l=| < | >3}
*...> or DEFINED(variable_name)

Conditional expressions are available to allow HTML output that is dependent
on the result of an expression. An expression is composed of one or more
comparisons. Comparisons are performed as string compares. The comparison
operators are:

Comparison Operator Description
== Equal

= Not equal

< Less than

> Greater than

Multiple comparisons are expressed using logical operators:

Chapter 5: Using the Macro Language 5-27

Macro Keywords

Logical Operator Description

AND Logical AND

OR Logical OR

Existence Function Description

DEFINED((variable_name) Returns true if variable_name is defined.

REPEAT Option For information on the REPEAT option, see the FUNCTION Keyword in this
chapter.

Examples

<!-- #ICE IF (":VariableA® == “String’)
THEN="The expression evaluates to true."
ELSE="The expression evaluates to false."
-->

<!-- #ICE IF (DEFINED(VariableA))
THEN="The variable exists"
ELSE="The variable doesn’t exist."

-->

<!-- #ICE REPEAT IF (" :ii_status_number® == "07)
THEN="<!-- #ICE INCLUDE=""success.HTML * -->"

>

See Also

SWITCH keyword

INCLUDE Keyword

Purpose

Includes a Web Deployment Option HTML or macro document into the current
document.

Syntax

<!-- #ICE [REPEAT] INCLUDE="[business_unit_name
'["]ldocument_name[']']?{variable_name=value}[&...]~
[TYPE="HTML|MULTI|REPORT|EXE"]

5-28 Web Deployment Option User Guide

Macro Keywords

Description

Parameters

TYPE Option

REPEAT Option

Examples

The following table lists the parameters used with the INCLUDE keyword:

Parameter Description

business_unit_name The name of the business unit containing the document
to be included.

document_name The name of the document to be included.
variable_name The name of the variable.
value The value assigned to the variable.

The TYPE option is used to distinguish the action the ICE Server should take
when processing the included file. This allows reuse of common component
documents.

There are four selections when using the TYPE option with the INCLUDE
keyword:

m HTML (pages)

This is the default option. When you include a page, the document can
access every page variable defined in the current page. You can add new
parameters in the include call. If you include a page with no REPEAT, the
user must be granted read permission for this document. If you include a
page with a REPEAT, the user must be granted execute and read
permissions for this document.

m MULTI (facets)

To include a facet, the user must be granted the execute permission for
the document.

m REPORT (reports)
m EXE (applications)

For information on the REPEAT option, see the FUNCTION Keyword in this
chapter.

This example shows the cascading style sheet file that is included in most of
the documents within the plays business unit:

<!-- #ICE INCLUDE='plays[play_styleSheet.css]’
TYPE="MULTI® -->

Chapter 5: Using the Macro Language 5-29

Macro Keywords

The following code sample is included in most of the Globe Shop documents. It
displays an action bar that has various parts activated under parameter
(variable) control:

<!-- #ICE REPEAT INCLUDE=
“plays[play_shopAction_h.HTML]?View=Yes -->

ROLLBACK Keyword

Purpose
Rolls back a previously started transaction.
Syntax
<!-- #ICE ROLLBACK="transaction_name~-->
Description
The ROLLBACK keyword rolls back the transaction specified by
transaction_name.
The transaction name must have been defined previously using the
TRANSACTION option of the SQL keyword.
This is the default action for a session that times out.
Example
<!-- #ICE ROLLBACK="myTransaction’ -->
See Also

COMMIT keyword, SQL keyword

5-30 Web Deployment Option User Guide

Macro Keywords

SQL Keyword

Purpose

Syntax

Description

Executes the SQL query provided and returns the result as specified.

<!-- #ICE [REPEAT]

SQL="query"

[TYPE="TABLE"|"SELECTOR"|"PLAIN"|"UNFORMATTED"|
“XML"|"XMLPDATA"]

[DATABASE="database _name-]

[TRANSACTION="transaction_name-]

[CURSOR="cursor_name-~]

[ROWS="number_of _rows]

[USER="user_name-~]

[PASSWORD="password"]

[LINKS="{column_name, URI}[,...]7]

[HEADERS="{column_name, text}[,...]"]

[ATTR="attribute~]

[EXT="extension"]

[NULLVAR="text"]

[HTML="markup text with variables~]

[XML="markup text with variables™]

[XMLPDATA="markup text with variables™]

The value of the SQL keyword, query, is specified by one or more SQL
statements. The SQL keyword also provides a variety of options. The Web
Deployment Option executes the SQL statements and formats the results as
specified by the TYPE option. If the statement is not a select, a message is
displayed. The message can be specified using the ii_success_message and
ii_error_message HTML variables.

The SQL statement can contain parameter markers of the form :variable,
where variable is a defined HTML variable. HTML variables are defined using
the <INPUT> tag. Note that variables set in an HTML form are not defined
until that form is submitted; variables defined in a form on the same page as a
Web Deployment Option macro will not be defined at the time the page is
parsed by Web Deployment Option.

Chapter 5: Using the Macro Language 5-31

Macro Keywords

The TRANSACTION, CURSOR, and ROWS options to the SQL keyword require a
session. A session is established when a user connects to and is authenticated
by the ICE Server. The session lasts until either a timeout occurs or the user
logs out. It is used by Web Deployment Option to maintain information about
user context.

Syntax Elements The following table lists the syntax elements used with the SQL keyword:
Syntax Element Description
query Specifies one or more SQL statements.
TYPE Specifies the type of HTML formatting for the output.

For information on the valid choices, see the TYPE option
description in this section.

DATABASE Specifies the database to which the query will be
directed.
TRANSACTION Specifies a unique name for a transaction.

For more information, see the TRANSACTION option
description in this section.

CURSOR Specifies a unique name for a cursor. If not used, a
cursor is created by specifying the number of rows
required (using the ROWS option).

This option can only be specified when associated with a
transaction (that is, the TRANSACTION option is also
specified). There is a limitation of one cursor per
transaction.

For more information, see the CURSOR option
description in this section.

ROWS Specifies the number of rows for retrieval with the
cursor.
USER Specifies the name of the Web Deployment Option

database user with which to associate the query. The
Web Deployment Option maps this user name to an
actual Ingres user to run the query. See Database Users
in the chapter “Managing the Web Deployment Option.”

This option must be specified with the PASSWORD
option.

Note: This option is provided for backward compatibility
with Ingres/ICE 2.0 and is depreciated.

5-32 Web Deployment Option User Guide

Macro Keywords

Syntax Element

Description

PASSWORD

Specifies the password for the user specified with the
USER option.

Note: This option is provided for backward compatibility
with Ingres/ICE 2.0 and is depreciated.

LINKS

Generates a hypertext link to the URI for each item in
the column.

This option can only be specified when TYPE is not
UNFORMATTED.

For more information, see the LINKS option description
in this section.

HEADERS

Allows the definition of the text used in column headers.
By default, the relational table column name is used.

This option can only be specified when TYPE is not
UNFORMATTED.

ATTR

Specifies a string representing any valid HTML attribute
in the context of the TYPE option.

This option can only be specified when TYPE is not
UNFORMATTED.

For more information, see the ATTR option description in
this section.

EXT

Specifies an extension that overrides the extension used
for the temporary file when referring to a binary object.
It is only valid when the output of a query contains a
single column of binary objects.

This option applies to all extracted binary columns.

NULLVAR

Specifies the text that should be used when retrieving
data from a table and the column contains NULL values.

HTML

Specifies a format string containing markup tags and
column names.

When using this option, the TYPE option must be set to
UNFORMATTED.

For more information, see the HTML option description in
this section.

XML

Specifies a format string containing markup tags and
column names.

The variable data is processed and XML literal characters
are converted into CDATA.

Chapter 5: Using the Macro Language 5-33

Macro Keywords

TYPE Option

TRANSACTION Option

Syntax Element Description

XMLPDATA Specifies a format string containing markup tags and

column names.

The variable data is not processed and any XML literal
characters are left unchanged. It is the responsibility of
the developer to ensure that the resulting generated XML
is well formed and valid.

The TYPE option specifies the type of HTML formatting for the output. The valid

values are:

TABLE (default)—formats the result rows as an HTML table. The column
headers are the names of the result columns. Each table cell contains a
single item in the result set. If the result set contains Binary Large Objects
(BLOBs), Web Deployment Option writes the BLOBs to temporary files and
generates tags to refer to them, indicating that the files contain
image data. This output type supports the LINKS option.

SELECTOR—formats the results using the HTML SELECT tag. If the query
contains multiple columns, the columns in each row are concatenated. This
output type does not support the LINKS option.

PLAIN—formats each row of the result set as a paragraph. If the result set
contains BLOBs, Web Deployment Option writes the BLOBs to temporary
files and generates tags to refer to them, indicating that the files
contain image data. This output type is particularly useful for placing
images on a page. This output type supports the LINKS option.

UNFORMATTED—outputs the data with no HTML formatting or separators.
If the result set contains BLOBS, Web Deployment Option writes the
BLOBs to temporary files and places the URIs of the files on the output
page. This output type is useful when you want to embed references to
BLOBs in another HTML tag, for example, to fetch a background image for
a page from a database. This output type does not support the LINKS
option.

XML—the XML generated from the query is formatted according to the
Ingres DTD and XML literal characters are converted into CDATA.

XMLPDATA—the XML generated from the query is formatted according to
the Ingres DTD. The data is not processed and it is the responsibility of the
developer to ensure that the generated output is well formed and valid.

The TRANSACTION option allows the association of a name with a transaction.

When writing Web Deployment Option queries, “auto commit” is the default
action. Queries are committed if they complete successfully. With applications
that require browsing and selecting items from a list (like a shopping cart), it
is necessary to maintain a transaction over many pages and only commit the
transaction when the user has finished. A transaction is terminated with either
the COMMIT or the ROLLBACK option with the transaction name.

5-34

Web Deployment Option User Guide

Macro Keywords

CURSOR Option

LINKS Option

ATIR Option

The CURSOR option specifies a unique name for a cursor. When used, a
named cursor is created which allows the full result set to be displayed page-
by-page until the transaction is ended. If not specified, an anonymous cursor
is created and which is closed when the rows have been returned.

Using this option, the number of rows on a page is defined by the Web author.
This reduces the volume of data that is transmitted and the amount of time
the browser spends waiting for the data.

The value of the LINKS option has the form *column_name,URI" . For
example:

“type,http://www.foo.com/typeinfo.HTML®

This would generate links to the URI, http://www.foo.com/typeinfo.HTML, for
each item in the type column in the result set.

You can specify as many comma-separated column and URI pairs as you
require. As Web Deployment Option processes the result set, for each item in
a LINKS column, it generates a hyperlink tag to the specified URI for each item
in the column.

To enable the referenced page to determine which item was clicked on, Web
Deployment Option sets an HTML variable. The variable has the same name as
the column name, and its value is the value clicked on. The referenced page
can use this variable, typically by making it a parameter in another SQL
statement. You cannot generate links for a BLOB column.

The ATTR option allows the user to change the appearance of the page by
specifying HTML attributes that will be applied to the generated HTML. The
Web Deployment Option does not parse the value—it simply passes it through
to the output page.

Valid values for the ATTR option include any HTML that is legal in the context
of the specified output type, specified by the TYPE option:

Value of TYPE Option Use of ATTR Option

TABLE Specify the table border width, color, cell spacing,
alignment, or any of the other HTML table attributes.

SELECTOR Specify the name of the HTML variable into which the
browser will place the selected value.

PLAIN Specify the attributes for image output.

UNFORMATTED Not available.

Chapter 5: Using the Macro Language 5-35

Macro Keywords

HTML Option The HTML option allows the developer to include a line of HTML or markup
language with embedded variable placeholders. This enables a developer to
program using HTML tools that provide WYSIWYG rendering. The Web
Deployment Option macros can then be added using the HTML already
generated.

This removes dependence of Web Deployment Option on knowledge of HTML
or other markup syntax when building output.

REPEAT Option For information on the REPEAT option, see the FUNCTION Keyword in this
chapter.

Examples

Example 1 The following examples show several different uses of the SQL macro keyword

and a sample of the source output:

<!-- #ICE
SQL="select * from icetable’
DATABASE = “iceTutorial’
TRANSACTION="myTransaction’
CURSOR="myCursor"
ROWS="10"
TYPE="TABLE"

-->

<!-- #ICE
SQL="select * from icetable’
DATABASE = “iceTutorial’
TRANSACTION="myTransaction’
CURSOR="myCursor"
ROWS="10"
TYPE="TABLE"
HEADERS="1i_title,Category"
LINKS="1i_title,www.uri.com’
ATTR="border=1"

-->

<l-- #ICE
SQL = “select title,lastname from
book,author,bookauthor where book.bookid =
bookauthor.bookid and bookauthor.authid =
author.authid®

5-36 Web Deployment Option User Guide

Macro Keywords

Example 2

Example 3

An example of the generated output produced by the ICE Server follows:

<TABLE><TR>
<TH>title</TH>
<TH>1astname</TH>
</TR>

<TR>

<TD>Hamlet
<TD>Shakespeare
</TR>

<TR>
<TD>Macbeth
<TD>Shakespeare
</TR>

<TR>

</TABLE>

This example shows how the LINKS option can be used in conjunction with the
SQL macro keyword to produce a parameterized list of links:

<!-- #ICE
DATABASE = ‘“icetutor’
SQL="select distinct type from plays"
TYPE="PLAIN"
LINKS="type,/ice-bin/oiice.d11/my_playgroup/
my_plays[myplay_typelLinkSubSet.HTML]"

The HTML generated by the ICE Server follows:

<A HREF="/ice-bin/oiice.d11/my_playgroup/
my_plays[myplay_ typelLinkSubSet.HTML]?type=comedy">
comedy

<A HREF="/ice-bin/oiice.dl1l/my_playgroup/
my_plays[myplay_typelLinkSubSet.HTML]?type=history">
history

<A HREF="/ice-bin/oiice.d11/my_playgroup/
my_plays[myplay_typelLinkSubSet.HTML]?type=tragedy">
tragedy

The following example shows the results of the query formatted for XML
according to the Ingres DTD.

<l-- #ice database="icetutor"
sql="select * from plays"
type="xml"

>

The generated output produced follows:
<?xml: version='1.0"' ?>

<resultset>

<row>

<column column_name="comporder">1</column>

<column column_name="title">The Two Gentlemen of Verona</column>
<column column_name="playwright">Shakespeare</column>

<column column_name="performed">1598</column>

<column column_name="acts">5</column>

<column column_name="type">comedy</column>

</row>

Chapter 5: Using the Macro Language 5-37

Macro Keywords

Example 4

Example 5

*<column column_name="comporder">37</column>

<column column_name="title">Henry VIII</column>
<column column_name="playwright">Shakespeare</column>
<column column_name="performed">1613</column>

<column column_name="acts">5</column>

<column column_name="type">history</column>
</row></resultset>

The following example shows the retrieval of XML data stored as a regular text
field as child tags of an XML result set. It is the responsibility of the developer
to ensure that the generated XML is well-formed.

<!-- #ice database="icetutor’
sql="select * from test’
type="xmlpdata’

-->

The generated output produced follows:
<?xml: version='1.0' ?>

<resultset>

<row>

<column column_name="1idx">1</column>
<column column_name="xmltest">
<plays>

<play>

<comporder>1</comporder>

<title>The Two Gentlemen of Verona</title>
<playwright>Shakespeare</playwright>
<performed>1598</performed>
<acts>5</acts>

<type>comedy</type>

</play>

<play>

<comporder>5</comporder>
<title>Titus Andronicus</title>
<playwright>Shakespeare</playwright>
<performed></performed>
<acts>5</acts>
<type>tragedy</type>

</play>

</plays>

</column>

</row>

</resultset>

The following example shows the results of the query formatted for XML
according to the defined markup:

<plays>

<l-- #ice database="icetutor"
sql="select comporder, title, playwright, performed, acts, type from plays’
xml="<play>

<comporder>:comporder</comporder>
<title>:title</title>
<playwright>:playwright</playwright>
<performed>:performed</performed>
<acts>:acts</acts>
<type>:type</type>

</play>"

-=>

</plays>

5-38 Web Deployment Option User Guide

Macro Keywords

See Also

SWITCH Keyword

Purpose

Syntax

Description

The generated output produced follows:
<?xml: version='1.0"' ?>

<plays>

<play>

<comporder>1</comporder>

<title>The Two Gentlemen of Verona</title>
<playwright>Shakespeare</playwright>
<performed>1598</performed>

<acts>5</acts>

<type>comedy</type>

</play>

<play>

<comporder>37</comporder>
<title>Henry VIII</title>
<playwright>Shakespeare</playwright>
<performed>1613</performed>
<acts>5</acts>

<type>history</type>

</play>

</plays>

COMMIT keyword, ROLLBACK keyword

Tests the value of an expression against a number of constant values and
executes an associated expression based on the value that matches.

<!-- #ICE [REPEAT]
SWITCH="switch_expression*
CASE “~constant;~="result;~
CASE -~constant,~="result,~

CASE -~constant,~="result,~
[DEFAULT="default_result*]

The following table lists the parameters used with the SWITCH keyword:

Chapter 5: Using the Macro Language 5-39

Macro Keywords

Parameter Description

switch_expression The value you want to compare to the constant values. It
is usually an expression containing one or more variables.

constant, A constant value to be compared to the
switch_expression.

result, A resulting value. It can be any markup text, including
variables and Web Deployment Option macro commands.

default_result The default resulting value, if none of the compared
values match the switch_expression.

REPEAT Option For information on the REPEAT option, see the FUNCTION Keyword in this
chapter.

Example

The following example results in the string “Pentagon” appearing in the
document if the variable product is set to “P":

<!-- #ICE SWITCH= ":shape’

CASE "T'="Triangle"
CASE “S'="Ingres’
CASE “P'="Pentagon’

DEFAULT="Circle"
>

See Also

IF keyword

5-40 Web Deployment Option User Guide

Macro Keywords

VAR Keyword

Purpose

Syntax

Description

REPEAT Option

Example

See Also

Replaces a variable within a string with its actual value.

<!-- #ICE [REPEAT] VAR="HTML text with variables~ -->

HTML text with variables is any allowable HTML text. Variables are denoted by
preceding the variable name with a colon (:).

This keyword can be used to read the specified variables and replace them
with their actual values within a text string.

The REPEAT option causes a reparse of the resultant string after the variables
have been inserted. This allows variables to contain macros or other variables.
For information on the REPEAT option, see the FUNCTION Keyword in this
chapter.

In the Plays tutorial application, the HTML containing the VAR macro keyword
appears as follows, using the variable e_orderNumber:
<!-- #ICE VAR="Your order number

:e_orderNumber will now be processed.

Please quote this number in all correspondence’
-=>

The application sets the e_orderNumber session variable to a character string
that becomes part of the message to the customer.

DECLARE keyword

Chapter 5: Using the Macro Language 5-41

Chapter 6: Creating Web Applications:
An Example

In this chapter, you will learn how to create Web applications using Web
Deployment Option and standard HTML programming concepts. You will learn
how to recreate the Plays tutorial application.

The chapter takes an in-depth look at some of the various steps you may go
through in creating a Web Deployment Option application. To begin, we create
some basic Web Deployment Option objects and HTML files, and register them
with the ICE server. From there, we explain the programming concepts used in
constructing the pages for the Plays application.

Note: This chapter can be used in a variety of ways. It can be used as a
tutorial, whereby you actually create the objects and files as you go—or you
can simply follow along and learn about the features of Web Deployment
Option. Alternatively, you may want to read certain sections only to apply
specific concepts to your Web Deployment Option application.

The following topics are covered:

m Creating your application files and server location, and registering them
with Web Deployment Option

m Setting up security for Web Deployment Option using a variety of objects
including a session group, business unit, database connection, and others

m Designing the pages for your application, using the following Web
Deployment Option programming features:

- Automatic user account creation

- SQL language support

- Transaction support (commit/rollback)

- Cursor support

- Web Deployment Option native variables
- Control flow statements

- Automatic HTML code generation

- Automatic hyperlink generation

- Automatic HTML support for BLOBs (Binary Large OBjects)
- Advanced security model

- Fine-tuning of generated HTML

- Parameterized include mechanism, promoting code reuse

Chapter 6: Creating Web Applications: An Example é-1

Before You Begin

- Clanguage function support

- IMA (Ingres Management Architecture) support

Tip: You can access the online HTML-based Plays Tutorial application or the
online Tutorial Guide by accessing the address
http://your_machine_name/ice_index.html.

Before You Begin

This chapter assumes you have a basic understanding of HTML and its
components. Standard HTML concepts are not reviewed as part of this
tutorial—only Web Deployment Option features are examined in detail. If you
would like to refresh your knowledge of HTML, see “Appendix B: HTML
Primer.”

If you do intend to work through the creation of an application, which is a
duplicate of the Plays tutorial application, be sure you have your HTTP server
and Web Deployment Option installed and running. You should be logged in as
the Web Deployment Option privileged user so that you can perform all of the
functions in this chapter. Also, take a moment to familiarize yourself with the
pages in the ice subdirectory of your Ingres installation. You will be recreating
many of these pages.

Finally, ensure that you know how to address your ICE server (for example,
http://your_machine_name/ice-bin/oiice.dll).

A Tour of the Plays Application

The Plays application allows a visiting Web user to browse through the works
of William Shakespeare at the Globe Centre for Shakespeare studies. After
viewing Shakespeare’s works in a variety of ways and based on different
criteria, visitors can go shopping for some of their favorite souvenirs at the
online Globe Boutique.

62 Web Deployment Option User Guide

A Tour of the Plays Application

The vision for the Web site, as directed by the Art Director of the Globe
Centre, is to provide a way for the Web user to select a group of
Shakespeare’s plays by type—that is, by choosing comedy, history, or tragedy.
Additionally, the Web site should be visual so that icons should be used to
select the play type. The Plays application, however, presents the different
iterations of the development process, showing how the Web author
accomplished this goal by the simplest means working up to the more
sophisticated features of Web Deployment Option—the most elegant of which
is the desired result.

Note: The Plays application is designed to demonstrate various
implementations of the features of Web Deployment Option and is not
necessarily intended to represent a “real-world” application. It represents the
progression of the development of the site.

Let us now take a brief tour of the Plays application.

Plays Welcome Page

To begin, we enter the following address in the address bar, assuming that the
name of the machine on which you are running Web Deployment Option is
“globe”:

http://globe/ice_index.html

You will then see a list of options for Web Deployment Option. Select the
Example Tutorial Application option. This invokes the welcome page of the
Plays application:

< Shakespeare Live - Microsoft Internet Explorer provided by Computer ... [H[=] E3

J File Edit “iew Go Favortes Help |J Links
=l
Shakespeare Live
TWelcome to the globe site for Shakespeare Studies.
[

Clicking the icon, we proceed to the login page for the application.

Chapter é: Creating Web Applications: An Example 6-3

A Tour of the Plays Application

Plays Login Page

The Plays login page contains some introductory text that explains the login
process. In addition, two controls are provided that enable the Web user to be

authenticated to the ICE server, which provides access to the remaining pages
in the Plays application.

3 Shakespeare Plays - Microsoft Internet Explorer provided by Computer Associates Interna. .. [Hj[=] [E3

J File Edit “iew [Go Favortes Help |JLinks

|»

Shakespeare Plays
Thank: wou for wisting the Globe centre for Zhalkcespeare.

If yvou are a new wisitor to our site, leave the user name and password fields dlank

Click on the picture of the onginal Globe below from whence you will be able to register
with us.

If you already have an account, please fill in your user name and password below.
Click on the picture of the original Globe below,

We hope you enjoy vour visit!

Pleaze enter your:
Mame: |

Pazsword: I

=l

This page allows you to enter a name and password that you have already
defined, or a new name and password. If the user is already defined, and you
click the icon, you will proceed to the Home page of the application.

If the user name is unknown to the system, you are brought to an Automatic

Declaration page, which allows you to define yourself as a user on the system.
We will look at this page next.

6-4 Web Deployment Option User Guide

A Tour of the Plays Application

Automatic Declaration Page

The Automatic Declaration page is the page on which you declare yourself as a
Web user to the Web Deployment Option system:

3 http://globe/fice-bin/oiice. dll/plays[play_home.ht - Microsoft Internet ___ [E[=] E3

J Fle Edt “iew Go Favortes Help |J Link s
=l
Automatic Declaration

Please enter your:
Iame: |
Pazsword: |

[-]

’_’_’_ E'_g Local intranet zone i

Enter a unique user name in the Name edit control (do not use “ingres” or
leave this blank). Then enter a password to be associated with your user name
in the Password edit control. Next, click the icon to establish a connection to
Web Deployment Option and proceed to the Plays home page.

Note that when you subsequently log in, you will already be authenticated and
can simply enter your name and password on the Login page.

Chapter é: Creating Web Applications: An Example 6-5

A Tour of the Plays Application

Plays Home Page

Now that you have been authenticated, you move on to the first secured page
within the application, which is the home page. The Shakespheare’s Plays
Home Page appears as follows:

/J Shakespeare's Plays Home Page - Microzoft Internet Explorer provided by Computer ... [I[=] E3

J File Edit ‘“iew Go Favortes Help |JLinks

Shakespeare's Plays Home Page
This 13 the home page for Shakespeare's plays hosted on the server globe

View Shakespeares Plays

1. Al

2. Al (wrap to beginning)

3. By type (selector)

4 By type (hyper-link)

3. By type (Graphical hyper-link)

6. EBwitch by type (Graphical hyper-link)

Globe Shep
Tutorial

DPleaze logout, don't time out!

-]
|@ | l_l_’_ 2 Local intraret zone i

This page presents a list of options that allow the user to view all or a subset
of plays, and an option to shop at the Globe Shop.

The following options are available to the Web user:

All Displays all of Shakespeare’s plays (from the plays table), without wrapping
to the beginning of the list of plays when the end is reached.

All (Wrap to Displays all of the Shakespeare’s plays, wrapping to the beginning of the list
Beginning) of plays when the end is reached.
By Type (Selector) Displays a subset of Shakespeare’s plays, based on the type selected using a

selector control.

By Type (Hyperlink) Displays a subset of Shakespeare’s plays, based on the type selected using a
hyperlink.

By Type (Graphical Displays a subset of Shakespeare’s plays, based on the type selected using a

Hyperlink) graphical hyperlink.

Switch by Type Displays a subset of Shakespeare’s plays, based on the type selected using a

(Graphical Hyperlink) ~ SWITCH macro with a graphical hyperlink.

Note: This would be the desired result in an actual finalized application.

6-6 Web Deployment Option User Guide

A Tour of the Plays Application

Plays View Options

Viewing All Plays

There are several different methods of displaying data from the plays table in
the icetutor database. Some of these methods are described in this section.

If the All option is selected, all the plays in the plays table are presented in
groups of five in a data browser, as follows:

3 Shakespeare’s Plays - Microsoft Internet Explorer provided by Computer Associates |... [H[=] E3

J File Edit ‘“iew Go Favoites Help |J Links
||:omporder | title | playwright |performed ,R| type
|1 |The Twro Gentlemen of Verona |Shakespea.re |1598 ,5_|comedy
|2 |The Taming of The Shrew |Shakespea.re ,5_ comedy
|3 |Hemy’\i’1part il |Shakespea.re |1591 ,5_|history
|4 |Hemy VI part 3 |Shakespea.re |1595 ,5_ |history
|5 |Titus Andronicus |Shakespea.re ,5_ tragedy

=l
Z

|@ Dane | l_l_l_ 25 Local intraret zone

The More button displays the next set of five plays in the browser until all the
plays have been displayed. This option does not wrap to the beginning of the
list, so that when the last play is displayed, the browser is empty.

This is not as desirable as if the first set of plays were to be displayed after the
last play in the database. This is exactly the purpose of the second option, All
(Wrap to Beginning), which does provide the wrap-around capability.

You can return to the home page at any time by clicking the left icon at the
bottom of the page. Similarly, the right icon is clicked if a user wants to log
out of the application.

Chapter é: Creating Web Applications: An Example 6-7

A Tour of the Plays Application

Viewing Selected Plays

The next four options on the home page menu allow a user to display a subset
of the plays based on type. They each accomplish this in a different way. For
example, the simplest example of this is evident in the By Type (Selector)
option. A play type is chosen from a selector control, shown below:

/3 Select a Type: Shakespeare's Plays - Microsoft Internet Explorer provided by Computer ... [H[=] E3

J File Edit “iew Go Favoites Help |JLinks

=
Select a Type: Shakespeare's Plays

Icomedy 'l
Display

Where would you like to go now:

s

@7 ’— ’7 ,* ,f 2h1 Local intranet zone

After a play type is selected and Display clicked, a browser is displayed
containing only plays of that type. Again, a More button allows the user to
display more plays until the end of the list of plays is reached.

The other options show you how various implementations use hyperlinks for
each of the play types in the database. The Switch by Type (Graphical
Hyperlink) option is the programming example that we would like to highlight
and the most desirable in terms of elegant Web page design and efficient
HTML design.

6-8 Web Deployment Option User Guide

A Tour of the Plays Application

This option produces the following Web page:

a Graphical Switched Hyper Link to Shakespeare's Pl - Microzsoft Intemnet Explorer provid. . [i[=] E3
J File Edt View Go Favorites Help

|| Links

Graphical Switched Hyper Link to
Shakespeare's Plays by type

=
7

|E1 | l_ l_ l_ =, Local intranet zone

Here, the user can click the icon that represents the type of play they are

interested in viewing. The results are again displayed in a browser with a More
button.

Tip: You may want to take some time to familiarize yourself with play
browsing portion of the application now before we move on to the next
section describing the Globe Boutique. If you want to see how the

browsing application was built, see Designing a Data Browsing Application
in this chapter.

Chapter 6: Creating Web Applications: An Example 6-9

A Tour of the Plays Application

Globe Boutique

The Globe Shop option presents a home page for the Globe Boutique. On this
page, a list of products that are available for purchase can be viewed and
selected:

/3 Globe Boutique - Microsoft Internet Explorer provided by Computer Associates Intemati... [Ej[=] B3

J File Edit “iew Go Favoites Help “Links

Globe Boutique

The Globe Boutique 15 where you can purchase all your favounte Globe memorabilia.
Vistt often to find that gift for the person m your Iife that always seems to have everything

Genuine quality products and gifts with a unique cultural hertage

Instructions

Select an item from the list below to view its description.
‘Reference | Article

i [Globe Model

|Tape Measure (for Ieasure)

|Tame Shrew Paper Weight

‘4_1 |Comedy Error Eraser
5 [iFenitian Werchant's Feart T_Shirt El
|@ | l_ l_ l_ 25| Local intranet zone i

A user may see some interesting items and want to know more about them, so
they would click the number of the item. A page that describes the item
appears, providing more detail and its price. If the user is interested in
purchasing the item, it can be easily added to their shopping bag (we doubt
that shopping carts existed in Elizabethan England); otherwise, they can
choose to go back to the product list.

6-10 Web Deployment Option User Guide

A Tour of the Plays Application

Viewing Shopping
Bag Contents

Placing an Order or
Emptying Shopping
Bag

Once the item is added to the shopping bag, more items can be chosen or
the contents of the shopping bag can be viewed, as shown below:

/3 View Bag Contents - Microsoft Intemnet Explorer provided by Computer Associates Intern... [H[=] E3

J File Edit ‘“iew Go Favaortes Help

View Bag Contents

‘ Name ,ﬁ
‘Romeo Fragrance for Men ,F
[uliet Parfurn l457
Toal
W

View Bag Contents Fetumn to Products Place Order Empty Bag

Where would you like to go now:

£

E ,7 ,7 ,7 2 Local intranet zone

=l
v

Each item in the shopping bag is listed, along with its price. Additionally, the
total cost of the order is calculated and displayed at the bottom at the list.

Notice that the available user options are hyperlinks that have been enabled
(those that are not available are simply not enabled). The choices at this
point are to add more items, empty the shopping bag, or place the order. If
an order is placed and confirmed, a unique order number is assigned and
that transaction is complete. If the bag is emptied, the items are removed

and the user can start again.

We will now explore how the Plays application was created. You can actually

perform the steps or just follow along, as desired.

Tip: Take some time to familiarize yourself with the Globe Boutique
application before we explore how the entire Plays application was created
in the next section. If you would like to see how the code for the Globe
Boutique portion of the application was developed, see Designing an

Internet Shopping Application in this chapter.

Chapter é: Creating Web Applications: An Example 611

Creating Application Directories

Creating Application Directories

We will begin by creating the directories that we will need for our new
My_Plays application. Two types of directories are needed—one that comes
under Web Deployment Option security and one that does not.

Creating Directories for Non-Web Deployment Option Registered Files

We have to create several directories under the Web root directory that will
contain files that do not come under Web Deployment Option security and are
visible to the HTTP server. These files include a welcome page HTML file and
the facets it references, and a style sheet used with this page.

The welcome page for the my_plays application is the first page of the
application. It must be accessible to any Web user because the user has not
been authenticated yet. The welcome page is followed by the login page,
which is public, but is resident in the plays business unit.

Create the directory structure for the non-Web Deployment Option files of
My_Plays as follows:

a. Create a subdirectory under the Web server default document directory
(for example, myice) that will hold the non-Web Deployment Option files
for your application (that is, the welcome page):

Web server default
document directory

myice

b. Beneath this directory, create two other subdirectories that will hold the
images and style sheet for the welcome page (for example, images and
styles, respectively):

Web server default
document directory

myice

images

styles

Note: The ice directory, and the images and styles subdirectories, were
created for the Plays application at installation time. This can be used as a
model for the myplays directory structure.

6-12

Web Deployment Option User Guide

Creating Application Files

Creating Directories for Web Deployment Option-Registered Files

Next, an application directory for the majority of the files in your application
has to be created. These files do come under Web Deployment Option security
and instead of residing under the Web root directory, they will be created
elsewhere in the file system. Later, we will register these files with the ICE
server, which will then make the location visible through the HTTP server.

Create the directory structure for the Web Deployment Option files of
My_Plays by performing the following steps:

1. In the desired (drive and/or) directory, create a directory for Web
Deployment Option documents.

For example, c:\ice\documents on Windows systems and
/usr/web/documents on UNIX systems.

2. Create a subdirectory called myplays, which will contain all of the Web
Deployment Option files for your application:

User-defined document
directory

myplays

Note: The plays directory beneath your Web Deployment Option directory
was created for the Plays application at installation time. This can be used
as a model for the directory structure on your machine (for example, the
c:\ice\documents\myplays directory on Windows systems and
/usr/web/documents/myplays on UNIX systems).

Creating Application Files

Next, we will proceed by creating the files that will comprise the My_Plays
application. Again, there are files that are registered under Web Deployment
Option and those that are not. In each case, pages, facets, and style sheets
have to be created.

This section takes you through the process of creating or setting up these
application components:
m An initial application page, not under Web Deployment Option control

m A welcome page and its referenced facets and style sheet, not under Web
Deployment Option control

= A login page, under Web Deployment Option control

m The remainder of the Web Deployment Option-controlled application
pages, facets, and style sheets

Chapter é: Creating Web Applications: An Example 6-13

Creating Application Files

Creating the Starting Application Page

We first have to create the entry point for the application that is accessible
through the Web server. In the Plays application, a single index file,
ice_index.html, is the first file the Web user encounters. From this page, we
will provide a hyperlink to the welcome page of the My_Plays application.

Note: You should also specify this initial file as the default document in your
Web server setup or alternatively provide a link to it from your default
document. Either way allows a Web user to simply enter an address of
http://machine_name to access the initial page of the application. If you need
more information, see the documentation supplied with your Web server.

To create the starting My_Plays application page:

1. Within the Web server default document directory, make a copy of the
ice_index.html file, which was installed with Web Deployment Option, and
rename the file "my_ice_index.html”.

For example, if you are using the Microsoft Internet Information Server,
you might create:

C:\InetPub\wwwroot\my_ice_index.html

2. In an HTML editor of your choice, modify the HTML in the new file,
removing all options except the one to select the example tutorial
application:

<HTML>

<HEAD>

<META HTTP-EQUIV="Content-Style-Type"
content="text/css">

<LINK HREF="/ice/styles/ice.css" type="text/css"
REL="stylesheet">

<TITLE>Web Deployment Option</TITLE>

</HEAD>

<BODY>

<H1>Web Deployment Option</H1>

<P ID=W>Welcome to Web Deployment Option</P>

Choose the Following Option to Enter the My_Plays
Application:

<p>

<TABLE>

<TR><TD>My
Example Tutorial Application</TD></TR>

</TABLE>

</BODY>

</HTML>

3. Save your file and exit the HTML editor.

6-14

Web Deployment Option User Guide

Creating Application Files

Creating the Welcome Page and Facets

Creating the
Welcome HTML File

Copying the
Welcome Page
Facets

For the welcome page, you will nhow create a skeleton file, in which you will
enter a standard HTML template to be inserted into all the files eventually.

To create the skeleton file for the welcome page file, perform the following
steps:

1.

In an HTML editor of your choice, enter the following code template. (Note
that this code can be found in the play_welcome.html file, provided in the
plays directory).

<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.0//EN">

<HTML>

<HEAD>

<META HTTP-EQUIV="Content-Style-Type"
CONTENT="text/css">

<LINK HREF="<!-- #ICE
INCLUDE="my_plays[myplay_styleSheet.css] ™ -->"
TYPE="text/css" REL="STYLESHEET">

<TITLE>Title of page</title>

</HEAD>

<BODY>

<H1>Title of page</H1>

</BODY>

</HTML>

Save the file with the name myplay_welcome.html in the myice
subdirectory that you created, beneath the Web server root directory that
you created. (For more information, see Creating Directories for Non-Web
Deployment Option Registered Files in this chapter).

Check that you can read the HTML file with your browser by using File
Open (or the equivalent).

Note: The file will not be visible via your Web server.

Rather than creating new facets referenced by the welcome page for
My_Plays, we will copy the facets from the Plays application:

From within your Web server default document directory, access the
ice\images subdirectory on Windows, or ice/images subdirectory on UNIX.

Copy the bgpaper.gif and oldglobe.gif files to the myice\images
subdirectory.

For more information, see Creating Directories for Non-Web Deployment
Option Registered Files in this chapter.

From within your Web server default document directory, access the
ice\styles subdirectory.

Copy the ice.css file to the myice\styles subdirectory.

For more information, see Creating Directories for Non-Web Deployment
Option Registered Files in this chapter.

Chapter é: Creating Web Applications: An Example 6-15

Creating Application Files

Creating the Remaining Pages and Facets

To save time, we will create skeleton files for all the pages we will need for our
application at once, and then register them with the ICE server at the same
time using Visual DBA. We will also copy the facets used in the Plays
application, and later register with the new business unit.

Creating My_Plays
Application Pages

To create the skeleton pages for the My_Plays application:

1. In an HTML editor of your choice, create a new HTML file named
myplay_home.html, corresponding to the play_home.html original file in
the plays directory.

2. Enter the code template found in the Creating the Welcome Page section.
(Note that this code can also be found in the play_welcome.html file
provided in the plays directory).

3. Save the file in your myplays application subdirectory.

For more information, see Creating Directories for Non-Web Deployment
Option Registered Files in this chapter.

4. Check that you can read the HTML file with your browser by using File
Open (or the equivalent).
Note: The file will not be visible via your Web server.

5. Repeat this procedure for all the files in the plays application directory,

renaming them with the “my” prefix.

The HTML file names are provided below for convenience:

myplay_all
myplay_allWrap
myplay_allWrapSub
myplay_autoUser
myplay_home
myplay_login
myplay_newProduct
myplay_newProductInsert
myplay_sessionControl_h
myplay_shopAction_h
myplay_shopAdd
myplay_shopConfirm

myplay_shopDescribe
myplay_shopHome
myplay_shopRemove
myplay_shopView
myplay_subSet
myplay_TxnCndCmt_h
myplay_typeGLink
myplay_typeGSLink
myplay_typeLink
myplay_typelLinkSubSet
myplay_typelList

6-16 Web Deployment Option User Guide

Creating Application Files

Copying the
My_Plays Application
Facets

Using Style Sheets

We will now copy the image and style sheets files from the Plays application
to the myplays directory.

1. From within your Ingres system directory, access the ingres\ice\plays
subdirectory on Windows, or ingres/ice/plays subdirectory on UNIX.

2. Copy each of the .gif and .css files to the myplays subdirectory.

For more information, see Creating Directories for Non-Web Deployment
Option Registered Files in this chapter.

The names of the images and style sheets to be used are shown below for
your reference:

bgpaper.gif play_styleSheet.css
comedy.gif play_public.css
history.gif romance.gif
logout.gif tragedy.gif
oldglobe.gif

These files will be registered to a new business unit later in the tutorial for
ease in maintenance and security purposes.

The following code line includes a reference to the style sheet that is used for
determining the styles that apply to the various elements in the application:
<LINK HREF="<!-- #ICE INCLUDE=

‘my_plays[myplay_styleSheet.css]”™ -->"

TYPE="text/css"
REL="STYLESHEET">

Style sheets help us to separate appearance or style from the information or
content of our Web site. By including the style sheet using this technique, we
are able to bring the style of our site under Web Deployment Option control in
addition the content. In this tutorial, we use level one of the cascading style
sheet mechanism, recommended by the World Wide Web Consortium (W3C) at
the Web site http://www.w3.0rg/TR/REC-CSS1.

Chapter é: Creating Web Applications: An Example 6-17

Gaining Access to Web Deployment Option Information

Gaining Access to Web Deployment Option Information

You use a Database Object Manager window within Visual DBA to access the
objects on your ICE server. For information on how to start Visual DBA and
access the Web Deployment Option information in the Database Object
Manager, see “Chapter 4: Managing the Web Deployment Option.”

The following sections take you through the management of objects using the
ICE branches in the Database Object Manager.

Registering Your Files and Location

Through the ICE branch in the Database Object Manager in Visual DBA, you
can set up security for your Web Deployment Option objects, and establish a
server location for your files.

It is a requirement of the system that all objects to be made available through
Web Deployment Option must be registered with a business unit. Each
business unit must, in turn, be registered with a session group. We therefore
begin by creating a new session group in this section.

Creating a Session Group

The first step in establishing security for our My_Plays application is the
creation of a session group. This is used in the creation of cookies in the
management of connections to the ICE server, in the case of a user opening
more than one application within the same browser.

We will create the my_playgroup session group as follows:

1. Expand the ICE branch in the Database Object Manager.

2. Expand the Server branch.

3. Select the Session Groups branch.

4

Click the Add Object toolbar button.

-

i

Alternatively, choose Edit, Create.
The Create ICE Session Group Name dialog appears:
Cancel |

6-18 Web Deployment Option User Guide

Registering Your Files and Location

5. Enter my_playgroup in the Session Group edit control.
6. Click OK.

Setting Up Public Files

You must place those application files that need to be publicly accessible in the
HTML root document directory or in an aliased directory. This includes the first
file the user will encounter in the application, which is myplay_welcome.html.
Move this file to the HTML root document directory for your Web server. For
example, if using Microsoft Internet Explorer, this would be:

C:\InetPub\wwwroot

Next, we have to copy the graphic files that will appear in the welcome and
login pages to the wwwroot\ice directory. These files include bgpaper.gif and
oldglobe.gif.

The files that need to be public when being registered with Visual DBA are
myplay_autoUser.html and myplay_login.html. These files include a page for
user login and auto declaration—used if the user is not defined.

Creating a Server Location for Secured Pages

The next step is to create a server location, registering the application
directory that you created earlier with the ICE server. We will later associate
this location with a business unit.
To create the my_play_location location:
1. Expand the ICE branch in the Database Object Manager.
2. Expand the Server branch.
3. Select the Locations branch.
4. Click the Add Object toolbar button.
Alternatively, choose Edit, Create.
The Create ICE Location dialog appears:

Lacation type
(CHTTP @ IcE _ Concel_|

I Public

Path: I

Extensions: I

Chapter é: Creating Web Applications: An Example 6-19

Registering Your Files and Location

In the Name edit control, enter the server name for the location,
my_play_location.

The ICE radio button should already be selected. Also, the Public check
box should be cleared, which it is by default. (It indicates whether the
location is available if no authentication of the user has been performed.)

In the Path edit control, enter the full path of your application
subdirectory.

This is the plays subdirectory under your chosen application directory on
the local file system, discussed in the Creating Application Directories
section.

Leave the Extensions edit control empty.

Click OK.

Creating a Business Unit

et

We need a business unit that is equivalent of plays for the Plays application.
This business unit is a collection of HTML files, facets, and applications
performing a similar or related function in our application.

In a later section, you will see how you can associate a role with the business
unit and grant permissions to it.

To create the my_plays business unit:

1.
2.
3.

Expand the ICE branch in the Database Object Manager.
Select the Business Units branch.
Click the Add Object toolbar button.
Alternatively, choose Edit, Create.
The Create ICE Business Unit dialog appears:
Cancel |

Enter the name of the business unit, my_plays.

Click OK.

Notice that if you expand the Business Units branch, the new my_plays
business unit appears.

620 Web Deployment Option User Guide

Registering Your Files and Location

Associating the Server Location with the Business Unit

The next step is to create an association between the physical location of the
application files and the business unit.

To associate the my_play_location server location with the my_plays business
unit:
1. Expand the ICE branch in the Database Object Manager.
2. Expand the Business Units branch.
3. Expand the my_plays branch.
4. Select the Locations branch.
5. Click the Add Object toolbar button.
Alternatively, choose Edit, Create.

The Associate a Location to Business Unit dialog appears:

Aszzociate a Location to Busineszz Unit my_plaps]
Locato: -

Cancel |

6. Select my_play_location from the drop-down list.

7. Click OK.

Associating Pages with the Business Unit

In order to group the pages for the My_Plays application together logically, we
must associate them with the my_plays business unit.

Note: You can use the regdocs utility to register multiple files simultaneously.
For more information on this command, see the Command Reference Guide.
To associate a page with the my_plays business unit:

1. Expand the ICE branch in the Database Object Manager.

2. Expand the Business Units branch.

3. Expand the my_plays business unit branch.

4. Select the Pages branch.

5. Click the Add Object toolbar button.

Alternatively, choose Edit, Create.

Chapter é: Creating Web Applications: An Example 6-21

Registering Your Files and Location

The Create ICE Page for Business Unit dialog appears:

Create ICE Page for Business Unit my_plays %]
Document I . I ™ Public
" Starage Type Carea] |

& |ngide the Fepository € Take from the File Systen

Cache
’71"' Pre-Cache Pemanent Cache ! Session Cache‘

Reload from
Fah | | ™ MewFils

6. In the Document edit controls, enter the name and extension,
respectively, of the document file (for example, myplay_all and html).

Note: For this example, we are choosing to use the same name for the
document and the actual HTML page.

7. Select the Take from File System option.

The dialog changes as follows:

Create ICE Page for Business Unit my_plays %]
Diocurnent Im}'D'a_'r'_all . Ihtml ™ Public] |
Storage Type . Cancel |
’7 " lnside the Repostary T ‘
Locatioh Imy_play_location ﬂ

Filename: I . I

Notice that the my_play_location location is already selected.

8. In the Filename edit controls, enter the name and extension, respectively,
of the HTML file (for example, myplay_all and html).

9. Click OK.

10. Repeat steps 5-9 for each of the HTML files in your myplays application
directory.

Associating Facets with the Business Unit

You must also include the facets together with the pages logically, requiring us
to associate them with the my_plays business unit.

Note: You can use the regdocs utility to register multiple files simultaneously.
For more information on this command, see the Command Reference Guide.
To associate a facet with the my_plays business unit:

1. Expand the ICE branch in the Database Object Manager.

2. Expand the Business Units branch.

3. Expand the my_plays business unit branch.

6-22 Web Deployment Option User Guide

Registering Your Files and Location

Select the Facets branch.
Click the Add Object toolbar button.
Alternatively, choose Edit, Create.

The Create ICE Facet for Business Unit dialog appears:

Create ICE Facet for Business Unit my_plays %]
Document I . I ™ Public
" Starage Type Carea] |

& |ngide the Fepository € Take from the File Systen

Cache
’71"' Pre-Cache Pemanent Cache ! Session Cache‘

Reload from
Fah | | ™ MewFils

In the Document edit controls, enter the image file name and extension,
respectively (for example, comedy and gif).

Note: For this example, we are choosing to use the same name for the
document and the actual facet.

Select the Take from File System option.

The dialog changes as follows:

Create ICE Facet for Business Unit my_plays %]
Document Icomed_l,l . Igif ™ Public
" Starage Type Cancel |

" Inside the Repositary & T4

Locatioh Imy_play_location ﬂ

Filename: I . I

Notice that the my_play_location location is already selected.

In the Filename edit controls, enter the name and extension, respectively,
of the HTML file (for example, comedy and gif).

Click OK.

. Repeat steps 5-9 for each of the graphic and style sheet files in your
myplays application directory. For the following files, also select the Public
check box:

= bgpaper.gif
= oldglobe.gif
= play_public.css

Note: Making these files public allows them to be accessed by any
unauthenticated user while in the application.

Chapter é: Creating Web Applications: An Example 6-23

Registering Your Files and Location

Creating a Database Connection

To create an alias for the icetutor database and the user that owns the Ingres
installation, the my_play_database database connection will be created.

Note: This database connection can then be associated with a Web user using
the Associate DB Connection to Web User dialog. This is left as an exercise for
the reader.

To create the my_play_database database connection:

1. Expand the ICE branch in the Database Object Manager.

2. Expand the Security branch.

3. Select the Database Connections branch.

4

Click the Add Object toolbar button.

-

i

Alternatively, choose Edit, Create.

The Create ICE Database Connection dialog appears:

Create ICE Database Connection on [local]

Mame: || lif I
Dratabase Infarmation
Cancel |
Mode:

|5LOBE

Database: Iicesw

L L L

Databaze
User:

LComment:

X [

Enter my_play_database in the Name edit control.
Select icetutor from the Database drop-down list.

Select icedefdb from the Database User drop-down list.

© N o U

In the Comment edit control, enter the following text:
Database dedicated to the works of the Bard of Stratford-Upon-Avon
9. Click OK.

Creating a Profile

The security administrator of the Web Deployment Option Web site will want
to create a profile that defines the general capabilities of a user that logs in
using the auto-declaration page.

Next, we want to create a profile that can be assigned to a default user when a
Web user declares an account for themselves.

624 Web Deployment Option User Guide

Registering Your Files and Location

Creating a Role

To create the my_play_profile profile:
1. Expand the ICE branch in the Database Object Manager.
2. Expand the Security branch.
3. Select the Profiles branch.
4. Click the Add Object toolbar button.
Alternatively, choose Edit, Create.

The Create ICE Profile dialog appears:

Create ICE Profile on [local) [%]
Hame: |
DB uzer: I YI Cancel |

Prafile
[Administrator [~ Urit Manager
™ Security administrator ™ Maritaring

Timeaut : I 0 s

5. Enter my_play_profile in the Name edit control.
6. Select icedefdb from the DB User drop-down list.

All other edit controls will be left blank. They can be modified later, if
necessary, by altering the profile.

7. Specify 300 seconds in the Timeout edit control.
8. Click OK.

A role definition is needed so that we can associate the my_play_profile profile
and the my_plays business unit with it, as you will see in the sections that
follow.

To create the my_play_role role:

1. Expand the ICE branch in the Database Object Manager.

2. Expand the Security branch.

3. Select the Roles branch.

4. Click the Add Object toolbar button.

Alternatively, choose Edit, Create.

Chapter é: Creating Web Applications: An Example 6-25

Registering Your Files and Location

The Create ICE Role dialog appears:

Create ICE Role on [local) %]

Marme: ||

) I

Comment: Cancel |
[|

=

In the Name edit control, enter my_play_role.
In the Comment edit control, enter Role for the My_Plays Web application.

Click OK.

Associating a Role with a Profile

Now that we have a role created, we can associate the my_play_profile profile
with it. The my_play_role will eventually have the Execute Documents
permission granted to it.

To associate the my_play_role role with the my_play_profile profile:

1
2
3
4,
5
6
i
7.
8.

Expand the ICE branch in the Database Object Manager.
Expand the Security branch.

Expand the Profiles branch.

Expand the my_play_profile branch.

Select the Roles branch.

Click the Add Object toolbar button.

Alternatively, choose Edit, Create.

The Associate Role to ICE Profile dialog appears:

Aszsociate Role to ICE Profile my_play_profile

Rale:

Cancel |

Select my_play_role from the Role drop-down list.

Click OK.

626 Web Deployment Option User Guide

Registering Your Files and Location

Associating a Database Connection with a Profile

We also want to associate a database connection with the profile we have
created. This associates the profile with the icetutor database and icedbuser
database user.

To associate the my_play_database database connection with the
my_play_profile profile:
1. Expand the ICE branch in the Database Object Manager.
2. Expand the Security branch.
3. Expand the Profiles branch.
4. Expand the my_play_profile profile branch.
5. Select the Database Connections branch.
6. Click the Add Object toolbar button.
Alternatively, choose Edit, Create.

The Associate DB Connection to ICE Profile dialog appears:

Associate DB Connection to ICE Profile my_play_pr... [

DEConnection

Cancel |
7. Select my_play_database from the DBConnection drop-down list.

8. Click OK.

Associating a Role with a Business Unit

A Web Deployment Option role allows a group of users to be granted
appropriate access rights by business unit owners to their business unit as a
whole or on a per-page or per-facet basis.

We will now associate the my_play_role role with the my_plays business unit,
granting the Execute Documents permission:

Expand the ICE branch in the Database Object Manager.

Expand the Business Units branch.

Expand the my_plays branch.

Expand the Security branch.

Select the Roles branch.

o vk w N

Click the Add Object toolbar button.

Alternatively, choose Edit, Create.

Chapter é: Creating Web Applications: An Example 6-27

Designing a Data Browsing Application

The Role Access Definition for Business Unit dialog appears:

Role Access Definition for Business Unit my_plays

Bole: [- ok |
[~ Ewecute Documents [Create Document Cancel |

™ Read Documents

7. Select my_play_role from the Role drop-down list.
8. Select the Execute Documents check box.
9. Click OK.

Designing a Data Browsing Application

Now that the security objects for our application are created, we can go on to
create the HTML pages that will make up the application. You can use the
skeleton files that we created previously, as discussed in the Creating
Application Files section.

We will examine the code used in the Plays application provided with Web
Deployment Option for the viewing of Shakespeare’s plays. In creating the
My_Plays application, you will be instructed to add the code that is shown to
your new files or copy it from an original Plays file.

Tip: Throughout this chapter, you can use the Plays HTML files to extract
the code and paste it into the new file, so that you don’t have to retype

the code. However, you may want to reproduce the code manually as an
exercise in using the Web Deployment Option macros.

Creating a Welcome Page

The welcome page is the first page that the user encounters. It lies outside the
control of the ICE server and is a standard HTML page that does not come
under the control of Web Deployment Option.

The welcome page is needed to provide access to the pages that do come
under the control of the ICE server. It contains some welcome text and a link
to the login page and therefore must be accessible through your Web server.

Important! The welcome page of your Web application should be accessible
through the Web server.

628 Web Deployment Option User Guide

Designing a Data Browsing Application

Welcoming the User
to Your Site

An example of a welcome page is the play_welcome.html file, which will be
reproduced in our new file. Add the following code to the
myplay_welcome.html file:

<HTML>

<HEAD>

<TITLE>

Shakespeare Live

</TITLE>

</HEAD>

<BODY>

<CENTER>

<H1>

Shakespeare Live

</H1>

</CENTER>

<CENTER>

Welcome to the globe

site for Shakespeare Studies.

<p>

<A HREF=/ice-bin/oiice.dl11/
my_plays[myplay_login.html]>

</CENTER>

</BODY>

</HTML>

The line of interest here is the anchor:

<A HREF=/ice-bin/oiice.dll/
my_plays[myplay_login.html]>

This instructs the ICE server to access the myplay_login page, which resides in
the my_plays business unit. The square brackets in the syntax show that the
page is part of the business unit.

The oldglobe.gif file is visible to the HTTP server and resides under the
ice/images directory beneath the root document directory within your Web

server directory.

Note: There is no support for session groups at this level because we have not
yet logged in and therefore have not yet been assigned a session ID.

The next page to be created is the login page.

Creating a Login Page

It is necessary to log in to the ICE server before you can access any pages
held under its control. An example of a login page is the play_login.html page,
which we will use to create myplay_login.html. It allows Web users to create
an account for themselves by leaving the entry fields blank.

Chapter é: Creating Web Applications: An Example 6-29

Designing a Data Browsing Application

Establishing a Add the following code to the myplay_login.html file:
Connection to the <HTML>
Server <HEAD>

<TITLE>Shakespeare Plays </TITLE>

</HEAD>
<BODY>
<CENTER>
<H1>Shakespeare Plays </H1></TD>
</CENTER>
Thank you for visiting the Globe Centre for Shakespeare.
<p>
If you are a new visitor to our site, leave the
user name and password fields <I>blank.</I>

Click on the
picture of the original Globe below from whence you
will be able to register with us.
<p>
If you already have an account, please fill in
your user name and password below.

Click on the
picture of the original Globe below.
<pP>
We hope you enjoy your visit!
<HR>
<FORM ACTION="/ice-bin/oiice.dll/
my_plays[myplay_home.html]" METHOD="POST">
<INPUT TYPE=hidden NAME="1ii_action" value="connect">
<INPUT TYPE=hidden
NAME="11i_error_url" value=
"/my_plays[myplay_autoUser.html]">
<CENTER>
<TABLE BORDER=0 ALIGN=CENTER VALIGN=CENTER>
<TR>
<TD>Please enter your:</TD>
</TR>
<TR>
<TD>Name: </TD>
<TD><INPUT SIZE=32 NAME="ii_userid"></TD>
</TR>
<TR>
<TD>Password: </TD>
<TD><INPUT SIZE=32 TYPE=PASSWORD
NAME="11_password"></TD>
</TR>
</TABLE>
<INPUT TYPE="IMAGE" BORDER=0 NAME="connect"
SRC="/myice/images/oldglobe.gif" ALT="Press Here to Enter the Globe Experience">
</CENTER>
</FORM>
</BODY>
</HTML>

6-30 Web Deployment Option User Guide

Designing a Data Browsing Application

This page sets the value of the hidden variable ii_action to “connect,” collects
the account name and password from the user, and passes them all to the
my_plays[myplay_home.html] page when the user clicks Connect:

<FORM ACTION="/ice-bin/oiice.d11/

my_plays[myplay_home.html]" METHOD="POST">
<INPUT TYPE=hidden NAME="ii_action" value="connect">

<INPUT TYPE="IMAGE" BORDER=® NAME="connect"
SRC="/1ice/images/oldglobe.gif" ALT="Connect">

If the user has no account, the login will fail and the failure action (specified

by ii_error_url) will take them to the page my_plays[myplay_autoUser.html].
This page allows the user to create a new account. We will look at how to do
that later. First, we will take a quick look at the home page for our system.

Creating a Home Page

Using INCLUDE file to
Commit Open
Transactions

Once the Web user has logged in, they are presented with a home page, which
instructs them of the options that are available to them. You will notice the
introduction of a session group to the HTML code for this page.

For our home page, we will demonstrate the INCLUDE feature. This allows the
Web author to incorporate generic Web Deployment Option code on many
pages. An example of its use would be to include code to ensure that each
page had a uniform style across the site. In our case, we use the INCLUDE file
for another reason; that of including Web Deployment Option code to ensure
any open transactions are closed. Little else is new other than a list of links to
the various pages that demonstrate various HTML or Web Deployment Option
features.

Add the following code to the myplay_home.html page:
<HTML>

<HEAD>
<TITLE>Shakespeare’s Plays Home Page</TITLE>

</HEAD>
<BODY>
<CENTER>
<H1>Shakespeare's Plays Home Page</H1>
</CENTER>
This is the home page for Shakespeare’s plays hosted on the server globe
<H2>
View Shakespeare’s Plays
</H2>
<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay TxnCndCmt_h.html]"® -->

Chapter é: Creating Web Applications: An Example 6-31

Designing a Data Browsing Application

<0L>

 <A HREF="/ice-bin/oiice.d11/my_playgroup/
my_plays[myplay_all.html]">Al1

 <A HREF="/ice-bin/oiice.d11/my_playgroup/
my_plays[myplay_allWrap.html]">
All (wrap to beginning)

 <A HREF="/ice-bin/oiice.d11/my_playgroup/
my_plays[myplay_typelList.html]">By type (selector)

 <A HREF="/ice-bin/oiice.d11/my_playgroup/
my_plays[myplay_typelLink.html]">
By type (hyper-1link)

 <A HREF="/ice-bin/oiice.d11/my_playgroup/
my_plays[myplay_typeGLink.html]">
By type (Graphical hyper-1link)

 <A HREF="/ice-bin/oiice.d11l/my_playgroup/
my_plays[myplay_typeGSLink.html]">
Switch by type (Graphical hyper-1link)

 <A HREF="/ice-bin/oiice.d11/my_playgroup/
my_plays[myplay_newProduct.html]">Add a product

</0L>

<A HREF="/1ice-bin/oiice.dl1l/my_playgroup/
my_plays[myplay_shopHome.html]">Globe
Shop

<p>

Please

<A HREF="/ice-bin/oiice.dll/
my_plays[myplay_login.html]?ii_action=disconnect">
logout,don't time out!

</BODY>

</HTML>

The line that includes the extra code is:

<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_TxnCndCmt_h.html] " -->

The syntax for specifying an include file is the same as for when one is linked
to. Here the business unit is my_plays and the file name is
myplay_TxnCndCmt_h.html. We need to specify the REPEAT keyword because
there are Web Deployment Option macro statements to be evaluated in this
file.

In the next section, you will create a page to create a new account.

Creating a User Account Automatically

Anyone accessing non-public pages in a Web Deployment Option-controlled
part of a Web site must have an account. Since this could mean creating
accounts for a large number of Web users, there needs to be a way for the
users to allocate themselves an account. The account should have the
minimum permissions required, by associating a role using Visual DBA.

6-32 Web Deployment Option User Guide

Designing a Data Browsing Application

Adding an Auto-
Declaration Page

The following is an example of an auto-declaration page. This code should be
added to the myplay_autoUser.html file:

</HEAD>

<BODY>

<H1>Automatic Declaration</H1>

<FORM ACTION="/ice-bin/oiice.dll/
my_plays[myplay_home.html]" METHOD="POST">

<INPUT TYPE=hidden NAME="ii_action" value="declare">

<INPUT TYPE=hidden NAME="ii_profile"
value="myplay_profile">

<CENTER>
<TABLE BORDER=0 ALIGN=CENTER VALIGN=CENTER>
<TR>
<TD>Please enter your:</TD>
</TR>
<TR>
<TD>Name: </TD>
<TD><INPUT SIZE=32 NAME="ii_userid"></TD>
</TR>
<TR>
<TD>Password: </TD>
<TD><INPUT SIZE=32 TYPE=PASSWORD
NAME="11_password"></TD>
</TR>
</TABLE>
<INPUT TYPE="IMAGE" BORDER=0 NAME="connect"
SRC="/1ice/images/oldglobe.gif" ALT="Connect">
</CENTER>
</FORM>
</BODY>
</HTML>

The action for the form is to execute the myplay_home.html document in the
my_plays business unit. It is passed, along with the new user name and
password, the declare action. This causes a new Web user to be created with
the my_play_profile profile.

Note: The my_plays profile must have been created previously using the
Create ICE Profile dialog in Visual DBA. See Creating a Profile in this chapter.

Displaying All Table Rows

In the first Web Deployment Option feature programming example, we will
show how to specify an SQL Web Deployment Option macro keyword and then
embed the macro into a simple Web Deployment Option document. We will
also take advantage of the CURSOR macro keyword to add a More button to
the document, enabling us to view the sequence of plays by subset.

Finally, we will arrange to commit the transaction upon returning to the home
page. The code will be placed into a separate file and included into the home
page and the myplay_all.html document using the INCLUDE keyword.
Communication of the transaction name will be achieved with Web
Deployment Option session variables.

Chapter é: Creating Web Applications: An Example 6-33

Designing a Data Browsing Application

The page used to display all the rows in the plays table is shown below:

/J Shakespeare’s Plaps - Microzoft Internet Explorer provided by Computer Associates Int... [H[=] E3

J File Edit ‘“iew Go Favoites Help |J Links
||:omporder | title | playwright |performed ,R| type
|l |The Two Gentlemen of Verona |Shakespea.re |l598 ,5_|comedy
|2 |The Tarring of The Shrew |Shakespea.re ,5_ comedy
|3 |Hemy\?1part il |Shakespea.re |1591 ,5_|history
|4 |Hemy VI part 3 |Shakespea.re |1595 ,5_ |history
|5 |Titus Andronicus |Shakespeare |5_ tragedy

NULED

|&] | [| [E5 Local intranet zone

Using a Simple Select Statement

We would like to present the data in the plays table in the icetutor database,
five rows at a time in an HTML tabular format. A transaction name and cursor
name will also be established.

Constructing Macro The first task is to construct a Web Deployment Option macro using the SQL
keyword, as follows:

<!-- #ICE
DATABASE = “icetutor’
SQL="select * from plays’
TRANSACTION="Complete’
CURSOR="Works"
ROWS="5"
TYPE="TABLE"

6-34 Web Deployment Option User Guide

Designing a Data Browsing Application

If we were to display this page in a browser, the output would appear as

follows:

||:umpurder | title | playwright |perfurmed ’E| type

| 1 |Two Gentlemen of Verona |Sha.ke speare |l 5298 ’5_ |come dy
|2 |Ta.mj.ng of The Shrew |Shake spears ’5_ cotnedy
|3 |Hen.r3r‘ﬂpart 1 |Shakespeare |1591 ’5_|history
|4 |Hen.ry VIpart 3 |Sha.ke speare |l595 ’5_ |history
|5 |Titus Andronicus |Shake speare ’5_ tragedy

Adding the Macroto ~ We are happy—for now—with this output, so we cut and paste the macro text
Your HTML into the “myplay_all.html” file. The result is as follows:

<HTML>

<HEAD>

<TITLE>Shakespeare's Plays</TITLE> </HEAD>
<BODY>

<H1>Shakespeare's Plays</H1>

<!-- #ICE DATABASE = “icetutor’
SQL="select * from plays"
TRANSACTION="Complete’
CURSOR="Works"

ROWS="5"
TYPE="TABLE" -->
</BODY>
</HTML>
Viewing the Page Since you have already registered the file, you can now view the page by
logging in to your site and specifying its address:
m http://your_machine_name/ice-bin/oiice.dll/my_playgroup/
my_plays[myplay_all.htmI] =
UNIX http://your_machine_name/ice-bin/oiice.1.so/my_playgroup/

my_plays[myplay_all.htmI] =

Notice that the only way of retrieving the next set of rows is by reloading the
page (by clicking the Refresh or Reload button in your browser). In the next
section, we will add a More button to do this more elegantly.

Adding a More Button

We now need a more efficient way of retrieving the next set of five plays.
Since we have opened both a transaction (Complete) and a cursor (Works)—
and the action of the cursor is to retrieve the next set of rows—all we need to
do is to reload the document. You might like to try this now with your
document.

Chapter é: Creating Web Applications: An Example 6-35

Designing a Data Browsing Application

Reloading the
Browser with a Submit
(More) Button

Adding the More
Button to the Form

Although this will work, it is not quite as user-friendly as we would like! It is
preferable to add a button to get more plays. The action of the button is to
revisit the document. If you have read the "HTML Primer” appendix, you
know that a button exists on a form so we need a form whose action is the
address of the current document. The button type that submits the form to
the Web server is Submit.

The result of all of this is that the Submit button acts just like the Refresh or
Reload button on your browser. We assign a meaningful name to the button
(such as “More”). We are now ready to present the myplay_all.html document
with our new “More” button.

Update the myplay_all.html file to include the following code:

<HTML>

<HEAD>

<TITLE>Shakespeare's Plays</TITLE>
</HEAD>

<BODY>

<H1>Shakespeare's Plays</H1>

<!-- #ICE
DATABASE = “icetutor’
SQL="select * from plays’
TRANSACTION="Complete"’
CURSOR="Works"
ROWS="5"
TYPE="TABLE"
-->

<p>

<FORM ACTION="/1ice-bin/oiice.d11/my_playgroup/
my_plays[myplay_all.html]" METHOD="POST">

<INPUT TYPE="submit" NAME="More" VALUE="More"
ALT="Show more plays">

</FORM>

</BODY>

</HTML>

6-36 Web Deployment Option User Guide

Designing a Data Browsing Application

Including Generic Session Control

Using INCLUDE file to
Conftrol Sessions

We would obviously like to give the user some way of returning to the home
page, or logging out. We can easily do this with the following macro
statements:

<HR WIDTH="50%" >

<H2>Where would you like to go now:</H2>

<TABLE BORDER=0 CELLSPACING=3>

<TR>

<TD>

Globe Home Page:

<TD>

<IMG SRC="/myice/images/oldglobe.gif" alt="Return to Globe Home Page"

<TR>

<TD>

<p>

logout:<A>

<TD>

</TABLE>

<HR>

Clearly, we could insert this directly into our file; then every other one that we
create. Then, revisit every file whenever we wish to change something. You
get the idea. It would be much easier to have one version of this in a separate
file and include it as needed. To do this, we save the code in the file named
myplay_SessionControl_h.html and add the INCLUDE line to the
myplay_all.html file.

Note: Any INCLUDE files need to be registered (that is, associated with a
business unit) with the ICE server using the Create ICE Page for Business Unit
dialog. (You should have already registered the file in the Associating Pages
with the Business Unit section).

This code adds the INCLUDE line to the myplay_all.html file:

<HTML>
<HEAD>
<TITLE>Shakespeare's Plays</TITLE>
</HEAD>
<BODY>
<H1>Shakespeare's Plays</H1>
<!-- #ICE
DATABASE = ‘“icetutor’
SQL="select * from plays"
TRANSACTION="Complete"
CURSOR="Works"
ROWS="5"
TYPE="TABLE"
-->
<p>

<FORM ACTION="/ice-bin/oiice.dll/
my_playgroup/my_plays[myplay_all.html]" METHOD="POST">

Chapter é: Creating Web Applications: An Example 6-37

Designing a Data Browsing Application

<INPUT TYPE="submit" NAME="More" VALUE="More"
ALT="Show more plays">
</FORM>

<!-- #ICE REPEAT
INCLUDE="my_plays[myplay_SessionControl_h.html]"

-->

</BODY>

</HTML>

Adding Transaction Control

Declaring Variables
to Control
Transactions

The document as it stands opens a transaction named “Complete,” but never
closes it with a commit or rollback. We obviously cannot commit the
transaction on the same page because then we would only ever retrieve the
first result subset. We could create an extra page, which we visit for the sole
purpose of committing the transaction, but we effectively already have such a
page—our home page. A good time to commit the transaction would be when
we transfer to the home page.

There could be many transactions that use this mechanism, so we choose a
variable to contain the name of the transaction to be committed. Another
variable will record the fact that the transaction is either available to be
committed or has already been committed (since it is the nature of
HTML/HTTP that we have no control over how the user arrives at the home
page or how often).

Add the two DECLARE macros shown below to your myplay_all.html file. This
is the final version of the file, with transaction control information:

<HTML>
<HEAD>
<TITLE>Shakespeare's Plays</TITLE>
</HEAD>
<BODY>
<H1>Shakespeare's Plays</H1>
<!-- #ICE
DATABASE = “icetutor’
SQL="select * from plays’
TRANSACTION="Complete"’
CURSOR="Works"
ROWS="5"
TYPE="TABLE"
-->
<!-- #ICE DECLARE="session.e_playTxn=Complete’ -->
<!-- #ICE DECLARE="session.e_playTxnCommitted=FALSE"
-->
<p>
<FORM ACTION="/ice-bin/oiice.d11l/my_playgroup/
my_plays[myplay_all.html]" METHOD="POST">
<INPUT TYPE="submit" NAME="More" VALUE="More"
ALT="Show more plays">
</FORM>
<!-- #ICE REPEAT
INCLUDE="my_plays[myplay_SessionControl_h.html]"
-->
</BODY>
</HTML>

6-38 Web Deployment Option User Guide

Designing a Data Browsing Application

Committing Transactions on the Home Page

There are various variable scopes available to us: server, session, and page.
The naming convention used for variables in this tutorial is scope_name,
where scope is represented by one of the following prefixes:

Scope Prefix Scope Level
s Server

e sEssion

p Page

This means that the variable e_playTxnCommitted is a session-level variable.

Using Variables to We now need some code to use these variables to commit the transaction at
Commit Transactions the appropriate time. The code that achieves this conditional transaction
commit appears below. It should be added to the myplay_TxnCndCmt_h.html
file:
<!-- #ICE REPEAT IF (DEFINED (e_playTxnCommitted))
THEN=""
ELSE="<!-- #ICE
DECLARE=""session.e_playTxnCommitted=TRUE" "
-=>"
-->

<!-- #ICE REPEAT IF (DEFINED(e_playTxn) AND

(" :e_playTxnCommitted™ != “TRUE"))
THEN="<!-- #ICE COMMIT="":e_playTxn " -->
<!-- #ICE

DECLARE=""session.e_playTxnCommitted=TRUE "
—->"

Perform Conditionall We add an IF macro statement to our next document; suffice it to say for
Transaction now that the first part of this code tests if the e_playTxnCommitted variable
Committals exists. If it does not, it is created and set to the value TRUE. We need to do

this because the first time we visit the home page, no variables will be set.
Then, if the e_playTxn variable exists and the transaction has not yet been
committed, it is committed. We need to perform these checks because it is
an error to commit a non-existent transaction.

Chapter é: Creating Web Applications: An Example 6-39

Designing a Data Browsing Application

It only remains to include this file in our home page, myplay_home.html, as
follows:

<HTML>

<HEAD>

<TITLE>Shakespeare's Plays Home Page</TITLE>
</HEAD>

<BODY>

<CENTER>

<H1>Shakespeare's Plays Home Page</H1>
</CENTER>

This is the home page for Shakespeare's plays hosted on the server globe
<H2>

View Shakespeare’s Plays

</H2>

<!-- #ICE REPEAT
INCLUDE="my_plays[myplay_TxnCndCmt_h.html]" -->

<0L>

 <A HREF="/ice-bin/oiice.d11/my_playgroup
/my_plays[myplay_all.html]">A11

</0L>

Please

<A HREF="/ice-bin/oiice.dll
/my_plays[myplay_login.html]?ii_action=
disconnect">1logout, don't time out!

</BODY>

</HTML>

The next section illustrates the use of the IF keyword.

Displaying All Table Rows with Wrapping

In the previous example, when the information in the table was exhausted, the
page displayed the column headers and no rows. If you have not seen this,
you might like to try it now by clicking More until there are no more rows to
display. (Hint: The number of rows returned is available in the ii_rowcount

variable.)
Testing for End of We would prefer the user to be presented with a way of resetting the cursor
Result Set to the beginning of the result set again, to be able to return to the beginning.

We choose to do this only when the number of rows returned is not 5 (the
requested number). When there are more than five rows available, the ICE
server will always return five and set ii_rowcount accordingly. When there
are fewer than five rows to return, ii_rowcount will be set to the appropriate
value. We can, therefore, test the inequality of ii_rowcount with 5.

The select statement is as before but now we include the test. If we receive
fewer than five rows (ii_rowcount != 5), we insert the HTML to visit another
page which is a facsimile of this page, but commits the transaction before
running exactly the same query. This allows us to restart from the beginning
of the result set.

6-40 Web Deployment Option User Guide

Designing a Data Browsing Application

Adding an IF
Statement to Wrap to
Beginning of Result
Set

Our solution should be added to the myplay_allWrap.html file, as follows:

<HTML>
<HEAD>
<TITLE>Shakespeare's Plays</TITLE>

</HEAD>

<BODY>

<FORM ACTION="/ice-bin/oiice.d11/my_playgroup/
my_plays[myplay_allWrap.html]" METHOD="POST">

<!-- #ICE REPEAT
DATABASE = ‘“icetutor’
SQL="select * from plays"
TRANSACTION="Complete"
CURSOR="Works"
ROWS="5"
TYPE="TABLE"

-->

<!-- #ICE IF (" :ii_rowcount™ != '5%)
THEN="<P>

<A HREF="/ice-bin/oiice.d1l1/my_playgroup/
my_plays[myplay_allWrapSub.html]">
Re-start from the beginning
<P>"

>

<!-- #ICE DECLARE="session.e_playTxn=Complete’ -->

<!-- #ICE DECLARE="session.e_playTxnCommitted=FALSE" -->

<p>

<INPUT TYPE="submit" NAME="More" VALUE="More"
ALT="Show more plays">

<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_SessionControl_h.html]" -->

</FORM>

</BODY>

</HTML>

The interesting part of the file is:

<!-- #ICE IF (" :ii_rowcount™ != '57)
THEN="<P>

<A HREF="/ice-bin/oiice.d1l1l/my_playgroup/
my_plays[myplay_allWrapSub.html]">
Re-start from the beginning
<P>"

If the number of rows returned is not 5, it must be less than 5. We must test
the inequality here because the IF statement performs string comparisons. If
the number of rows is less than 5 (we have reached the end of the result set),
we wish to give the user the opportunity to visit a “reset” page. The THEN
branch of the IF inserts the required link.

Chapter é: Creating Web Applications: An Example 6-41

Designing a Data Browsing Application

The page will appear as follows once the user has reached the end of the plays
in the browser:

/3 Shakespeare's Plays - Microsoft Internet Explorer provided by Computer Associa... [H[=] E3

J File Edit “iew Go Favoites Help |J Links
=
||:omporder title |playwright |performed acts type‘
Re-start from the heginni
tore |
Where would you like to go now:
-]
rg ,_,_,_ 2 Local intranet zone i

Committing Previous In order to start again, the first thing we need to do is to commit the
Transaction and previous transaction:

Starting Transaction <l-- #ICE COMMIT=":e_playTxn' -->

Again

We then start exactly the same transaction again, giving the illusion that the
user has visited the same file. Notice how the link to retrieve MORE entries
returns the user to the main page. This page is therefore only used to commit
and restart the transaction. This technique can also be used to ensure that a
result set is current.

Let us take a look at the code below. You should add this code to the next file,
named myplay_allWrapSub.html:

<HTML>
<HEAD>
<TITLE>Shakespeare's Plays</TITLE>
</HEAD>
<BODY>

<!-- #ICE COMMIT=":e_playTxn® -->

<!-- #ICE
DATABASE = ‘“icetutor’
SQL="select * from plays’
TRANSACTION="Complete’
CURSOR="Works"
ROWS="5"
TYPE="TABLE"

6-42 Web Deployment Option User Guide

Designing a Data Browsing Application

<!-- #ICE DECLARE='session.e_playTxn=Complete’ -->

<!-- #ICE DECLARE="session.e_playTxnCommitted=FALSE"
-->

<FORM ACTION="/1ice-bin/oiice.d11/my_playgroup/
my_plays[myplay_allWrap.html]" METHOD="POST">

<INPUT TYPE="submit" NAME="More" VALUE="More"
ALT="Show more plays">

</FORM>

<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_SessionControl_h.html]" -->

</BODY>

</HTML>

Notice how the link to retrieve ‘"MORE’ entries returns the user to the main
page. This page is therefore only used to commit and restart the transaction.
This technique can also be used to ensure that a result set is current.

The next section shows how Web Deployment Option can generate the tags
needed for a selector control.

Creating an Automatically-Generated Selector Control

We have seen how to retrieve a result set from the database. Now we would
like to retrieve the plays according to type. We note that for the purposes of
these examples, the schema is somewhat denormalized. Normalization and the
subsequent adjustment of the queries are left as an exercise for the reader.

One way of presenting Web users with a choice is to use a selector control.
Web Deployment Option automatically generates the necessary HTML tags to
generate a selector control element for us when we specify the SELECTOR
keyword for an SQL query. We must supply a variable name to contain the
value selected by the user and we specify this by using the ATTR keyword to
name the e_type variable type.

Chapter é: Creating Web Applications: An Example 6-43

Designing a Data Browsing Application

The following page uses a selector control and a Display button:

/J Select a Type: Shakespeare's Plays - Microzoft Internet Explorer provided by .. =] E3

J File Edit “iew [Go Favortes Help |JLinks
El
Select a Type: Shakespeare's Plays
Icomedy 'l
Display |
Where would you like to go now:
[~

E l_’_’_ 2| Local intranet zone i
Using a Selector The following code should be added to the myplay_typeList.html page, as
Confrol to Obtain shown below:
Play Type

<HTML>

<HEAD>

<TITLE>Select a Type: Shakespeare's Plays</TITLE>

</HEAD>

<BODY>

<H1>Select a Type: Shakespeare's Plays</H1>

<FORM ACTION="/1ice-bin/oiice.d11/my_playgroup/

my_plays[myplay_subSet.html]" METHOD="POST">
<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_TxnCndCmt_h.html]"® -->
<!-- #ICE DECLARE="session.e_type='select play type'® -->

<!-- #ICE REPEAT
DATABASE = “icetutor’
SQL="select distinct type from plays"
TRANSACTION="t_typelist’
CURSOR="Works"
ROWS="10"
TYPE="SELECTOR"
ATTR="NAME=e_type"
-->
<!-- #ICE COMMIT="t_typelList® -->
<p>
<INPUT TYPE="submit" NAME="Display" VALUE="Display"
ALT="Show Plays of this type">
</FORM>
<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_SessionControl_h.html]" -->
</BODY>
</HTML>

6-44 Web Deployment Option User Guide

Designing a Data Browsing Application

Extracting Play Types
from Plays Table

Using a Selector
Control to Display
Distinct Play Types

Committing the
Transaction

There are three interesting areas in this example. The first is in the select
statement:

SQL="select distinct type from plays"

Here we are selecting the various play types from the table (we need to
specify distinct because we have denormalized the schema).

Next, we see that the TYPE of the result set has been changed from the
default (TABLE) to the type SELECTOR. This automatically generates the
HTML tags required for a selector control. We use the ATTR keyword to set
the NAME variable for this selector control:

TYPE="SELECTOR"
ATTR="NAME=e_type"

Finally, we tidy up the transaction immediately by committing it at once
(there is no need to hold it open, in contrast to the one in the previous
document):

<l-- #ICE COMMIT='t_typelList' -->

Having set the e_type HTML variable on the form, we now include a Submit
button to send the successful controls (in particular e_type) to the next
(display) document, myplay_subSet.html. We examine this document next.

Displaying a Subset of Table Rows by Selector

The myplay_subSet.html document will be used to display those plays
required, as specified by the e_type variable. This is used in the where clause
of the select statement:

SQL="select * from plays where
type = ':e_type'"’

We also include a hyperlink back to the type selection page:

<A HREF="/ice-bin/oiice.d11/my_playgroup/
my_plays[myplay_typelList.html]">Select a new play
type

In every other respect, this document is identical to the first example we saw.
Extending this example to wrap around to the beginning when the end of the
result set is reached is left as an exercise to the reader.

Chapter é: Creating Web Applications: An Example 6-45

Designing a Data Browsing Application

Displaying Plays Include the following code in the myplay_subset.html file:
Based on Type

<HTML>

<HEAD>

<TITLE>Shakespeare's Plays by Type</TITLE>
</HEAD>

<BODY>

<H1>Shakespeare's Plays by Type</H1>

<FORM ACTION="/ice-bin/oiice.d11/my_playgroup/
my_plays[myplay_subSet.html]" METHOD="POST">

<!-- #ICE
DATABASE = “icetutor’
SQL="select * from plays where type = ':e_type'"’

TRANSACTION="Complete"’
CURSOR="Works"
ROWS="5"
TYPE="TABLE"

-=>

<!-- #ICE DECLARE=session.e_playTxn=Complete’ -->
<!-- #ICE DECLARE="session.e_playTxnCommitted=FALSE" -->
<pP>

<A HREF="/ice-bin/oiice.d11/my_playgroup/
my_plays[myplay typelList.html]">Select a new play
type

<pP>

<INPUT TYPE="submit" NAME="More" VALUE="More"
ALT="Show More Plays of this type">

</FORM>

<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_SessionControl_h.html]" -->

</BODY>

</HTML>

In this example, we have seen how we can communicate values between two
(or more) Web Deployment Option HTML documents—presenting a simple
refinement of search criteria to the user based on data in the database.

In the next example, we see how to achieve a similar effect, this time using
hyperlinks instead of a selector control.

6-46 Web Deployment Option User Guide

Designing a Data Browsing Application

Creating Automatically-Generated Hyperlinks

Using a Hyperlink to
Obtain Play Type

Using the LINKS
Keyword to Generate
Distinct Play Type
Hyperlinks

This example is a simple variation of the previous one, using hyperlinks in
place of a selector control. To do this, we replace the SELECTOR keyword with
the LINKS keyword. This automatically generates the HTML tags to create a
hyperlink for each row and pass a variable to the target page. The name of the
variable is that of the selected column and the value is the contents of the
column for that row.

In addition, we set a return address for the following page so that it can link
back to this one. That way, we can use the same sub-page from more than
one page, creating in effect a doubly-linked list albeit with only two members.

Add the following code to the myplay_typeLink.html page:
<HTML>

<HEAD>
<TITLE>Hyper Link to Shakespeare's Plays by

type</TITLE>
</HEAD>
<BODY>
<H1>Hyper Link to Shakespeare's Plays by type</H1>

<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_TxnCndCmt_h.html]" ™ -->

<!-- #ICE
DATABASE = “icetutor’
SQL="select distinct type from plays"
TRANSACTION="t_type"
CURSOR="c_type"
ROWS="10"
TYPE="PLAIN"
LINKS="type,/ice-bin/oiice.dl1l/my_playgroup/
my_plays[myplay_typelLinkSubSet.html]"
-->

<l-- #ICE COMMIT="t_type" -->

<!-- #ICE DECLARE=
‘session.e_return=myplay_typelLink.html® -->

<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_SessionControl_h.html]" -->

</BODY>

</HTML>

The required tags to generate the hyperlinks (one per row) are generated by
the LINKS keyword as follows:
LINKS="type,/ice-bin/oiice.d1l1/my_playgroup/

my_plays[myplay_typelLinkSubSet.html]"

The first parameter, type, specifies the column name. This sets the name of
the variable that will be passed to the target document. The second argument
specifies the document that is the target of the link. The following construct
produces hyperlinks given the contents of the plays table. The data in the
plays table is shown in Plays Tutorial Application Data.

Chapter é: Creating Web Applications: An Example 6-47

Designing a Data Browsing Application

Using a Session
Variable to Return to
Current Document

<A HREF="/ice-bin/oiice.d11/my_playgroup/
my_plays[myplay_typelLinkSubSet.html]?type=comedy">
comedy

<A HREF="/ice-bin/oiice.d11/my_playgroup/
my_plays[myplay_typelLinkSubSet.html]?type=history">
history

<A HREF="/1ice-bin/oiice.dl1l/my_playgroup/
my_plays[myplay_typelLinkSubSet.html]?type=tragedy">
tragedy

We next declare a new session variable, e_return, because the next few
examples use the same page to list the required plays and we would like to
return to the current document. Therefore, the variable takes on the value
myplay_typeLink.html, which is the name of this document:

<!-- #ICE DECLARE=
‘session.e_return=myplay_typelLink.html® -->

We next examine the document that is the target of all three generated links
from this document.

Displaying a Subset of Table Rows by Hyperlink

This document is virtually the same as the sub-select document in the selector
control example. The variable name in the where clause has been changed to
be the HTML variable TYPE and we include a parameterized hyperlink back to
the calling page using the Web Deployment Option session variable e_return.
That said, it is a trivial exercise to modify the selector control’s sub-select
document to have the same functionality as this document.

Hyperlink selector controls are shown in the following page:

; Hyper Link to Shakespeare's Plays by type - Microsoft Internet Explorer provi... [B[=] [E3

J File Edt ‘“iew Go Favortes Help |JLinks

-

Hyper Link to Shakespeare's Plays
by type

N

H l_’_’_ 201 Local intranet zone

6-48 Web Deployment Option User Guide

Designing a Data Browsing Application

Displaying Plays
Based on Type

Using a Dynamic
Hyperlink to Return to
Calling Page

Let’s now include the following code in the file named
myplay_typeLinkSubSet.html:

<HTML>

<HEAD>

<TITLE>Link generated sub-set of Shakespeare's Plays
by type</TITLE>

</HEAD>

<BODY>

<CENTER>

<H1>Link generated sub-set of Shakespeare's Plays by
type</H1>

</CENTER>

<FORM ACTION="/ice-bin/oiice.d11l/my_playgroup/
my_plays[myplay_typeLinkSubSet.html]" METHOD="GET">
<!-- #ICE DECLARE=session.e_playTxn=Complete’ -->
<!-- #ICE DECLARE="session.e_playTxnCommitted=FALSE"
-=>
<!-- #ICE REPEAT
DATABASE = ‘“icetutor”
SQL="select * from plays where type = ':type'"
TRANSACTION="Complete"’
CURSOR="Works"

ROWS="5"
TYPE="TABLE"
>
<pP>
<l-- #ICE VAR="

<A HREF="/ice-bin/oiice.d11/my_playgroup/
my_plays[:e_return]">Select a new play
type"
-->
<p>
<INPUT TYPE="submit" NAME="More" VALUE="More"
ALT="Show more plays">
<!-- #ICE VAR="<INPUT TYPE="hidden" NAME="type"
VALUE=":type">" -->
</FORM>

<!-- #ICE REPEAT
INCLUDE="my_plays[myplay_SessionControl_h.html]"
-->

</BODY>
</HTML>

Expanding the Web Deployment Option session variable e_return creates the
hyperlink that returns the user to the calling page. The VAR keyword takes
any text (including HTML text) containing Web Deployment Option variables
and replaces them with their contents. Here we make use of this to generate
a hyperlink dynamically:

<!-- #ICE VAR=" <A HREF="/ice-bin/oiice.d1l/

my_playgroup/my_plays[:e_return]">Select a new
play type" -->

With this pair of documents, we have ended up with text links based on the
contents of the table making the page dynamic. As an improvement, we would
like to have an image to click rather than plain text. This is demonstrated in
the next section.

Chapter é: Creating Web Applications: An Example 6-49

Designing a Data Browsing Application

Creating Graphical Hyperlinks

Using Graphical
Hyperlinks to Obtain
Play Type

Our first attempt at building a hyperlink list of play types was simple and
effective, but we would much rather use a graphical link to do this. In this
example, we build a link by embedding the HTML tags directly in the select
statement.

The document using graphical hyperlinks is shown below:

3 Graphical Switched Hyper Link to Shakespeare's Pl - Microsoft Internet Explore... [Hi[=] E3

J File Edit “iew Go Favortes Help |JLinks

|»

Graphical Switched Hyper Link to
Shakespeare's Plays by type

=
r@_ l_l_’_ B Local intranet zone 4

We will now set the return address as before, in the myplay_typeGLink.html
file. Enter the following code:

<HTML>

<HEAD>

<TITLE>Graphical Hyper Link to Shakespeare's Plays by
type</TITLE>

</HEAD>

<BODY>

<H1>Graphical Hyper Link to Shakespeare's Plays by
type</H1>

<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_TxnCndCmt_h.html] " -->

6-50 Web Deployment Option User Guide

Designing a Data Browsing Application

Embedding Static
Tags for Hyperlinks in
the SQL Statement

<!-- #ICE REPEAT
DATABASE = ‘“icetutor’
SQL="select distinct
'<A HREF="/ice-bin/oiice.d11/my_playgroup
/my_plays[myplay_typelLinkSubSet.html]?
type=', type, '"><IMG SRC="/
ice-bin/oiice.dl1/my_playgroup/
my_plays[', type,'.gif]" alt="",
type, '">"' from plays’
TRANSACTION="t_type"
CURSOR="c_type"
ROWS="-1"
TYPE="PLAIN"
-->
<!-- #ICE COMMIT="t_type -->
<!-- #ICE DECLARE=
‘session.e_return=myplay_typeGLink.html® -->

<!-- #ICE REPEAT
INCLUDE="my_plays[myplay_SessionControl_h.html]"® -->

</BODY>

</HTML>

The first thing we notice is that the select statement has become far more
complicated than it was. We are making use of the ability to embed static
text within the statement to embed the tags for a hyperlink. We select the
column named “type” three times in all. First, to pass in as the value of the
variable passed to the target document; second, as the name of the image
file (we hard code the extension); and finally, as the alternative text to the
image as follows:

SQL="select distinct

'<A HREF="/ice-bin/oiice.d11/my_playgroup/
my_plays[myplay_typelLinkSubSet.html]?type=", type,
S

<IMG SRC="/ice-bin/oiice.d11/my_playgroup/

my plays[', type, '.gif]" alt="', type, '">
'
from plays®

The first line introduces the select. The hyperlink anchor tag with the variable
type passes the contents of the “type” column as the value. The image tag
 uses the contents of the type column in two places—the first as
the name of the image file (with the hard-coded extension) and the second as
the alternate text for the image.

Both the link and the value of the HTML variable type are built dynamically in
this document. We note that, although in this case the image files are
constrained to have the same names as the various play types, this is:

m Not necessarily a bad thing
m Easily changed by joining with an image table

We set the value of the e_return session variable so as to reuse the display
document from before.

Chapter é: Creating Web Applications: An Example 6-51

Designing a Data Browsing Application

This document achieved the aim of dynamically creating a set of graphical
hyperlinks, but at the expense of placing HTML code within the select
statement. We would prefer to abstract the HTML away from the SQL. The
keywords, HTML and SWITCH, make this possible.

Creating Switch Image Links

Building up the hyperlink in the SQL select statement can be confusing and
make code very difficult to maintain. We would rather separate the HTML code
from the SQL statement and this is just what the HTML keyword allows us to
do. For each record returned, we execute a SWITCH statement, embedding
the image file name (now independent from the value of the type column)
and, in addition, different alternative text for each image.

Using the HTML and In the final example, include the following code in the
SWITCH Keywords to myplay_typeGSLink.html file:

Generate Distinct <HTML>

Play Type Graphical <HEAD>

Hyperlinks

<TITLE>Graphical Switched Hyper Link to Shakespeare's
Plays by type</TITLE>

</HEAD>

<BODY>

<H1>Graphical Switched Hyper Link to Shakespeare's
Plays by type</H1>

<!-- #ICE REPEAT
INCLUDE="my_plays[myplay_TxnCndCmt_h.html]" -->

<!-- #ICE REPEAT
DATABASE = “icetutor’
SQL="select distinct type from plays"
TRANSACTION="t_type"
CURSOR="c_type"
ROWS="10"
TYPE="UNFORMATTED"
HTML="<P><!-- #ICE SWITCH="":type "

CASE " “comedy’ "=""<A HREF=
/ice-bin/oiice.d11/my_playgroup
/my_plays[myplay_typelLinkSubSet.html]?
type=:type><IMG SRC="/
ice-bin/oiice.d11/my_playgroup/
my_plays[comedy.gif]" alt="Laugh at the
Comedy plays">""

CASE " “tragedy "=""<A HREF=
/ice-bin/oiice.d11/my_playgroup
/my_plays[myplay_typelLinkSubSet.html]?
type=:type><IMG SRC="/ice-bin/oiice.dll
/my_playgroup/my_plays[tragedy.gif]" alt=
"Be moved by the tragedy plays">""

CASE " “history "=""<A HREF=
/ice-bin/oiice.d11/my_playgroup
/my_plays[myplay_typelLinkSubSet.html]?
type=:type><img src="/ice-bin/oiice.dll
/my_playgroup/my_plays[history.gif]" alt=
"Look back at the history plays">""

6-52 Web Deployment Option User Guide

Designing a Data Browsing Application

Doubling Grave
Quotes

<P>

<!-- #ICE COMMIT="t_type® -->

<!-- #ICE DECLARE="session.e_return=play_typeGSLink.html"® -->

<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_SessionControl_h.html]" -->

</BODY>

</HTML>

The first thing we notice is that the select statement has gone back to being
simple once more. Secondly, there is a large block of HTML code appearing at
the end of the entire statement, following the HTML keyword. This implements
a switch taking the value of the type column as its variable. There are three
recognized play types in this application: “comedy,” “tragedy,” and “history.”
There is a CASE for each.

Note that we have not made use of the DEFAULT case in this example. For
each case, we specify the same target document, pass the variable type in,
and set individual picture files and alternative text for them. The SWITCH
statement appears within the HTML statement and this requires us to:

m Use the REPEAT keyword in the SQL statement

m Double-up the grave quotes ()

The REPEAT informs Web Deployment Option that it must evaluate a sub-
statement (SWITCH in this case) and because of this, we must protect the
grave quotes in the SWITCH statement by doubling them up, as follows:
CASE " “comedy” "=
" "<A HREF=/ice-bin/oiice.d11/my_playgroup/

my_plays[myplay_typelLinkSubSet.html]?type=:type>/

<IMG SRC="/1ice-bin/oiice.d1l1/my_playgroup

my_plays[comedy.gif]" alt="Laugh at the Comedy

plays">

Each CASE of the SWITCH statement is similar—here we examine the comedy
case. First, we build a hyperlink to the display document,
myplay_typeLinkSubSet.html, and pass in the variable type with the value
“:type,” which comes from the column of that name. We then provide an
image for this link and this is now no longer constrained to be the value of the
column; neither is the alternative text.

We have now covered most of the Web Deployment Option macro keywords
and features. You can see how you can use them to develop applications that
are both robust and visually appealing. In the next section, we will build
another very popular type of application—an Internet shopping application.

Chapter é: Creating Web Applications: An Example 6-53

Designing an Internet Shopping Application

Designing an Internet Shopping Application

In this section, we will examine the code in the Plays application provided with
Web Deployment Option for shopping for Shakespeare products at the Globe
Boutique using the Internet.

The Globe Boutique Home Page

The home page for the Globe Boutique has two main jobs. It must list all the
items for sale, which are listed in the table named play_item. This is a
standard type of select statement that we have seen before.

In addition, the home page must allocate an order number for the user (if one
does not already exist) and this is achieved by invoking a user-defined
function extension to the ICE server (myplay_neworder.sc file). The function
invokes a database procedure (in the myplay_newOrder.sql file) which
increments a count in a table. We will examine each of these files, starting
with the procedure. For clarity, error-checking code has been left out.

Note: This example assumes that the function is to be built for the Windows
platform. Check to see if Ingres embedded SQL/C supports your C compiler
version.

The my_new_order procedure produces a new order number by updating the
order number in the counters table. This should be executed in a transaction
on its own and the order number later used as needed in another transaction.
This is exactly what happens when the Web Deployment Option extension,
My_NewOrder(), executes it.

We also include a general shop action page, which activates those links set to
“Yes” in the parameter list.

Creating the Tables for the Globe Boutique Application

In the Plays application, the play_items, plays_order, and play_counters are
used in the Globe Boutique shopping segment. For consistency, you can
recreate the tables for the tutorial and rename them with a "my” prefix (that
is, myplay_items, etc.). You could also simply use the Plays tables and refer to
these in your code.

To begin with, we write the database procedure to generate monotonically
increasing order numbers.

6-54

Web Deployment Option User Guide

Designing an Internet Shopping Application

Creating the New Order Procedure

You will now create an SQL script that will create the my_new_order
procedure. Beneath the myplays directory, create a subdirectory named src.
Then, create a file named myplay_newOrder.sql file and enter the following
statements:

/* Procedure my_new_order */
create procedure my_new_order as
declare
next integer not null;
begin
select value into :next from counters
where name = 'order';
next = next + 1 ;
update counters set value = :next
where name = 'order';
return :next;end;

The my_new_order database procedure is invoked on its own in a transaction
by the My_NewOrder() server extension, which returns the value as a string in
the out_OrderNumber variable.

Creating the New Order Extension Header File

The file myplay_NewOrder.sc includes the header file, myplay_NewOrder.h, to
define return types and the ice_function_table function description table,
reproduced here:

/*

** Name: myplay_NewOrder.h

* %

** Description: Defines the types used for the
** extension server functions

*/

include <windows.h>

define ICE_EXT_API _ declspec(dllexport)

typedef char* ICE_STATUS;
typedef ICE_STATUS (*PFNEXTENSION) (char**, BOOL*,
char **);

typedef struct ice_function_table

char* pszName;
char** pszParams;
}SERVER DLL_METHOD, *PSERVER DLL_METHOD;

typedef ICE_STATUS
(*PFNINITIALIZE) (PSERVER DLL_METHOD*);

Chapter é: Creating Web Applications: An Example 6-55

Designing an Internet Shopping Application

Creating the New Order Extension

The ICE server defines an interface to which all extension functions must be
written. This includes a defined entry point that returns a structure describing
the function and its parameters. This structure and the function are to be
reproduced in the file myplay_NewOrder.sc:

/**

** Name: myplay_NewOrderNr.sc

* %

include "play_NewOrder.h"

*/

defineMAX_SIZE 20

/**

** Parameter name list.

** A NULL pointer terminates the list.

*/

static char* pszNewOrderParams[] =
{"out_orderNumber", NULL};

/**
** Function Description
*/
static SERVER DLL_METHOD FunctionTable[] =
{
{ "newOrder", { pszNewOrderParams } },
{ NULL }

N

O OK K K K X X X K X X X X X X ¥

Name: InitICEServerExtension

Description:
Mandatory function for providing method
description to the server.

Inputs:
None.

Outputs:
ppServerD1l1Method: pointer to the function
description structure.

Returns:
pointer to error text
NULL on success
*/
ICE_EXT_API ICE_STATUS
InitICEServerExtension(PSERVER_DLL_METHOD* ppServerD1l1Method)

ICE_STATUS status= NULL;
*ppServerD11Method = FunctionTable;
return status;

6-56 Web Deployment Option User Guide

Designing an Internet Shopping Application

O OK X K X X X X X XK X XK X X

*/

Name: newOrder

Description:
Return the next order number

Inputs:
None.

Outputs:
out_OrderNumber

Return:
pointer to error text
NULL on success

ICE_EXT_API ICE_STATUS
newOrder (char** out_OrderNumber, BOOL* print, char**

context)

ICE_STATUS status = NULL;

*print = FALSE;
/*
** if first invocation allocate some memory for
** the result
*/
if (*context == NULL)
{
exec sql begin declare section;
long Xx;
exec sql end declare section;

*context =
HeapAlloc (GetProcessHeap(),
HEAP_ZERO_MEMORY, MAX_SIZE);
if (*context == NULL)
{

}

exec sql connect 'icetutor' identified by
"icedbuser’';
exec sql execute procedure my_new_order into :x;

return ("Memory error\n");

exec sql commit;
exec sql disconnect;

sprintf (*context, "%d", x);

*out_OrderNumber = *context;
*print = TRUE;
}

else

HeapFree (GetProcessHeap(), 0, *context);
*context = NULL;

return (status);

Chapter é: Creating Web Applications: An Example

6-57

Designing an Internet Shopping Application

Entry Point

There is some “housekeeping” that needs to be done when writing an ICE
server extension function. There must be an InitICEServerExtension()
function, its purpose being to return a structure describing the function. This
structure contains the name of the function and its parameter list. In our case,
the function is My_NewOrder() and it exports one value parameter,
out_OrderNumber, and a context pointer to the memory location used,
context.

Generating a New Order Number

When My_NewOrder() is first invoked, the context pointer is set to NULL,
indicating that it the must allocate some memory to hold the value to be
returned, it returns a pointer to that memory in the context variable. The next
order number is returned in the out_OrderNumber parameter.

Clean-Up

My_NewOrder() frees context memory when it is invoked with a non-NULL
value for context. ™

Building the New Order Extension

m The extension function must be built as a dynamic link library (for the
Windows platform) and installed in the files\dynamic directory in the Ingres
system area (addressed by the environment variable II_SYSTEM).

Make File Used to The file named makefile (in the \ingres\ice\plays\src directory) is used to
Build DLLs build the DLL. Its contents are shown below:

CFLAGS=-c $(CDEBUG) -MD -D_X86_=1 -DWINVER=0x0400 -DWIN32 -D_WIN32
LFLAGS=/DLL $(LDEBUG)

all: myplay_NewOrder.dll

myplay_NewOrder.dll: myplay_NewOrder.obj
link $(LFLAGS) /out:$@ $** ws2_32.1ib \
$(II_SYSTEM)\ingres\lib\libingres.1lib

myplay_NewOrder.obj: myplay_ NewOrder.c
myplay_NewOrder.h
cl $(CFLAGS) $*.c

myplay_NewOrder.c: myplay_NewOrder.sc
esqlc $*.sc

install: myplay_NewOrder.dl1l
copy myplay_NewOrder.dll
"$(II_SYSTEM)\ingres\files\dynamic\
myplay_NewOrder.d11"

6-58 Web Deployment Option User Guide

Designing an Internet Shopping Application

The “install” target copies the library to the appropriate place, once it has been
successfully built (target “all”). =

Using the Extension Function on the Web Page

Once the dynamic link library has been successfully built and installed, it can
be used in a Web document. We chose to issue every visitor to the Globe Shop
home page a unique order number. In addition, we must ensure that an
existing visitor who has confirmed an order is issued a new order number, in
case they wish to come back and order more items.

Globe Boutique Enter the following code into the myplay_shopHome.html file:
Home Page

<HTML>

<HEAD>

<TITLE>Globe Boutique</TITLE>

</HEAD>

<BODY>

<H1>Globe Boutique</H1>

The Globe Boutique is where you can purchase all your
favorite Globe memorabilia.

<p>

Visit often to find that gift for the person in your
life who always seems to have everything

<p>

Genuine quality products and gifts with a unique
cultural heritage

<p>

<H2>Instructions</H2>

Select an item from the list below to view its
description.

<!-- #ICE REPEAT IF (DEFINED (e_shopTxn))
THEN=""
ELSE="<!-- #ICE DECLARE=
*“session.e_shopTxn=NOT-OPEN" " -->°
-->

<!-- #ICE REPEAT IF (DEFINED (e_orderNumber) AND

“:e_shopTxn® != "COMPLETE")

THEN=""

ELSE="<!-- #ICE REPEAT
FUNCTION=""play_NewOrder.newOrder "
HTML=""<!-- #ICE
DECLARE=""""session.e_orderNumber

=:out_orderNumber™ """
st
-=>"
-->
<!-- //enable to see order nr ICE VAR="<P>DEBUG:
Order nr is :e_orderNumber™ -->
<!-- #ICE
DATABASE = “icetutor’
SQL="set lockmode session where readlock =
nolock;
select id, name from play_item’
TRANSACTION="Shoppe"
CURSOR="Keeper"
ROWS="-1"
TYPE="TABLE"

Chapter é: Creating Web Applications: An Example 6-59

Designing an Internet Shopping Application

Checking Shop Entry
Variable

Checking Order
Number and
Transaction

Issuing a New Order
Number

HEADERS="1id,Reference,name,Article"
LINKS="1d,my_plays[myplay_shopDescribe.html] "
-->
<!-- #ICE COMMIT="Shoppe® -->
<!-- Standard Shop Actions -->
<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_shopAction_h.html]?View=Yes® -->
<!-- Standard Session Control -->
<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_SessionControl_h.html]™ -->
</BODY>
</HTML>

We first check to see if the shop has been entered for the first time by
checking for the existence of the e_shopTxn variable:
<!-- #ICE REPEAT IF (DEFINED (e_shopTxn))

THEN=""

ELSE="<!-- #ICE DECLARE=
““session.e_shopTxn=NOT-OPEN"" -->°

If the variable does not exist, it is created and given the value "NOT-OPEN”
to indicate that a (shopping) transaction has yet to be opened.

We next check to see if an order humber, e_orderNumber, exists and if the
transaction has been completed.:

<!-- #ICE REPEAT IF (DEFINED (e_orderNumber) AND
“:e_shopTxn® != "COMPLETE")

If no order number exists or the transaction is not complete, we need to
issue a new order number using the function My_NewOrder(), to be found in
the My_Play_NewOrder library.

Note: Do not add the .dll or .so extension to the library name:
<!-- #ICE REPEAT FUNCTION=""my_play_NewOrder.my_newOrder "’

Since the function invocation is part of another Web Deployment Option macro
statement, we must double up the grave quotes.

We then set a session variable to hold the order number and terminate the
statement:
HTML=""<!-- #ICE

DECLARE=""""session.e_orderNumber=:out_orderNumber

s
-=>"

When we declare the e_orderNumber variable, we are nested two levels down,
and so need to double-up the grave quotes again. The number of grave quotes
you need is easily calculated as 2 raised to the power ‘level’, where level is the
nesting level, here 2 because we start with level = 0 (2 raised to the power 0
is 1).

6-60 Web Deployment Option User Guide

Designing an Internet Shopping Application

Creating Links to Item Having allocated the new order number, we perform a select with links to

Descriptions create links on the item identifier to a page providing more detailed
description of the item selected. The user can then decide to buy or not to
buy.

Providing Shopping At any time in the Globe Shop application, the user can move to any of the

Options other pages. This is accomplished by including the

myplay_shopAction_h.html file, which takes the following parameters:

Parameter Meaning

View View contents of shopping bag
Confirm Confirm order

Remove Empty the shopping bag

The myplay_shopAction_h.html file is included as follows:

<!-- Standard Shop Actions: activate View bag only
-->

<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_shopAction_h.html]?View=Yes® -->

Activating Option to Here we only activate the View Bag Contents option; the Return to Products

View Bag Contents option to return to the product list is always valid. The action file,
play_shopAction_h.html, is shown below. Add this code to the
myplay_shopAction_h.html file:

<!-- shopAction_h.html:
Activate links as appropriate. Link is active if
the variable of that name is set to Yes, else
inactive

-->

<HR WIDTH="50%">

<TABLE BORDER=0 CELLSPACING=4>

<TR>

<TD>

<!-- #ICE IF (:View == "Yes')
THEN="

View Bag Contents"

ELSE="View Bag Contents"

>

<TD>

Return to
Products

<TD>

<!-- #ICE IF (:Confirm’ == "Yes’)

THEN="
Place Order"
ELSE="Place Order"
-->
<TD>
<!-- #ICE IF (" :Remove' == "Yes')
THEN="
Empty Bag"
ELSE="Empty Bag’

Chapter é: Creating Web Applications: An Example 6-61

Designing an Internet Shopping Application

>
</TABLE>

This file builds a table and sets the contents of each cell to be either an active
link or an inactive link (normal text) depending on the values of the variables
passed in. We will examine the item description page next.

Displaying an Iltem Description

The description page selects the required product, passed in as the HTML
variable ID, and displays more information about the item—in this case, the
price. (An application typically presents more information about a product,
such as textual description and photo. In the Plays application, the price is
used as a sample field.)

The Item Description Page appears as follows:

/3 Item Description Page - Microsoft Internet Explorer provided by Computer ... [Hi[=] E3

J File Edit “iew Go Favoites Help |JLinks

Item Description Page

Tou have selected:
Globe Model@ 50 Silver Crowns
Add to Shopping Bag

Wiew Bag Contents Return to Products Place Order Empty Bag

Where would you like to go now:

"

In addition, a link is provided to add the item to the shopping bag and another
to return to the Globe Shop home page. The add item link passes the item ID
on to the confirmation page.

6-62 Web Deployment Option User Guide

Designing an Internet Shopping Application

Displaying a Selected
lfem’s Description

Adding Items to
Shopping Bag

The following code appears in the play_shopDescribe.html file. Proceed by
adding this code to the myplay_shopDescribe.html file.

<HTML>

<HEAD>

<TITLE>Item Description Page</TITLE>
</HEAD>

<BODY>

<CENTER>

<H1>Item Description Page</H1>
</CENTER>

<!-- #ICE REPEAT

DATABASE = “icetutor’

SQL="select id, name, cost from play_item
where id = :id’

TYPE="UNFORMATTED"

HTML="<p>You have selected:

:name@:cost Silver Crown
<I-- #ICE IF (""1°° !="":cost™ ")
THEN=""s"" -->

<A HREF=
"my_plays[myplay_shopAdd.html]?
id=:id">Add to Shopping Bag"
-->
<p>

<!-- Standard Shop Action -->

<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_shopAction_h.html]" -->

<!-- Standard Session Control -->

<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_SessionControl_h.html]" -->

</BODY>

</HTML>

First of all, we select the ID, name, and cost of the product from the play_item
table. The ID is specified in the where clause, passed in with the HTML variable
ID, and the UNFORMATTED type is specified:

SQL="select id, name, cost from play_item
where id = :id°
TYPE="UNFORMATTED"

We need an unformatted output from the select statement because we want to
add the HTML code to add this item to the shopping bag, which we do as
follows:

HTML="<P>You have selected:

:name

@ :cost Silver Crown<!-- #ICE IF (1" I=
Tticost)
THEN=""s"" -->

<A HREF=
"my_plays[myplay_shopAdd.html]?id=:id">
Add to Shopping Bag"

The anchor, in the last line, is built up by passing the item identifier held in
the HTML variable ID to the next document, myplay_shopAdd.html, with the
caption “Add to Shopping Bag”.

Chapter é: Creating Web Applications: An Example 6-63

Designing an Internet Shopping Application

For that final touch, we test to see if the cost of the item is 1 Silver Crown. If
it is not, we pluralize the word Crown, thus resulting in *Crown” or “Crowns,”
as required.

The following page examines the code necessary to add the item to the
shopping bag.

Adding an Item to the Shopping Bag

Order Processing

There are three main sections in the document that adds an item to the
shopping bag. The first inserts the required item into the myplay_order order
table, along with the user’s login ID and the order number. A status of 1 is
included.

The meaning of the status column is as follows:

Status Meaning

1 Item placed in bag

2 Item ordered

3 Order passed to warehouse
4 Order in dispatch

5 Courier confirms delivery

This exercise set uses the first two status values. If you would like to add code
to handle the remaining statuses, see Further Exercise in this chapter.

The second section confirms that the item has been added and in the final
section, the user can return to the shop (Return to Products) or view the
contents of their shopping bag (View Bag Contents).

Add the following code to the myplay_shopAdd.html file:

<HTML>

<HEAD>

<TITLE>Add to Bag: Confirmation</TITLE>
</HEAD>

<BODY>

<H1>Add to Bag: Confirmation</H1>

6-64 Web Deployment Option User Guide

Designing an Internet Shopping Application

<!-- #ICE
DATABASE="1icetutor"”
SQL="1insert into play_order
(order_nr, user_id, product_id, status)
values (:e_orderNumber, ':ii_userid', :id, 1)°
TRANSACTION="t_shopAdd"
-->
<!-- Flag the transaction as open; we have now added something to the bag -->
<!-- #ICE DECLARE="session.e_shopTxn=0PEN" -->
<TABLE BORDER=0>
<TR>
<TD BGCOLOR="11ime">
The item,
<!-- #ICE REPEAT
DATABASE="1icetutor"”
sqQL="
set lockmode session where readlock = nolock;
select name, cost from play_item where id =
(select product_id from play_order
where order_nr = :e_orderNumber
and user_id = ':ii_userid'
and product_id = :id)"’
TRANSACTION="1t_shopAddConfirm®
TYPE="UNFORMATTED"
HTML=":name @<I>:cost Silver Crown
<!-- #ICE IF (71" I= "“:cost™ ')
THEN=""s"" -->
</I>"

>

<!-- #ICE COMMIT="t_shopAddConfirm™ -->
has been added to your shopping bag.
</TD></TR></TABLE>

<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_shopAction_h.html]?View=Yes -->

<!-- Standard Session Control -->

<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_SessionControl_h.html] ™ -->

</BODY>

</HTML>
Adding Order to The first thing this document must do is actually to add the ordered item to
myplay_order Table the myplay_order table. This is accomplished with an SQL insert statement:

SQL="1insert into myplay_order

(order_nr, user_id, product_id, status)

values (:e_orderNumber, ':ii_userid', :id, 1)°
TRANSACTION="t_shopAdd"

Opening a We do not commit this transaction yet because the user may want to add

Transaction other items to the order. Furthermore, the user may log out or time out
before completing their purchases, at which point the ICE server
automatically rolls back any open transactions on our behalf. What we do
instead is to set the e_shopTxn session variable to OPEN with the statement
shown below:

SQL="1insert into myplay_order
<!-- #ICE DECLARE=session.e_shopTxn=0PEN" -->

Chapter é: Creating Web Applications: An Example 6-65

Designing an Internet Shopping Application

Although this is a dummy value, it is meaningful. Remember that when its
value is COMPLETE, the shop home page will generate a new order number.
We defer committing the transaction until later (on the order confirmation

page).
Displaying Ordered Next, we select the same record from myplay_order and display it in a table
lfems with a green background. We place the select statement inside a table cell

(<td>). Note that we use readlock = nolock to avoid any locks that may be
taken on the table. The transaction, t_shopAddConfirm, is committed
immediately—in fact, within the HTML table element.

Here is the table element in its entirety:

<TABLE BORDER=0>
<TR>
<TD BGCOLOR="11ime">
The item,
<!-- #ICE REPEAT
DATABASE="1icetutor"”
SQL="set lockmode session where readlock = nolock;
select name, cost
from play_item
where id =
(select product_id from play_order
where order_nr = :e_orderNumber
and user_id = ':ii_userid'
and product_id = :id)°
TRANSACTION="1t_shopAddConfirm’
TYPE="UNFORMATTED"
HTML=":name @<I>:cost Silver Crown
<!-- #ICE IF (°°1°° I= "“:cost™’)
THEN=""s"" -->
</I>"
-->
<!-- #ICE COMMIT="t_shopAddConfirm™ -->
has been added to your shopping bag.
</TABLE>

The same technique from the previous example has been used to add an “s” to
the Silver Crown if the cost is other than one Silver Crown.

6-66 Web Deployment Option User Guide

Designing an Internet Shopping Application

Enabling Shop Action
Links

Further Exercise

The Add to Bag:Confirmation page appears as follows:

3 Add to Bag: Confirmation - Microsoft Intemnet Explorer provided by Computer Associates... [H[=] E3
J File Edit V“iew Go Favoites Help H Lirks

Add to Bag: Confirmation

View Bag Contents Return to Products Place Order Empty Bag

Where would you like to go now:

=
‘@ | l_l_ ’_ 25| Local intranet zone i

In the third section, we enable the View option for the standard set of shop
action links:

<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_shopAction_h.html]?View=Yes" -->

Using the status values 3-5, extend the Web site so that the user, specifying
their order number, can track the order through the system. Hint: At each
stage throughout increment the status,; orders of status 5 can be purged from
the current order table.

We have already examined the Globe Shop home page, we now move on to
the View Bag Contents page.

Displaying Shopping Bag Contents

The user will most likely want to view the contents of their shopping bag
before confirming or canceling the order. The View Bag Contents page
provides that all important functionality and consists of a select to present the
entire contents of the user’s bag, it also totals up the cost and activates the
Remove and Confirm options from the standard shop actions.

Note that the Empty Bag and Remove options—which are displayed but
inactive on the page—can be activated by setting the value of the variables
Remove and Confirm, respectively, to “Yes”.

Chapter é: Creating Web Applications: An Example 6-67

Designing an Internet Shopping Application

Viewing Bag Enter the following code into the myplay_shopView.html file:
Contents

<HTML>

<HEAD>

<TITLE>View Bag Contents</TITLE>
</HEAD>

<BODY>

<H1>View Bag Contents</H1>

<l-- #ICE
DATABASE="1cetutor"
SQL="set lockmode session where readlock = nolock;
select name, cost
from play_item, play_order
where id = product_id and

(order_nr = :e_orderNumber and

user_id = ":1i_userid')"”
HEADERS="name, Name, cost, Price’
TYPE="TABLE"

>

<!-- #ICE
DATABASE="1icetutor"
SQL="set lockmode session where readlock = nolock;
select sum(cost)
from play_item, play_order
where id = product_id and

(order_nr = :e_orderNumber and
user_id = ':ii_userid')"
HEADERS="coll, Total®
TYPE="TABLE"

-->

<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_shopAction_h.html]?
Remove=Yes&Confirm=Yes -->

<!-- Standard Session Control -->

<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_SessionControl_h.html]"™ -->

</BODY>

</HTML>

6-68 Web Deployment Option User Guide

Designing an Internet Shopping Application

Naming Column
Headings

The View Bag Contents page appears as follows:

/3 View Bag Contents - Microsoft Internet Explorer provided by Computer Associ... [H[=] E3

J File Edit “iew Go Favorites Help |JLinks

| v

View Bag Contents

| Name |Pri|:e
|Romeo Fragrance for Men |25
[Tulliet Parfim l45

Total
70

View Bag Contents Eeturn to Products Place Order Empty Bag

Where would you like to go now:

|

When Web Deployment Option does not have a column name specified in the
select statement (for example, when we use a function), it names the
columns coll, col2, and so on. In this case, we sum the cost column and
rather than having the total cost of our order shown with the heading col1l,
we use the HEADERS keyword to replace the generated column name with a
more descriptive one, “Total.” The code fragments appear below:

select sum(cost)

HEADERS="col1, Total®

This page requires that we pass two variables into the parameterized included
file myplay_shopAction_h.html; the variables must be separated by the &
symbol:

<!-- #ICE REPEAT INCLUDE=

‘my_plays[myplay_shopAction_h.html]?Remove=
Yes& onfirm=Yes -->

Once satisfied with the contents of the shopping bag, the user will next want
to confirm their purchases.

Chapter é: Creating Web Applications: An Example 6-69

Designing an Internet Shopping Application

Confirming an Order

When the user confirms their purchases, this must be reflected in the database
by updating the status of the order. The transaction as a whole must then be
committed and signaled to the home page so that if the user returns to the
home page, they can start again with a new order number. Then we display
the contents of the order, the cost, and the order number, for reference:

J File Edit Wiew Go Favortes Help |JLinks

| v

Order Nr: 1016 Confirmed

You have ordered the following:
| Name |Pri|:e
|Romeo Fragrance for Men |25
[lliet Parfim l45

The total value of your order is:

Total
70

Tour order number 1016 will now be processed.
Pleaze quote thiz mumber i all correspondence =

TWe sugeest you print this page for your records,

Thank wou for your custom,
Four Flobe Heritage Team

Wiew Bag Contents Retumn to Products Place Order Empty Bag

r@_ ’_ ’_ ’_ 2 Local intranet zone

L

Committing the To accomplish this, enter the following code into the
Transaction myplay_shopConfirm.html file:

<HTML>

<HEAD>

<TITLE>Order Confirmed</TITLE>

</HEAD>

<BODY>

<H1>Order Nr: <!-- #ICE VAR=":e_orderNumber® -->
Confirmed</H1>

<!-- #ICE
DATABASE="1icetutor"”
SQL="update play_order
set status = 2
where order_nr = :e_orderNumber
and user_id = ':ii_userid'"
TRANSACTION="t_shopAdd"
-->
<!-- Commit the transaction -->
<!-- #ICE COMMIT="t_shopAdd™ -->
<!-- Set the transaction to 'complete' as it is now committed -->
<!-- #ICE DECLARE=session.e_shopTxn=COMPLETE" -->

6-70 Web Deployment Option User Guide

Designing an Internet Shopping Application

Completing the
Transaction

<!-- Show the products ordered: -->
<pP>
You have ordered the following:

<!-- #ICE
DATABASE="1icetutor"”
SQL="set lockmode session where readlock = nolock;
select name, cost
from play_item, play_order
where id = product_id and
(order_nr = :e_orderNumber and user_id =
':ii_userid')"
HEADERS="name, Name, cost, Price’
TYPE="TABLE"
-->

<!-- Show the total cost: -->
<p>
The total value of your order is:

<!-- #ICE
DATABASE="1icetutor"
SQL="set lockmode session where readlock = nolock;
select sum(cost)
from play_item, play_order
where id = product_id and
(order_nr = :e_orderNumber
and user_id = ':ii_userid')"
TRANSACTION="t_shopConfirmList"
HEADERS="coll, Total"®
TYPE="TABLE"
-->
<!-- Commit the transaction -->
<!-- #ICE COMMIT="t_shopConfirmList™ -->
<p>
<!-- #ICE VAR="Your order number :e_orderNumber will now be processed.

Please quote this number in all correspondence’ -->
<pP>
We suggest you print this page for your records,
<pP>
Thank you for your custom,

<I>Your Globe Heritage Team</I>
<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_shopAction_h.html]" -->
<!-- Standard Session Control -->
<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_SessionControl_h.html]" -->
</BODY>
</HTML>

Once the status of the order has been updated in the myplay_order table, we
commit the transaction and then update the value of the e_shopTxn session
variable to "COMPLETE.”

<!-- #ICE DECLARE="session.e_shopTxn=COMPLETE = -->

This will cause the code in the shop home page to issue a new order number
should the user return there.

If the user decides not to continue with their order, they will proceed to empty
the contents of their bag.

Chapter é: Creating Web Applications: An Example 6-71

Designing an Internet Shopping Application

Rolling Back a Transaction

Canceling an Order

Rolling Back the
Transaction

If the user decides not to buy the products that have been placed in the bag,
they follow the link to this page, where the transaction is rolled back. The
transaction is not flagged as being completed though, because the user may
simply want to start again. If this is the case, we do not need to generate a
new order number. We can continue with the one already issued.

As a confirmation that the order has been rolled back, we display the empty
table and the total cost of the order (this is not something that one would do
in reality, it is present as an artifact of our example).

The following code should be entered into the file named
myplay_ShopRemove.html:

<HTML>

<HEAD>

<TITLE>Empty Bag</TITLE>

</HEAD>

<BODY>

<H1>Empty Bag</H1>

<!-- #ICE ROLLBACK="t_shopAdd™ -->

<P>Your shopping bag now contains:
<!-- #ICE
DATABASE="1icetutor"”
SQL="set lockmode session where readlock = nolock;
select name, cost
from play_item
where id =
(select product_id from play_order
where order_nr = :e_orderNumber
and user_id = ':ii_userid')"
TYPE="TABLE"
-->

<!-- #ICE
DATABASE="1icetutor"”
SQL="set lockmode session where readlock = nolock;
select sum(cost) as Total
from play_item
where id =
(select product_id from play_order
where order_nr = :e_orderNumber
and user_id = ':ii_userid')"
TYPE="TABLE"
-->
<!-- Standard Shop Action -->
<!-- #ICE REPEAT INCLUDE=
‘my_plays[myplay_shopAction_h.html]" -->

<!-- Standard Session Control -->

<!-- #ICE REPEAT INCLUDE="my_plays[myplay_SessionControl_h.html]" -
->

</BODY>

</HTML>

This page demonstrates the use of the ROLLBACK keyword and this appears
as the first active element in the file:

<!-- #ICE ROLLBACK="t_shopAdd" -->

6-72 Web Deployment Option User Guide

Plays Tutorial Application Data

The other features have already been examined. We note that the e_shopTxn
session variable has not been updated. This means that should the user wish
to start again, they will not be issued with a new order number by the shop
home page. Since they have just rolled back their transaction, the order
number is effectively unused and still valid.

This completes the electronic commerce example and our discussion of the

Globe web site.

Plays Tutorial Application Data

The plays table, used with the sample Plays tutorial application, resides in the
icetutor database. The following table shows the rows in the plays table:

Comporder Title Playright Performed Acts Type

1 The Two Gentlemen of Verona Shakespeare 1598 5 comedy
2 The Taming of the Shrew Shakespeare (null) 5 comedy
3 Henry VI part 1 Shakespeare 1591 5 history

4 Henry VI part 3 Shakespeare 1595 5 history

5 Titus Andronicus Shakespeare (null) 5 tragedy
6 Henry VI part 2 Shakespeare 1592 5 history

7 Richard III Shakespeare 1593 5 history

8 The Comedy of Errors Shakespeare 1594 5 comedy
9 Loves Labours Lost Shakespeare 1594 5 comedy
10 A Midsummer Night's Dream Shakespeare 1595 5 comedy
11 Romeo and Juliet Shakespeare 1595 5 tragedy
12 Richard II Shakespeare 1595 5 history

13 King John Shakespeare 1596 5 history

14 The Merchant of Venice Shakespeare 1598 5 comedy
15 Henry IV part 1 Shakespeare 1598 5 history

16 The Merry Wives of Windsor Shakespeare 1597 5 comedy
17 Henry IV part 2 Shakespeare 1597 5 history

18 Much Ado About Nothing Shakespeare 1599 5 comedy
19 Henry V Shakespeare 1599 5 history

20 Julius Ceasar Shakespeare 1599 5 tragedy

Chapter é: Creating Web Applications: An Example 6-73

Plays Tutorial Application Data

Comporder Title Playright Performed Acts Type
21 As You Like It Shakespeare 1600 5 comedy
22 Hamlet Shakespeare 1600 5 tragedy
23 Twelfth Night Shakespeare 1601 5 comedy
24 Troiles Cressida Shakespeare (null) 5 comedy
25 Measure for Measure Shakespeare (null) 5 comedy
26 Othello Shakespeare (null) 5 tragedy
27 Alls Well That Ends Well Shakespeare (null) 5 comedy
28 Timon and Athens Shakespeare (null) 5 tragedy
29 King Lear Shakespeare (null) 5 tragedy
30 Macbeth Shakespeare (null) 5 tragedy
31 Anthony and Cleopatra Shakespeare (null) 5 tragedy
32 Pericles, Prince of Tyre Shakespeare (null) 5 comedy
33 Coriolanus Shakespeare (null) 5 tragedy
34 The Winter's Tale Shakespeare (null) 5 comedy
35 Cymbeline Shakespeare (null) 5 comedy
36 The Tempest Shakespeare (null) 5 comedy
37 Henry VIII Shakespeare 1613 5 history
6-74 Web Deployment Option User Guide

Chapter 7: Using the C API

This chapter provides all the information you need to use the Web Deployment
Option C API. The API lets you execute any ICE Server function in a remote C
application based on GCA. An additional function gives you the ability to
download a document from the ICE Server to a remote client.

The Web Deployment Option C API is used primarily to interface with
administration software, such as Visual DBA or HTML editing tools.

This chapter provides an alphabetical reference to all of the C API functions
and information to help you effectively use the functions. Included are
examples showing typical uses of the functions and explanations of how the
functions work together.

Note: You need to include the following header file to use the API:

#include <ice_c_api.h>

Web Deployment Option C API Reference

This section is an alphabetical reference to all of the functions, data structures,
and a data type in the Web Deployment Option C API. For a description of
some additional data types used in the Web Deployment Option C API, see the
OpenAPI Reference Guide.

The code examples used throughout this section are taken from the sample
Web Deployment Option C API at the end of the chapter. They are explained in
the context of that example.

ICE_C_Close() Function

Frees the memory resources created for the row data during fetch operations.

Syntax
ICE_STATUS ICE_C_Close(ICE_C_CLIENT client);
Parameters
client A reference pointer to a structure containing client connection information,

returned by the ICE_C_Connect() function.

Chapter 7: Using the C APl 7-1

Web Deployment Option C API Reference

Returns

SUCCESS if completed successfully; otherwise, an error code indicating the
reason for failure.

ICE_C_Conneci() Function

Syntax

Parameters

node

user
password

client

Returns

Example

Establishes a connection to the ICE Server with the specified node, using the
provided user name and password.

ICE_STATUS ICE_C_Connect(II_CHAR* node, II_CHAR* user,
II_CHAR* password, ICE_C_CLIENT* client);

The name of the vnode associated with the ICE Server machine to which to
connect. If a NULL pointer is specified, the local node is assumed.

The name of the user to connect to the ICE Server.
The password associated with the user.

A reference pointer to the client returned by the function. This pointer is used
in all subsequent calls to the ICE C API functions.

Important! This reference is used internally by the Web Deployment Option C
API interface and should not be modified.

SUCCESS if completed successfully; otherwise, an error code indicating the
reason for failure.

The following line of code establishes a connection to the local node, using the
user name and password variables:

status = ICE_C_Connect(NULL, username,
password, &client)

7-2 Web Deployment Option User Guide

Web Deployment Option C APl Reference

The status variable is set to a value of 0 if successful, or a failure code if
unsuccessful. Also, the &client variable is assigned the value of a reference
pointer to the connection information for the client.

ICE_C_Disconnect() Function

Closes a connection from the connected ICE Server node and cleans memory.

Syntax
ICE_STATUS ICE_C_Disconnect(ICE_C_CLIENT* client);

Parameters

client A reference pointer to a structure containing client connection information,
returned by the ICE_C_Connect() function.

Returns

SUCCESS if completed successfully; otherwise, an error code indicating the
reason for failure.

ICE_C_Execute() Function

Prepares the server to perform a specified ICE Server extension function.

Syntax
ICE_STATUS ICE_C_Execute(ICE_C_CLIENT client,
II_CHAR* name, ICE_C_PARAMS tab[]);
Parameters
client A reference pointer to a structure containing client connection information,
returned by the ICE_C_Connect() function.
name The name of the ICE Server function to execute.
tab[] An array that is updated with the results of the query, if the query is a select

or retrieve operation, and output parameter(s) are specified.

Chapter 7: Using the C APl 7-3

Web Deployment Option C API Reference

Returns

Description

Example

SUCCESS if completed successfully; otherwise, an error code indicating the
reason for failure.

The ICE_C_Execute() function prepares the function for execution by the ICE
Server, and then actually executes the query on the database. The result set is
stored in memory and can be accessed through the ICE_C_Fetch() and
ICE_C_GetAttribute() functions.

An additional Download() function is provided by Web Deployment Option and
is accessed through the ICE_C_Execute() function. "download” is specified for
name and the download parameters are supplied through the tab[] array. The
document name, business unit name, and target file on the local drive are
specified in this array. For example:
ICE_C_PARAMS params[] =
{ {ICE_IN, "document", "plays_home.html"},

{ICE_IN, "ii_unit", "plays"},

{ICE_IN, "target", local_plays_home},

{0, NULL, NULL }
b

Note: ICE_C_Execute() functions cannot be nested. Each call to the function
must be followed by your ICE_C_Fetch(), ICE_C_GetAttribute(), and
ICE_C_Close() calls before calling ICE_C_Execute() again.

The following line of code requests that the User() ICE Server function be
executed with the parameters specified in the params[] array on the client
previously returned from an

ICE_C_ Connect() call:

status = ICE_C_Execute(client, "user", params)

The params[] array contains the following input and output parameters:

ICE_C_PARAMS params[] =

{ {ICE_IN, "action", "select"},
{ICE_OUT, "user_name", NULL},
{ICE_OUT, "user_timeout", NULL},
{06, NULL, NULL }

b

A select operation is performed on the user_name and user_timeout columns
(properties) for the User() server function. For more information, see the
User() Function in the appendix “ICE Server Functions.”

7-4 Web Deployment Option User Guide

Web Deployment Option C APl Reference

See Also

The ICE_C_Fetch() and ICE_C_GetAttribute() function descriptions contain
examples that detail how the data is accessed.

ICE_C_PARAMS, ICE_C_Fetch(), ICE_C_GetAttribute()

ICE_C_Fetch() Function

Syntax

Parameters

client

end

Description

Returns

Updates the retrieved row position within the result set obtained by a select or
retrieve operation.

ICE_STATUS ICE_C_Fetch(ICE_C_CLIENT client, II_INT4* end);

A reference pointer to a structure containing client connection information,
returned by the ICE_C_Connect() function.

An integer returned indicating whether a row is present. If SUCCESS is
returned, it indicates that the last row has been referenced and that there are
no more rows. If any other value is returned, it means that a row is present.

After a call to the ICE_C_Execute() function, which prepares and executes the
query, the ICE_C_Fetch() function updates the retrieved row position. You can
access all the data rows by using an if statement and checking on whether the
last data row has been reached.

The data rows can be accessed by the ICE_C_GetAttribute() function. See the
description of this function to see how the data is manipulated.

SUCCESS if completed successfully; otherwise, an error code indicating the
reason for failure.

Chapter 7: Using the C APl 7-5

Web Deployment Option C API Reference

Example

See Also

In the following code sample, ICE_C_Fetch() updates the retrieved row
position within the result set and checks if the row was returned successfully
and if it is the last row. (The previous line of code had performed an
ICE_C_Execute() function, which defined and executed the select operation.)

if ((status = ICE_C Fetch(client, &end)) == OK &% !end)

For example, the values for user_id, user_name, user_password1l, etc. will be
fetched and stored in memory for later retrieval by the ICE_C_GetAttribute()

function. for a complete list of the properties that are selected, see the User()
Function in the appendix “ICE Server Functions.”

ICE_C_Execute(), ICE_C_GetAttribute()

ICE_C_GetAtiribute() Function

Syntax

Parameters

client

position

Description

Returns the value of the specified server function property within the current
row of the select action.

char* ICE_C_GetAttribute(ICE_C_CLIENT client,
II_INT4 position);

A reference pointer to a structure containing client connection information,
returned by the ICE_C_Connect() function.

The number of the ICE_OUT parameter, as specified in the ICE_C_PARAMS
array that specifies the server function property name.

The ICE_C_GetAttribute() function is executed after a call to the
ICE_C_Fetch() function. It returns the value of the current data row within the
column (server function property) specified by the ICE_C_PARAMS array.

The position parameter serves as an index into the ICE_C_PARAMS array, and
is used to obtain the output parameter name. This is the property name of the
server function that was previously executed.

7-6 Web Deployment Option User Guide

Web Deployment Option C APl Reference

Returns

Example

All information returned by Web Deployment Option extension and server
functions, including numeric values, is in the form of a character string.

If successful, a pointer to the text-converted value is returned; otherwise,
NULL.

The following line of code prints the values selected by the previously executed
ICE_C_Execute() function:

printf("%s (%s)\n", ICE_C_GetAttribute(client, 1),
ICE_C_GetAttribute(client, 2));

The ICE_C_GetAttribute() function calls get the data values in the user_name
and user_timeout properties columns for the user server function. The “1” and
“2" parameters act as indexes into the params[] array to extract the
“user_name” and “user_timeout” references.

ICE_C_Initialize() Function

Syntax

Returns

Description

Example

Prepares the Web Deployment Option C API for initial use.

ICE_STATUS ICE_C_Initialize();

SUCCESS if completed successfully; otherwise, an error code indicating the
reason for failure.

The ICE_C_Initialize() function must be called once before using other
functions.

The following code line initializes the C API:
ICE_STATUS ICE_C_Initialize();

Chapter 7: Using the C APl 7-7

Web Deployment Option C API Reference

ICE_C_LastError() Function

Syntax

Parameters

client

Returns

Returns a textual error message for the last error that occurred.

char* ICE_C_LastError(ICE_C_CLIENT client);

A reference pointer to a structure containing client connection information,
returned by the ICE_C_Connect() function.

If successful, a pointer to the textual value is returned; otherwise, NULL, if no
message is available.

ICE_STATUS Data Type

Syntax

Description

Used By

Defines a data type for returning status from a Web Deployment Option C API
function.

typedef II_UINT4 ICE_STATUS;

The ICE_STATUS data type is used by ICE Server functions and its value must
be set to NULL initially. If the status becomes a non-NULL (0) value, it
indicates an error occurred and an error message must be displayed on the
HTML page. To obtain information about the error, use the ICE_C_LastError()
function.

ICE_C_Close(), ICE_C_Connect(), ICE_C_Disconnect(), ICE_C_Execute(),
ICE_C_Fetch(), ICE_C_Initialize()

7-8 Web Deployment Option User Guide

Web Deployment Option C APl Reference

ICE_C_CLIENT Structure

Stores information about a Web Deployment Option connection.

Syntax
typedef II_CHAR* ICE_C_CLIENT;

Description
When you open a connection to the ICE Server using the ICE_C_Connect()
function, the ICE_C_CLIENT structure is allocated and a reference pointer is
returned. This pointer is used in all calls to the Web Deployment Option C API.
Note: The information is for use internally by the Web Deployment Option C
API only and should not be modified by an application.

Used By

ICE_C_Close(), ICE_C_Connect(), ICE_C_Disconnect(), ICE_C_Execute(),
ICE_C_Fetch(), ICE_C_GetAttribute(), ICE_C_LastError()

ICE_C_PARAMS Structure

Declares input and/or output parameters for the ICE Server and extension
functions.

Syntax

typedef struct _ ICE_C_PARAMS

{
II_INT type;
#DEFINE ICE_IN 1
#DEFINE ICE_OUT 2
#DEFINE ICE_BLOB 4
II_CHAR* name;
II_CHAR* value;

} ICE_C_PARAMS;

Chapter 7: Using the C APl 7-9

Web Deployment Option C API Reference

Members

type

name

value

Description

Used By

Example

The type of the parameter represented by an integer expression formed from
one or more of the following manifest constants: ICE_IN, ICE_OUT, and
ICE_BLOB.

The name of the parameter.

The value of the parameter.

This structure is used with ICE Server functions to pass parameter
information. The parameters to a server function are passed as an array of
ICE_C_PARAMS structures. Each ICE_C_PARAMS entry defines one of the
properties of the server or extension function. Depending on the action or
request, the parameters must be specified as a combination of either ICE_IN
for input, ICE_OUT for output, or ICE_BLOB.

ICE_C_Execute()

The following code line assigns values to the params[] array, which will be
passed to the ICE_C_Execute() function with the name of the “user” server
function:
ICE_C_PARAMS params[] =
{ {ICE_IN, "action", "select"},

{ICE_OUT, "user_name", NULL},

{ICE_OUT, "user_timeout", NULL},

{0, NULL, NULL }
b

The effect will be to choose the action of selecting data from the user_name
and user_timeout columns in the Web Deployment Option User() server
function. (For the server function properties, see “Appendix D: ICE Server
Functions.”)

7-10 Web Deployment Option User Guide

Sample C API for Web Deployment Option

Sample C API for Web Deployment Option

The following example program will select data from the user_name and

user_timeout columns within the Web Deployment Option User() server
function:

#include <stdio.h>

#include <ice_c_api.h>

int

main (int argc, char** argv)

{
ICE_C_CLIENT client = NULL;
ICE_STATUS status = 0;

C_APIInitialize ();

if ((status = ICE_C Connect(NULL, argv[1l], argv[2], &client)) == SUCCESS)
{

ICE_C_PARAMS params[] = { {ICE_IN, "action", "select"},
{ICE_OUT, "user_name", NULL},
{ICE_OUT, "user_timeout", NULL},
{0, NULL, NULL}};
if ((status = ICE_C_Execute(client, "user", params)) ==
SUCCESS)
{

int end;
do

if ((status = ICE_C Fetch(client, &end)) ==
SUCCESS && !end)
printf("%s (%s)\n",
ICE_C_GetAttribute(client, 1),
ICE_C GetAttribute(client, 2));
}
while (status == 0 && 'end);
ICE_C _Close(client);

ICE_C_Disconnect(&client);

return(status);

}

Chapter 7: Using the C APl 7-11

Chapter 8: Writing ICE Server Extension
Functions

You can write C-callable ICE Server extension functions that can be invoked
from an HTML macro page. A strict interface enables the ICE Server to
construct a list of function names and their parameter names from the loaded
module (DLL or shared library) and to pass values to and retrieve values from
an extension function.

This chapter examines the concepts used when writing server extension
functions and calling them from within your applications. The examples used
throughout the chapter are taken from the sample Plays tutorial Web
application.

Defining an Initialization Function

Example

An initialization function called InitICEServerExtension() must be present
within your extension library in order to provide a description of the extension
function. It serves as an entry point to determine all other entry points. This
function provides the address of a structure that holds the function
description.

The InitICEServerExtension() function is specified as follows:

char* InitICEServerExtension(PSERVER_DLL_FUNCTION*
ppServerDIIFunction);

The ppServerDIIFunction parameter is a pointer that is updated with the
address of the structure containing a function description table. The section
that follows discusses the specification of this structure.

The InitICEServerExtension() must return NULL if it is completed successfully.
If unsuccessful, the function must return an error string that is displayed via
the HTML page.

The following initialization function is used in the play_neworder.sc file in the
src subdirectory under the plays directory. It returns a pointer to the
FunctionTable structure:

InitICEServerExtension(PSERVER_DLL_FUNCTION* ppServerD11Function)

ICE_STATUS status= NULL;
*ppServerD11Function = FunctionTable;
return status;

Chapter 8: Writing ICE Server Extension Functions 8-1

Providing a Function Description

Providing a Function Description

Example

In your extension library, you must provide a structure that describes the
function. It defines two members describing the function name and its
parameters. The structure is specified as follows:

typedef struct structure_name
{
char* pszName;
char** pszParams;
}SERVER_DLL_FUNCTION, *PSERVER_DLL_FUNCTION

The first member shown, pszName, is a string pointer that points to a string
providing the function name. The function name must be identical to the name
that is declared in the code within your HTML page.

The pszParams member is an array of string pointers that point to the list of
parameter name strings. These names are used to ensure that parameters
from the macro are passed in the correct order to the function.

This example shows how the newOrder extension function is described within
the play_newOrder library, using a structure and several static variable
definitions. Within the play_newOrder.sc file, the ice_function_table structure
appears as follows:

typedef struct ice_function_table

{

char* pszName;

char** pszParams;
}SERVER_DLL_FUNCTION, *PSERVER DLL_FUNCTION;

Now let us see how the FunctionTable[] array is assigned. The function name
is newOrder and the pointer to the parameter name list is
pszNewOrderParams:

static SERVER_DLL_FUNCTION FunctionTable[] =
{

{ "newOrder", { pszNewOrderParams } },
{ NULL }

b

The pszNewOrderParams pointer was assigned in a prior line in the file as
follows:

static char* pszNewOrderParams[] =
{"out_orderNumber", NULL};

In effect, the newOrder function will be called and the value of
out_orderNumber will be returned to the program through a reference to
“:orderNumber” in the HTML code. We will look at how the newOrder function
works in the next section.

8-2 Web Deployment Option User Guide

Defining Your Extension Function

Defining Your Extension Function

ICE Server Extension
Function

Termination
Processing

Example

An ICE Server extension function provides the initialization and the termination
processing for the function in addition to performing the extension function.

You specify a server extension function, extension_name, as follows:
char* extension_name(char** pszParam, BOOL* bData,
char** pContext)

The parameters specified for an extension function are described below:

Parameter Description

pszParam A list of parameters used for input and output values.
An empty string in the first input parameter indicates
the end of the input parameters.

bData Flag indicating validity of parameter values on output.
Only used as an output parameter, TRUE indicates
output parameters are valid for display. FALSE
(default) indicates that no output processing is
required after return.

pContext A private storage area used by the function and
should not be modified by the caller. On the first
invocation of the function, during which initialization
must be performed, the context pointer is updated
with the context storage area. This is for exclusive use
of the function and should not be modified by the
caller.

To signal termination, the ICE Server calls the function with an empty string
for the first input parameter after all values have been processed. This
indicates to the function to free all allocated memory.

Since all extension functions run in the context of the ICE Server, it is
imperative that they are thread-safe and execute as efficiently as possible.

In this example, the newOrder() extension function is shown. It calls an Ingres
procedure (new_order) to generate an order for an Internet shopping
application. The procedure sets the out_OrderNumber parameter, which is
passed back to the calling Web page, play_shopHome.html.

The newOrder() function appears as follows:

newOrder (char** out_OrderNumber, BOOL* print, char** context)

{

Chapter 8: Writing ICE Server Extension Functions 8-3

Calling an Extension Function from a Web Page

* X
* %
* X
* %
* X
* %
* X
* %

*/

ICE_STATUS status = NULL;
*print = FALSE;

/*

If the context is NULL this is the first invocation.
Declare an SQL variable to take the returned value from the
procedure and allocate memory for returning the ice result.

Connect to the icetutor database, execute the procedure and
store the value.

Set the print

if (*context == NULL)

{

}

else

{

}

exec sql begin declare section;
long Xx;
exec sql end declare section;

*context = HeapAlloc(GetProcessHeap(),
HEAP_ZERO_MEMORY, MAX_SIZE);
if (*context == NULL)

{
return ("Memory error\n");
}
exec sql connect 'icetutor' identified by

"jcedbuser';

exec sql execute procedure new_order into :

exec sql commit;
exec sql disconnect;

sprintf (*context, "%d", x);

*out_OrderNumber = *context;
*print = TRUE;

HeapFree (GetProcessHeap(), 0, *context);
*context = NULL;

return (status);

flag to indicate valid data returned.

Cadlling an Extension Function from a Web Page

For an example of how extensions are called from within an application, we
will now take a look at the play_shopHome.html page in the Plays application.
A Web Deployment Option macro uses the FUNCTION macro keyword to call
the newOrder extension function within the play_NewOrder library.

The Web Deployment Option macro appears as follows:

<!-- #ICE REPEAT IF (DEFINED (e_orderNumber) AND
“:e_shopTxn® != "COMPLETE")

THEN=""

ELSE="<!-- #ICE REPEAT
FUNCTION=""play_NewOrder.newOrder "
HTML=""<!-- #ICE

DECLARE=""""session.e_orderNumber=

8-4

Web Deployment Option User Guide

Sample Extension Library

rout_orderNumber™ """
LoeT

The HTML keyword is then used to display the value resulting from the
function call, which is the order number, represented by the out_orderNumber
variable.

For a description the FUNCTION macro keyword, see FUNCTION Keyword in
the chapter “Using the Macro Language.”

Sample Extension Library

Plays Example

play_NewOrder.h

play_newOrder.sc

For your reference, this section contains an example ICE Server extension
library—including an initialization function, extension function, and supporting
code.

The header file and extension source code file for play_newOrder is shown
below. =

The play_newOrder.h header file appears as follows:
include <windows.h>
define ICE_EXT_API declspec(dllexport)

typedef char* ICE_STATUS;
typedef ICE_STATUS (*PFNEXTENSION) (char**, BOOL*, char **);

typedef struct ice_function_table

char* pszName;
char** pszParams;
}SERVER_DLL_FUNCTION, *PSERVER DLL_FUNCTION;

typedef ICE_STATUS (*PFNINITIALIZE) (PSERVER_DLL_FUNCTION*) ;

The play_newOrder.sc extension source code file appears as follows:
include "play_NewOrder.h"

defineMAX_SIZE20 /* about the right size
for an int */

/**

** Parameter name list.

** A NULL pointer terminates the list.

Chapter 8: Writing ICE Server Extension Functions 8-5

Sample Extension Library

*/
static char* pszNewOrderParams[] =
{"out_orderNumber", NULL};

/**

** Function Description

*/

static SERVER_DLL_FUNCTION FunctionTable[] =

{
{ "newOrder", { pszNewOrderParams } },
{ NULL }

N

*OK K K X X X X XK XK K K X K X X X

Name: InitICEServerExtension

Description:
Mandatory function for providing function
description to the server.

Inputs:
None.

Outputs:
ppServerD11Function: pointer to the function
description structure.

Returns:

pointer to error text

NULL on success
*/
ICE_EXT_API ICE_STATUS
InitICEServerExtension(PSERVER DLL_FUNCTION*

ppServerD1l1Function)

{
ICE_STATUS status= NULL;
*ppServerD11Function = FunctionTable;
return status;

N

R R R R R R U U R R I S

Name: newOrder

Description:
Return the next order number

Inputs:
None.

Outputs:
out_OrderNumber

Return:
pointer to error text
NULL on success
*/
ICE_EXT_API ICE_STATUS
newOrder (char** out_OrderNumber, BOOL* print, char**
context)

{
ICE_STATUS status = NULL;

*print = FALSE;

/*

** if first invocation allocate some memory for
** the result

*/

if (*context == NULL)

8-6 Web Deployment Option User Guide

Sample Extension Library

exec sql begin declare section;

long Xx;

exec sql end declare section;

*context = HeapAlloc(GetProcessHeap(),

HEAP_ZERO_MEMORY, MAX_SIZE);
if (*context == NULL)
{

}

return ("Memory error\n");

exec sql connect 'icetutor' identified by

"jcedbuser';

exec sql execute procedure new_order into

exec sql commit;
exec sql disconnect;

sprintf (*context, "%d", x);

*out_OrderNumber = *context;
*print = TRUE;

}

else

{
HeapFree (GetProcessHeap(), 0, *context);
*context = NULL;

}

return (status);

X

Chapter 8: Writing ICE Server Extension Functions 8-7

Appendix A: XML Primer

This appendix provides an introduction to XML (Extensible Markup Language),
some basic XML syntax, and examples of how the Web Deployment Option
macro language can be used to create XML applications.

XML Overview

Extensible

XML is a standard that allows users to specify their own tags. Tags can be
nested, just like in HTML. This means that XML can be used to describe any
form of data that conforms, or can be transformed to conform, to a tree
structure. XML is a markup language much like HTML—in fact they have a
common source: SGML. HTML was designed primarily to describe how to
present data whereas XML was designed to describe the data itself. Unlike
HTML, tags are not predefined in XML; the user must define their own.
Currently users formally describe their tags using a DTD (Document Type
Definition).

XML does not replace HTML; the two have different and complementary goals.
XML was designed to describe data and HTML was designed to describe how to
display data.

Tip: For a complete description of the latest XML standard, you can access
the URL http://www.xml.org.

In HTML, the tags that can be used and their structure (the order in which
they can appear) are fixed by the HTML standard. Only by changing the
standard can new tags be introduced. The only tags an HTML author can use
are those that are defined by the standard. In contrast, in XML the author first
defines their own tags and structure, and then they create their documents.
The tag set can thus be fine-tuned to a particular problem domain.

Appendix A: XML Primer A-1

http://www.xml.org/

XML Syntax

Complementary with HTML

XML Syntax

It is worth pointing out that XML should not be seen as a replacement for
HTML. It seems highly likely that XML will be increasingly used to exchange
data between computer system, including between a web server and its
clients. When the data is to be presented to a browser, it will be transformed
into something that the browser is designed to accept, for example HTML or
WML.

This section presents some basic XML syntax rules.

All Elements Have A Closing Tag

In HTML some elements do not have to have a closing tag. For example, the
following code is legal in HTML:

<p>This is my first paragraph
<p>This is my second paragraph
In XML all elements must have a closing tag like this:

<p>This is my first paragraph</p>
<p>This is my second paragraph</p>

XML Tags Are Case Sensitive

XML tags are case sensitive. The tag <Letter> is different from the tag
<letter>. Opening and closing tags must therefore be written with the same
case:

<Letter>This is incorrect</letter>

<letter>This is correct</letter>

XML Elements Must Be Properly Nested

In HTML it is possible to have a construct where the elements intersect one
another, for example:

<i>bold and italic text</i>

In XML all elements must be properly nested within each other like this:

<i>bold and italic text</i>

A-2 Web Deployment Option User Guide

XML Example

XML Documents Must Have a Root Tag

All XML documents must contain a single start/end tag pair to define the root
element. All other elements must be nested within the root element. Any
element can contain sub (child) elements. The sub elements must be in pairs
and correctly nested within their parent element:

<root_element>
<child_element>
<subchild>
Sub child data
</subchild>
</child_element>
</root_element>

Attribute Values Must Always Be In Quotation Marks

XML Example

Memo Example

As in HTML, XML elements can have attributes. Unlike in HTML, in XML, the
attribute values must always be surrounded by quotation marks.

Here is an example of a simple, but complete, XML document.

<?xml version="1.0"?>
<memo>

<to>Fred</to>

<from>Harriet</from>

<subject>Weekend</subject>

<memoBody>Would you like to go Yachting on Saturday?</memoBody>
</memo>

The first line in the document contains the XML declaration, which should
always be included. It defines the XML version of the document. In this case,
the document conforms to the 1.0 specification of XML:

<?xml version="1.0"?>

The next line defines the first element of the document (the root element):

<memo>

The following lines defines 4 child elements of the root (to, from, Subject, and
memoBody):

<to>Fred</to>

<from>Harriet</from>

<Subject>Weekend</Subject>

<memoBody>Would you like to go Yachting on Saturday?</memoBody>

Finally, the last line defines the end of the root element:

</memo>

Appendix A: XML Primer A-3

XML and Web Deployment Option Queries

Memo DTD

Note: The elements simply describe the data. There is no display-related
information. Display information could be added.

The following diagram represents the DTD used to validate the above
example

to

from

memo —

subject

memoBody

Here is the same DTD in text form:

<!ELEMENT memo (to , from , subject , memoBody)>
<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT subject (#PCDATA)>

<!ELEMENT memoBody (#PCDATA)>

XML and Web Deployment Option Queries

An XML vocabulary has been developed to work with Web Deployment Option
and this has been appended to the XHTML standard. A translation tool is
provided to process the XML ICE language into a form that Web Deployment
Option can interpret. The result of this is that a Web author can use any XML-
aware editor to create Web Deployment Option templates. Here is an example
snippet of code generated with one such tool:

<i3ce_query i3ce_database="shakespeare">
<i3ce_sql i3ce_transaction="MyTransaction“>
<i3ce_statement>
select title, type from plays
</i3ce_statement>
<i3ce_headers>
<i3ce_header i3ce_column="title" i3ce_text="Play Title"/>
<i3ce_header i3ce_column="type" i3ce_text="Type of Play"/>
</1i3ce_headers>
<i3ce_relation_display i3ce_typename="i3ce_ table"/>
</i3ce_sql>
</i3ce_query>

A-4 Web Deployment Option User Guide

Appendix B: HTML Primer

HTML is a collection of styles (indicated by markup tags) that defines the
components of a Web document. HTML documents are in plain text format
(also known as ASCII) and can be created using any text editor.

This appendix uses some brief examples to describe the small subset of the
HTML standard that is used by Web Deployment Option and in the examples in
this guide.

The Development of HTML

HTML was originally developed by Tim Berners-Lee while at CERN. During the
1990s, while the Web experienced explosive growth, HTML also grew beyond
its simple beginnings. The original aim of HTML was to enable research
workers to share their papers electronically. For this to happen, it was
sufficient to establish a one-time connection between the browser and the
server to download the required information and display it to the user. Each
connection existed on its own and was not related to any other. There was no
session information and the connections were therefore stateless. This lead to
problems, especially in the field of database access and transaction control.
These days, state information is typically held in the form of a so-called
“cookie,” which is sent by the server to the client.

In all, there are less than 100 tags in the HTML standard; however, producing
acceptable results using Web Deployment Option does not require knowledge
of all of them. In this appendix, only the most important HTML tags from a
Web Deployment Option point of view are presented.

Tip: For a complete description of the HTML 4.01 standard, you can access
the URL http://www.w3.org/TR/htmI401/.

Anatomy of an HTML Document

To begin, we will take a quick tour of the structure of an HTML document. An
HTML document is made up of two types of content. These are the text itself
and formatting instructions known as markup. Markup tags may, or may not,
surround text. The combination of markup tags and their associated text is
known as an element.

Appendix B: HTML Primer B-1

http://www.w3.org/TR/html401/

Anatomy of an HTML Document

General Usage of
HTML Elements

Document Header
and Body

For example, a level three section heading would be indicated as follows:

<H3>
This is a level three section heading
</H3>

In this example of a level three heading element, the heading is introduced by
the tag <H3>. The text of the heading follows and is terminated by the </H3>
tag. The example could equally well be shown as follows:

<H3> This 1is a level three section heading </H3>

The new lines can be included for clarity (in HTML, new lines count as white
space). As we can see from this example, text appears as is, without any
decoration.

The HTML tags are distinguished from normal text by angle brackets “*<” and
“>". For example, the
 tag denotes a line break. HTML makes no
distinction about the case of the tags, so the line break tag could also appear
as
.

Generally, an HTML document consists of two parts: a header and a body. A
limited number of elements are allowed in the header, the rest appear in the
body. Comments are allowed in both. Here is a simple example of a simple
HTML page:

<HTML>

<HEAD>

<TITLE>

Welcome

</TITLE>

</HEAD>

<BODY>

<H1>

Welcome

</H1>

<!-- This is a comment -->
Hello World
</BODY>

</HTML>

B-2 Web Deployment Option User Guide

Anatomy of an HTML Document

Displaying the HTML
Documentina
Browser

Document Beginning
and End Tags

Header

Title

If displayed in a browser, this simple HTML document would appear as
follows with our main message “Hello World”:

< Welcome - Microsoft Internet Explorer provided by Computer Associates 1. [Hj[=] B3

J File Edit ‘“iew Go Favortes Help |
j “@ =2 .0 A ‘] 3
Back Farward Stop Refresh Home: Search Favontes Histary [l
| Addiess] C:\docsthelloworld himl =] || Links
[~
Welcome
Hello World
[~
[l_l_ l_ ty Computer o

Let’s examine the individual elements in the document. Note that most tags
come in pairs, though there are notable exceptions (for example, line break,
denoted by
).

In this example, the entire document is bounded by the <HTML> tag pair:

<HTML>

</HTML>

Following the <HTML> tag is the head element, bounded by the tags:
<HEAD>

</HEAD>

The head element contains a title element that appears as follows:

<TITLE>
Welcome
</TITLE>

The title typically appears in the title bar of the browser window.

Appendix B: HTML Primer

B-3

Anatomy of an HTML Document

Body

Headings

Comments

Document Output

HTML Rendering and
Code Readability

The head element is followed by the main body element of the document. This
is bounded by the tags:

<BODY>
</BODY>

The body element can contain a large humber of other elements—here it
contains a heading and some plain text. Traditionally, the level one heading of
a document is identical to its title. The level one heading in our example is as
follows:

<H1>

Welcome
</H1>

The heading is followed by an HTML comment:

<!-- This is a comment -->

The comment is not rendered by the browser and is made use of extensively
by Web Deployment Option.

Our main message, “Hello World,” appears as output in a browser.

It is worth remembering that the HTML browser is responsible for formatting
the text according only to the directives laid down by the HTML tags
accompanying the text. In particular, new lines count as white space.
Therefore, a browser will render a very long source text line in the same way
as it would a source text with one word per line. The text of our example
could equally well have appeared as follows:

Hello

World

It would have been displayed exactly as before. To preserve readability in
HTML files, headings should be placed on separate lines and blank lines (in
addition to the <P> tags) should separate paragraphs.

The body element is terminated with the </BODY> tag and the entire
document is terminated with the </HTML> tag.

It is worthwhile spending a couple of minutes typing this example in with a
text editor and then checking that the rendered result in a browser looks like
that depicted previously in this appendix.

B-4 Web Deployment Option User Guide

Elements Used by Welb Deployment Option

Elements Used by Web Deployment Option

An HTML document can be made dynamic—that is, so that its content is
updated automatically to reflect the contents of the database by passing
requests to the ICE Server. This is typically achieved by submitting the request
as an HTML form. Parameters can be passed by setting Web Deployment
Option variables in the form.

An HTML form is an element containing, in addition to the normal markup
elements, special elements called controls. These controls allow a user to fill in
a form prior to submitting it for processing by, for example, Web Deployment
Option through a web server. The following code sample produces a dynamic
SQL input form:

<HTML>

<HEAD>

<TITLE>Web Deployment Option Dynamic SQL Demo</TITLE>

</HEAD>

<BODY>

<FORM ACTION="/bin/oiice.exe" METHOD="GET">

<H1>

Web Deployment Option Dynamic SQL Console

</H1>

User Id: <INPUT TYPE=text NAME="1ii_userid" MAXLENGTH=32 VALUE="ingres">
Password: <INPUT TYPE=password NAME="1ii_password">

<HR>

<INPUT TYPE=hidden NAME="1ii_database" VALUE="1icedb">

<TEXTAREA ROWS=6 COLS=80 NAME="1ii_query_statement">

select * from <my_table>

</TEXTAREA>

<INPUT TYPE=SUBMIT VALUE="Execute Query">
<INPUT TYPE=RESET VALUE="Start Again">
</FORM>

</BODY>

</HTML>

In this example, the HEAD section is essentially the same as in the previous
one. We will therefore only examine the new features. This is the form that
appears in the body of the document. The following tag introduces the form
element:

<FORM ACTION="/bin/oiice.exe" METHOD="GET"
TARGET="SQL_O0OUT">

A form provides a way of gathering user input. This form tag has two
attributes. The first, ACTION, specifies the entity responsible for dealing with
the form once it has been submitted. In this case, a binary executable,
/bin/oiice.exe, processes the data submitted. The second attribute, METHOD,
denotes how the data will be presented to the oiice.exe program. The GET
method appends the form data set to the form URI (specified by the ACTION
attribute) and the new URI is sent upon submission. The POST method
includes the data set in the body of the form.

m The Get() method is used when the form has no side effects. For example,
database searches have no visible side effects and make ideal applications
for the Get() method.

Appendix B: HTML Primer B-5

Elements Used by Welb Deployment Option

m If the service associated with the processing of a form causes side effects
(for example, if the form updates a database), the Post() method should
be used.

Following the level one heading “"Web Deployment Option Dynamic SQL Demo”
the next new feature is apparent, an input control:

<INPUT TYPE=text NAME="1ii_userid" MAXLENGTH=32
VALUE="1ingres">

This INPUT tag specifies a default (text) input control, which accepts one line
of input limited to a maximum length of 32 characters with the MAXLENGTH
attribute. The text the user types in is associated with the named variable
ii_userid and a default value of ingres is supplied. The next input control is of a
different type, namely “password”:

<INPUT TYPE=password NAME="1ii_password">

The control is basically the same as for “text”, but the user input is rendered in
such a way as to obscure what the user typed (e.g., by echoing a series of
asterisks). Note that the password text is sent over the network as clear text.

Another type of input control, the HIDDEN type, appears next:

<INPUT TYPE=hidden NAME="ii_database"
VALUE="1icedb">

Here the author wants to set a variable but not render it, hiding the value from
the user. In this case, the ii_database variable contains the value “icedb.” The
user sees nothing on the rendered page. Following the hidden input control is
an element that allows more than one line of input, an area of text:

<TEXTAREA ROWS=6 COLS=80 NAME="1ii_query_statement">
select * from <my_table> </TEXTAREA>

The <TEXTAREA> tag specifies the size of the visible input area, here 6 rows
by 80 columns (if the user needs more space, the browser scrolls) and the
variable is named ii_query_statement. An initial value is set to be “select *
from <my_table>", the angle brackets indicating that the user should supply a
table name to complete the statement. The element is completed by a
mandatory </TEXTAREA> tag.

Finally, the form is completed by having a SUBMIT and a RESET button. These
appears as:

<INPUT TYPE=SUBMIT VALUE="Execute Query">
<INPUT TYPE=CANCEL VALUE="Start Again">

The SUBMIT control causes the form’s data set (that is, the control name-
value pairs) to be submitted to the oiice.exe program.

The RESET control causes the controls on the form to be reset to their initial
values; if a control does not have an initial value, the effect of a reset is not
defined.

B-6

Web Deployment Option User Guide

Elements Generated by Welb Deployment Option

The form element is terminated by the </FORM> tag.

An input form is used to gather user input and to act upon it. In this example,
we have seen how to mimic the action of the Terminal Monitor in a browser,
but we could just as easily have run a report or executed a database
procedure. Other chapters in this guide deal with these topics; the basics of
the HTML remain the same.

Elements Generated by Web Deployment Option

To reduce the burden on the Web author still further, Web Deployment Option
can generate some popular HTML elements automatically. These include the
following:

m Table
m Selector control

m Parameterized hyperlink

In addition, Web Deployment Option can generate all the HTML tags required
to present a standard report (for example, generated by RBF) to a Web
browser. It wraps the report on your behalf. The result is "What You Got Is
What You See” (WYGIWYS).

The Web Deployment Option macro processor generates the table, selector
control, and parameterized hyperlink elements. For more information, see
“Chapter 6: Creating Web Applications: An Example.”

Accessing Web Deployment Option Pages

Finally, you can access a Web Deployment Option document through an
address that is formatted with the following syntax.

m On Windows, the syntax is:

/ice-bin/oiice.[dll|exe]/[session_group/][business_unit[]{location_name/}document_name[]]

For example:

/ice-bin/oiice.d11/mygroup/myunit[myloc/mydoc.html] ™

Appendix B: HTML Primer B-7

Accessing Web Deployment Option Pages

UNIX On UNIX, the syntax is:

/ice-bin/oiice.1.so/[session_group/][business_unit[]{location_name/}document_namel[]]

For example:

/ice-bin/oiice.1l.so/mygroup/myunit[myloc/mydoc.html] =

B-8 Web Deployment Option User Guide

Appendix C: Reserved Words

HTML variables are defined using the HTML <INPUT> tag. A Web Deployment
Option reserved word and corresponding value can be specified for the NAME
and VALUE options, as shown below:

<INPUT TYPE="7input_type" NAME="7ice_reserved word" VALUE="value">

Reserved Words

The following table summarizes the HTML variables Web Deployment Option
recognizes. The reserved words provided with Web Deployment Option
(formerly Ingres/ICE) Version 2.0 are supported for compatibility purposes.
When applicable, you should use Version 2.5 reserved words because they
provide enhanced functionality.

Reserved Word

Description

http_remote_addr (2.5)

The IP address of the requestor.

http_remote_host (2.5)

The resolved name of the requestor. If DNS
resolution is not available, the value will be the
same as http_remote_addr.

http_user_agent (2.5)

The browser type of the requestor.

ii_action (2.5)

The action to be taken when opening or closing a
Web Deployment Option session. Valid values are:

declare—used to create a new Web user with a
specified user name, password, and profile (using
the ii_userid, ii_password, and ii_profile variables).

connect—used to open a session with the ICE
Server with a specified user and password (using
the ii_userid and ii_password variables).

disconnect—used to close a session with the ICE
Server.

ii_application

The user application to execute in the web server’s
CGI directory.

ii_authtype (2.5)

The password authentication type. Possible values
are ICE, for Web Deployment Option
authentication, and OS, for operating system
authentication.

Appendix C: Reserved Words C-1

Reserved Words

Reserved Word

Description

ii_binary_ext

The default file extension to use when storing a
BLOB from a database to disk. This extension is
used when Web Deployment Option is unable to
determine the file type stored in a database.

ii_cookie (2.5)

The cookie used to maintain session context on
variable-based pages.

ii_database

The name of the database used when executing a
report or an SQL-based request.

If a value for ii_database is not defined, an error is
generated and returned to the client.

ii_error_message (2.5)

The message to be displayed to the client when a
Web Deployment Option request has not completed
successfully.

If the Web author does not provide a value, a
default error message is displayed. It is
recommended that a value for ii_error_message be
assigned so that clients do not become confused as
to why a particular error message (an internal error
message, for example) has appeared.

To display this message to the Web client,
ii_error_url must not be defined.

ii_error_url (2.5)

The HTML page to be loaded by the web server if
an Ingres request has not completed successfully.

If this is not defined, the value of ii_error_message
is displayed.

ii_output_dir

The label of the directory to be used for Web
Deployment Option file output.

ii_page_header

The Report-Writer output page heading.

The value for this variable is equivalent to the
.HEADER page report structure statement. It is
printed at the top of the report. This variable is
used when processing report specifications that do
not have HTML tags embedded in them.

C-2

Web Deployment Option User Guide

Reserved Words

Reserved Word

Description

ii_password

The password for a Web user. If no user or
password is supplied, the product attempts to use
HTTP basic authentication, if enabled on the web
server; otherwise, the default user alias stored in
the configuration file is used.

For Version 2.0, ii_password and ii_userid are used
to verify the user executing a request. A value for
ii_password is required only if ii_userid is supplied.

ii_procedure

The name of the database procedure to be
executed by Web Deployment Option.

This is @ more secure way to execute SQL
statements and is recommended if you plan on
having your Ingres installation accessible by the
general public. If you are passing variables to a
procedure, ii_procvar_count must be defined and
the number of variable names, data types, and
lengths must equal the number of variables that
are being passed to the procedure.

ii_procvar_count

The number of variables that are going to be
passed into the procedure to be executed, which is
defined in ii_procedure.

ii_procvar_datan

The data that is to be assigned to a procedure
variable name (defined in ii_procvar_namen) when
it is passed to a database procedure.

The letter n represents the data item that
corresponds to each procedure variable name (such
as ii_procvar_datal, ii_procvar_data2, etc.). The
number of data items must equal the value
assigned to ii_procvar_count.

ii_procvar_lengthn

The procedure variable length to be passed to a
database procedure.

The letter n represents the procedure variable
length number (such as, ii_procvar_length1,
ii_procvar_length2, etc.). The number of procedure
variable lengths must equal the value assigned to
ii_procvar_count.

Appendix C: Reserved Words C-3

Reserved Words

Reserved Word

Description

ii_procvar_namen

The name of the procedure variable to be passed to
a database procedure.

The letter n represents the procedure variable
number (such as, ii_procvar_namel,
ii_procvar_name?2, etc.). The number of procedure
variable names must equal the value assigned to
ii_procvar_count.

ii_procvar_typen

The procedure variable data type to be passed to a
database procedure.

The letter n represents the procedure variable data
type number (such as, ii_procvar_typel,
ii_procvar_type2, etc.). The number of procedure
variable data types must equal the value assigned
to ii_procvar_count. Valid data types are:

integerl
integer2
integer4
float4

float8

byte

varchar
char

long byte
long varchar

text

ii_profile (2.5)

The name of a profile for a newly created user
(created by setting ii_action="declare"). This gives
the user privileges to access the remaining
documents.

ii_query_statement

The dynamic SQL statement to be executed by Web
Deployment Option.

Variables provided for ii_query_statement are case-
sensitive. The following example indicates to Web
Deployment Option that there are two different
variable names being used in the query statement,
valuel and VALUE1:

insert into tablel values
(:valuel, :VALUE1);

C-4

Web Deployment Option User Guide

Reserved Words

Reserved Word

Description

ii_report

The report to be executed by the Report Writer
utility.

If the report name stored in ii_report does not exist
in the database, an error is returned to the client. If
ii_report is defined, ii_report_location is ignored.

ii_report_header

The Report-Writer output report heading.

The value for this variable is equivalent to the
.HEADER report structure statement. It becomes
the title of the HTML page. This variable is used
when processing report specifications that do not
have HTML tags embedded in them.

ii_report_location

The full path and file name of the report
specification to use when generating a report.

When using this variable, the report specification
does not have to be stored in the database. If the
report specification defined in ii_report_location
does not exist, an error is returned to the client.

ii_rowcount (2.5)

The row count of the last SQL query.

ii_rwdir

The directory in which to store Report-Writer
output. This variable is supported for backward
compatibility for 2.0 only. It has been replaced by
ii_output_dir.

ii_status_info (2.5)

Additional information associated with the last
error.

ii_status_number (2.5)

The status number of the last executed macro.

ii_status_text (2.5)

The text associated with the status number.

ii_success_message (2.5)

The message to be displayed to a Web client when
a Web Deployment Option request has completed
successfully.

This variable is ignored if ii_success_url has been
defined. If a value for ii_success_message is not
supplied, a default message is returned to the
client.

ii_success_url (2.5)

The URL to be loaded by the web server if an
Ingres request has completed successfully.

ii_system

The location of the Ingres installation.

If the location is not defined, an attempt is made to
retrieve the value from the environment settings.

Appendix C: Reserved Words C-5

Reserved Words

Reserved Word

Description

ii_unit (2.5) The business unit associated with the active
session.
ii_userid The name of a Web user (an aliased name). If no

user or password is supplied, basic authentication is
used (if enabled on the web server); otherwise, the
default user alias stored in the configuration file is
used.

For Version 2.0, ii_userid and ii_password are used
to verify the user executing a request.

C-6

Web Deployment Option User Guide

Appendix D: ICE Server Functions

This appendix provides the properties and actions that are associated with
each of the available ICE Server functions. Using these functions, you can
write an application that accesses, manages, and monitors all the information
contained in the Web Deployment Option repository.

Security Functions

The functions in this section allow you to access the security information in
Web Deployment Option, which pertains to database users, database
connections, roles, Web users, profiles, and the associations between some of
these objects.

DBUser() Function

Provides access to the properties of one or more database user(s).

The properties and actions for the DBUser() function are described as follows:

Properties Action Description
select retrieve insert update delete
4 4 4 4 4
dbuser_id out in in in in Unique database user identifier
dbuser_name out out in in none Database user name
dbuser_alias out out in in none Web Deployment Option name for
database user
dbuser_passwordl out out in in none Database user password
dbuser_password2 out out in in none Database user password
confirmation
dbuser_comment out out in in none Comment for database user

Appendix D: ICE Server Functions D-1

Security Functions

Database() Function
Provides access to the properties of a database connection.

The properties and actions for the Database() function are described as
follows:

Properties Action Description

select retrieve insert update delete

4 4 4 4 4

db_id out in in in in Unique database connection identifier
db_name out out in in none Virtual database name

db_dbname out out in in none Actual database name

db_dbuser out out in in none Unique identifier for database user
db_comment out out in in none Comment for database connection

Role() Function
Provides access to the properties of a role.

The properties and actions for the Role() function are described as follows:

Properties Action Description

select retrieve insert update delete

4 4 4 4 4

role_id out in in in in Unique role identifier
role_name out out in in none Role name
role_comment out out in in none Comment for role

User() Function
Provides access to the properties of a Web user.

The properties and actions for the User() function are described as follows:

D-2 Web Deployment Option User Guide

Security Functions

Properties Action Description
select retrieve insert update delete
4 4 4 4 4
user_id out in in in in Unique Web user identifier
user_name out out in in none Web user name
user_authtype out out in in none Authentication type (default = ICE)
user_passwordl out out in in none Web user password
user_password2 none none in in none Web user password confirmation
user_dbuser out out in in none Unique database user identifier
user_comment out out in in none Comment
user_administratio out out in in none Member of administrators; enabled
n if TRUE
user_security out out in in none Member of security managers;
enabled if TRUE
user_unit out out in in none Member of business unit
managers; enabled if TRUE
user_monitor out out in in none Allowed to monitor; enabled if
TRUE
user_timeout out out in in none The maximum idle time, in

seconds, between requests to the
server

User_Role() Function

Provides access to the properties for a role associated with a Web user.

The properties and actions for the User_Role() function are described as

follows:

Properties Action Description

select retrieve insert update delete

4 7 4 7 4
ur_user_id out none in none in Unique Web user identifier
ur_role_id out none in none none Unique identifier of role associated

with Web user

ur_role_name out none none none none Name of role associated with Web

Appendix D: ICE Server Functions D-3

Security Functions

user

User_Database() Function

Provides access to the properties for a database connection associated with a
Web user.

The properties and actions for the User_Database() function are described as
follows:

Properties Action Description

select retrieve insert update delete

4 7 4 7 4

ud_user_id in none in none in Unique user identifier

ud_db_id out none in none none Unique identifier of database
connection associated with user

ud_db_name out none none none none Name of database connection

associated with user

Profile() Function
Provides access to the properties of a profile.

The properties and actions for the Profile() function are described as follows:

Properties Action Description

select retrieve insert update delete

4 4 4 4 4

profile_id out in in in in Unique profile identifier

profile_name out out in in none Profile name

profile_dbuser out out in in none Unique database user
identification

profile_administration out out in in none Member of administrators;
enabled if TRUE

profile_security out out in in none Member of security managers;
enabled if TRUE

profile_unit out out in in none Member of business unit

D-4 Web Deployment Option User Guide

Security Functions

managers; enabled if TRUE

profile_monitor out out in in none Allowed to monitor; enabled if
TRUE

profile_timeout out out in in none The maximum idle time, in
seconds, between requests to the
server

Profile_Role() Function
Provides access to the properties for a role associated with a profile.

The properties and actions for the Profile_Role() function are described as
follows:

Properties Action Description

select retrieve insert update delete

4 7 4 7 4

pr_profile_id out none in none in Unique profile identifier

pr_role_id out none in none none Unique identifier of role associated
with profile

pr_role_name out none none none none Name of role associated with profile

Profile_Database() Function

Provides access to the properties for a database connection associated with a
profile.

The properties and actions for the Profile_Database() function are described as
follows:

Properties Action Description

select retrieve insert update delete

4 7 4 7 4
pd_profile_id in none in none in Unique profile identifier
pd_db_id out none in none none Unique database identifier
pd_db_name out none none none none Database name

Appendix D: ICE Server Functions D-5

Business Unit Functions

Business Unit Functions

The functions in this section allow you to access the business unit information
within Web Deployment Option, which pertains to business units, documents,
session groups, and the associations between some of these objects and
others such as roles, Web users, and locations. In addition, a function is
provided that allows you to back up your business unit.

Unit() Function
Provides access to the properties of a business unit.

The properties and actions for the Unit() function are described as follows:

Properties Action Description

select retrieve insert update delete

4 4 4 4 4

unit_id out in in in in Unique business unit identifier
unit_name out out in in none Virtual business unit name
unit_owner out out none none none Actual business unit name

Unit_Role() Function
Provides access to the properties of a role access definition for a business unit.

The properties and actions for the Unit_Role() function are described as
follows:

Properties Action Description

select retrieve insert update delete

7 4 7 4 7
ur_unit_id none in none in none Unique business unit identifier
ur_role_id none out none in none Unique identifier for role associated
with business unit
ur_role_name none out none none none Name of role associated with
business unit
ur_role_execute none out none in none Visible permission; enabled if

visible

D-6 Web Deployment Option User Guide

Business Unit Functions

Properties Action Description
select retrieve insert update delete
7 4 7 4 7
ur_read none out none in none Read permission; enabled if
readable
ur_insert none out none in none Insert permission; enabled if

insertable

Unit_User() Function

Provides access to the properties of the Web user access definition for a

business unit.

The properties and actions for the Unit_User() function are described as

follows:
Properties Action Description
select retrieve insert update delete
7 4 7 4 7
uu_unit_id none in none in none Unique business unit identifier
uu_user_id none out none in none Unique identifier of Web user
associated with business unit
uu_user_name none out none none none Name of Web user associated with
business unit
uu_execute none out none in none Visible permission; enabled if visible
uu_read none out none in none Read permission; enabled if
readable
uu_insert none out none in none Insert permission; enabled if

insertable

Unit_Location() Function

Provides access to the properties for a location associated with a business unit.

The properties and actions for the Unit_Location() function are described as
follows:

Appendix D: ICE Server Functions D-7

Business Unit Functions

Properties Action Description
select retrieve insert update delete
4 7 4 7 4
ul_unit_id in none in none in Unique business unit identifier
ul__location_id out none in none none Unique identifier for location
associated with business unit
ul_location_name out none none none none Name of location associated with

business unit

Unit_Copy() Function

Copies a business unit to a file to back it up or move it to another system.

The properties and actions for the Unit_Copy() function are described as

follows:
Properties Action Description
in out
4 4
unit_id in in Unique business unit identifier
copy_file in none Name of the file that contains the
business unit documents and their
descriptions
default_loc in none Default location used when the original

one does not match the new location

Document() Function

Provides access to the properties of a document.

The properties and actions for the Document() function are described as

follows:

D-8 Web Deployment Option User Guide

Business Unit Functions

Properties Action Description

select retrieve insert update delete

4 4 4 4 4

doc_id out in in in in Unique document identifier

doc_type out out in none none Type of object: page or facet

doc_unit_id out out in in none Associated business unit identifier

doc_unit_name out out in none none Associated business unit name

doc_name out out in in none Document name

doc_suffix out out in in none Document extension

doc_public out out in in none Access flag tag; enabled if public

doc_pre_cache out out in in none Access flag tag; enabled if pre-
cached

doc_perm_cache out out in in none Access flag tag; enabled if
permanent

doc_session_cache out out in in none Access flag tag; enabled if session

doc_file none none in in none name of the remote user file

doc_ext_loc out out in in none Location identifier of the external file
on the server

doc_ext_file out out in in none Name of the external file on the
server

doc_ext_suffix out out in in none Extension of the external file on the
server

doc_owner out out none none none Document owner

doc_transfer none none none in none Request to transfer an external

document into the repository

Document_Role() Function
Provides access to the properties for a role associated with a document.

The properties and actions for the Document_Role() function are as follows:

Appendix D: ICE Server Functions D-9

Business Unit Functions

Properties Action Description
select retrieve insert update delete
7 4 7 4 7
dr_doc_id none in none in none Unique document identifier
dr_role_id none out none in none Unique identifier for role associated
with document
dr_role_name none out none none none Name of role associated with
document
dr_role_execute none out none in none Visible permission; enabled if visible
dr_read none out none in none Read permission; enabled if readable
dr_insert none out none in none Insert permission; enabled if

insertable

Document_User() Function

Provides access to the properties for a Web user associated with a document.

The properties and actions for the Document_User() function are as follows:

Properties Action Description
select retrieve insert update delete
7 4 7 4 7
du_doc_id none in none in none Unique document identifier
du_user_id none out none in none Unique identifier of user associated
with Web user
du_user_name none out none none none Name of Web user associated with
document
du_execute none out none in none Execute permission; enabled if
document is executable
du_read none out none in none Read permission; enabled if document

is readable

D-10 Web Deployment Option User Guide

Server Function

Properties Action

Description

select retrieve insert

update delete

7 4 7 4 7

du_update none out none in none Update permission; enabled if
document can be updated

du_delete none out none in none Delete permission; enabled if document

can be deleted

Session_Grp() Function

Provides access to the properties of a session group.

The properties and actions for the Session_Grp() function are as follows:

Properties Action

Description

select retrieve insert

update delete

4 4 4 4 4
sess_id out in in in in Unique session group identifier
sess_name out out in in none Session group nhame

Server Function

The function in this section allows you to access the server information in Web
Deployment Option, including locations.

ICE_Locations() Function

Provides access to the properties of a location.

The properties and actions for the ICE_Locations() function are as follows:

Appendix D: ICE Server Functions D-11

Monitoring Functions

Properties Action Description

select retrieve insert update delete

4 4 4 4 4

loc_id out in in in in Unique location identifier

loc_name out out in in none Location name

loc_path out out in in none File system directory specification for
the location

loc_extensions out out in in none List of supported extensions

loc_http out out in in none Location type; enabled if HTTP visible

loc_ice out out in in none Location type; enabled if HTTP invisible

doc_public out out in in none Location type; enabled if public

Monitoring Functions

The functions in this section allow you to access information within Web
Deployment Option that allows you to monitor activity. This includes active
users, connected users, transactions, cursors, cached documents, and
database connections.

Active_Users() Function

Provides access to the properties of an active user.

The properties and actions for the Active_Users() function are as follows:

Properties Action Description

select delete

4 4

name out in Unique active session identifier

ice_user out none Remote user cookie and unique user
session identifier

host out none HTTP server or C client which issued the
request

query out none The SQL statement(s) issued by the active
user

D-12 Web Deployment Option User Guide

Monitoring Functions

err_count

out

none

The number of errors that occurred during
the active session

ICE_Users() Function

Provides access to the properties of a connected Web user.

The properties and actions for the ICE_Users() function are as follows:

Properties Action Description
select delete
4 4
name out in Unique user session identifier (cookie)
user out none Web user name
reg_count out none Number of active users who are using this
user session
timeout out none The maximum idle time, in seconds,

between requests to the server

ICE_User_Transactions() Function

Provides access to the properties of a user transaction.

The properties and actions for the ICE_User_Transactions() function are as

follows:
Properties Action Description
select delete
4 4
key out in Unique user identifier
name out none Transaction name
owner out none Transaction owner
connection out none Identifier of the database connection for

the transaction

Appendix D: ICE Server Functions D-13

Monitoring Functions

ICE_User_Cursors() Function

Provides access to the properties of a user cursor.

The properties and actions for the ICE_User_Cursors() function are as follows:

Properties Action Description
select delete
4 4
key out in Unique user identifier
name out none Cursor name
owner out none Cursor owner
query out none SQL statement(s) that initiated the

cursor

ICE_Cache() Function

Provides access to the properties of a cached file (page or facet).

The properties and actions for the ICE_Cache() function are as follows:

Properties Action Description
select delete
4 4
key out in Unique file identifier
name out none The name of the file in the cache
loc_name out none The name of the location in which the
cached file resides
status out none Indicates whether the file is usable or
unusable
exist out none Indicates that the file is from the file
system, rather than the repository. The
value is 0 if the file is stored in the
database or is a temporary file.
file_counter out none The number of times the file has been
requested currently
owner out none User session that is using this file

D-14 Web Deployment Option User Guide

Monitoring Functions

Properties Action Description
select delete
4 4
timeout out none The amount of time (in seconds) before
the file is removed from the cache
in_use out none Indicates whether the session is using
this file. If in use, the file cannot be
deleted or refreshed.
req_count out none The number of requests made to the file

by the session identified by the requestor
(cookie)

ICE_Connect_Info() Function

Provides access to the properties of a database connection.

The properties and actions for the ICE_Connect_Info() function are as follows:

Properties Action Description
select delete
4 4
key out in Unique identifier for the database
connection
driver out none The driver that Web Deployment
Option is using to communicate with
the data source
dbname out none Database or database connection name
used out none Indicates whether the database
connection is currently active (value =
1).
timeout out none The amount of time, in seconds, before

the database connection will be closed

Appendix D: ICE Server Functions D-15

Additional Functions

Additional Functions

The functions in this section provide additional functionality in the Web
Deployment Option environment.

TagToString() Function
Replaces reserved HTML characters by their string equivalents.

The properties and actions for the TagToString() function are as follows:

Properties Action Description
tag in String with tags
string out Converted string

Dir() Function
Lists the files in a specified location.

The properties and actions for the Dir() function are as follows:

Properties Action Description
location_id in Location identifier
prefix in/out File name

suffix out File extension

GetVariables() Function

Obtains the properties for the variables that are currently declared for the
specified scope.

The properties and actions for the GetVariables() function are as follows:

D-16 Web Deployment Option User Guide

Additional Functions

Properties Action Description

page in/out “checked” if the variable is a page variable
session in/out “checked” if the variable is a session variable
server in/out “checked” if the variable is a server variable
name out Variable name

value out Variable value

Appendix D: ICE Server Functions D-17

Appendix E: Using an XML Authoring
Tool

With an XML content enabling application, such as SoftQuad XMetal, you can
add Web Deployment Option XML elements to your documents with ease. The
Web Deployment Option XML elements from the DTD are accessible through
these types of tools, allowing you to construct your Web applications using the
visual interface of your choice.

In this chapter, the SoftQuad XMetal 2.0 tool is used to demonstrate the use
of Web Deployment Option tags in this type of development environment.

Note: To use a particular tool with Web Deployment Option extensions, it must
support the xhtml1-transitional DTD that is published by the W3C.

Starting XMetal

m To open the XMetalL application and begin working, navigate to and select the
XMetal program through the Start menu in Windows.

Appendix E: Using an XML Authoring Tool E-1

Creating a New Document

The application window appears with the last saved workspace configuration.

For example:

Metal - [runonce. xml]

File Edit Yiew Inset Fommat Toals

Table ‘Window Section Track Changes Annotations Help _|E’|i||

B - |EE]w

[« =22 ||[am:

@uﬁ|mm"&°|a¢
]

B B TT U I E5 |

T EEEONEEEEEE TR

[DocumenT vI|EEH@.ﬁ B AN A ERCA- I|jll‘h|4ﬁ|
[mmE=]c=Ere|lVo0000
==l
s s |Introducin£’ o
= Introduci SEiogm
B Biblioltemn J
-3 CorTH
a The Premi k ot
B SoftQuad XMetal, ‘ EOLEAOLP
= @ Sect? Eoﬂfmi
g Enhanced N | Fomettt
BN _»l_l L:’;;!r@'pgﬁtnml.i.l gesigrfe:tor d
| " Change (' Inzert Apply
u runonce. xml I uthor of the article

Rules Checking On 4

In this workspace, the Structure view pane appears to the left of the
Document window. Also shown is the Element List window, which displays the
various elements (based on the current DTD) that can be added to the

document.

The next step involves crea

Creating a New Document

ting a new application.

The first steps you will want to perform are to create a new document and

attach the Web Deployment Option DTD. To do this:

1. Choose File, New.

The New dialog appears.

2. Select the Blank XML Document icon and click OK.

The Choose a DTD or R

ules File dialog appears.

3. Locate and select the xhtml1-transitional.dtd file, which resides in the

following path:

Ingres system drive and directory\ingres\ice\DTD

E-2

Web Deployment Option User Guide

Creating a New Document

Click Open.

The workspace appears similar to the following, with the Web Deployment
Option macro tags displayed in the Element List:

Metal - [Untitled1]

Efile Edit VMiew |nzert Fomat Tools Table window Help _|ﬁ||1|

DS R 6oy @ =\ o o
[oocument 7] i= = ‘
x|
— S E—
| | = = [
2=l
Used Al
i3ce_extenzion =]
idce_function
i3ce_header
idce_headers =
i3ce_html
= = :_hyperlink
K S T o 1 || L2 |
| (" Change ' Insert Apply
& uniea | fce ICERoot
Fules Checking On i

Tip: In the Element List window, all the Web Deployment Option
elements are prefixed by “i3ce_", causing them to appear together,
making them easier to find.

Note: Your workspace may appear different than this one, depending on
how it was configured when you last saved a document.

We are going to change our workspace a little, adding the Attribute
Inspector window, disabling the Structure view, and enabling the Tags On
view in the Document window. Use the View menu commands to
accomplish this.

Using the File, Save command, save the document using the name
my_query.

Appendix E: Using an XML Authoring Tool E-3

Building Macro Elements

Building Macro Elements

Next, we will use the XMetal environment to reproduce one of the query
elements shown in the example in the i3ce_query tag section in "Chapter 5:
Using the Macro Language.”

The example, shown below, selects all columns from the plays table in the
iceTutor database. It creates a transaction and a cursor. Then, it retrieves five
rows at a time and formats them into an XHTML table.

<i3ce_query i3ce_database="jicetutor">
<i3ce_sql i3ce_transaction="myTransaction" i3ce_cursor="myCursor">
<i3ce_statement>
select * from plays
</i3ce_statement>
<i3ce_rowsPerRequest i3ce_rowcount="5"/>
<i3ce_relation_display i3ce_typename="1i3ce_table"/>
</i3ce_sql>
</1i3ce_query>

Now, let’s move on to inserting this macro tag into the XMetalL document.

Using the XMetal Environment

Adding the In the Element List window, select the <i3ce_query> element and, with the
<i3ce_query> Insert option selected, click Apply. The element is inserted into the Document
Element window as follows:
XMetal - [my_query.xml]
EEiIe Edit “iew |nzert Fomat Toole Table ‘Window Help ;[ilﬂ
DPERHE@ NMY s BE|(o By = B2
IiSCe_statement 'l HE ‘
2|
= = E—
[Hizce_guery’» [isce_sql» (Flisce_statement _ — i3ee_statement]
e R | < figce_statement) =
(SLiBes,relstion_dsplayt> < <) <30 3q) <face_query)
2z
Used Al
|<>||:> @l@le sl fi3ce staternent <| | >|
| " Change % |nsert | Sppll
E my_query.xmll
Fules CheckingOn | A
E-4 Web Deployment Option User Guide

Building Macro Elements

Defining
<i3ce_query>
Attributes

You will notice that in Tags On view, you can see a graphical view of the tags
and child tags associated with i3ce_query.

Before we get to the SQL statement, let us define the attributes associated
with the <i3ce_query> element. To do this, place the insertion point directly
after the <i3ce_query> element, which displays the definable attributes for
this element in the Attribute Inspector:

XMetal - [my_query.xml]

EEile Edit “iew [nzertt Format Toolz Table ‘Window Help _|ﬁ'|1|
DEEHG AMY L oBloc 01y = B2
IiSCe_query 'l = = ‘

=l x|
s = E—
[Fi3ce_gueryy [Fiace_sql» [Fidce statemert — idce_gquery it
{13ce_statement} i3ce_database =
. . =] i3ce_relation disglaw’)(}(j f3ce sl <A3ce quﬂj 13ce_vnode
i3ce_query attributes .
_ e class
i3ce_user
i3ce_pazsword
B
Used Al I
I e e a—— ol
I " Change ™ Inzert | Apply
E my_query.xmll i3ce =ql

Rules Checking On ’_ A

Now, let’s enter the value for the i3ce_database attribute, as defined in the
example. Click in the area next to the i3ce_database attribute. Type iceTutor
and press Enter (or click outside the field).

Note: You do not have to include the quotation marks around the attribute
values, as this is done automatically for you.

Appendix E: Using an XML Authoring Tool E-5

Building Macro Elements

Defining <i3ce_sql>
Attributes

Now, we’ll define the attributes for the child element, <i3ce_sql>. Again,
place the insertion point in the <i3ce_sql> element, displaying the
i3ce_transaction and i3ce_cursor attributes. Enter the values
myTransaction and myCursor for these attributes:

Metal - [my_query.xml]
Efile Edit “iew |nset Fomat Toolz Table Window Help _|5’|1|

D@ asy|(sper o @Flv B2 |
|i3c:e_sql 'l ==
= x|
- = E—
[Fizce_guery> [Fidce Sql)l[EHSc:e statement — i3ee_sql I
{i3ce_statement} <fi3ce_stetement idce_transaction | myT ransaction =
[Hi3ce_relation_displayly <> <_) <A3ce_sql) <f3ce_query) IiSCe_culsol ryCurzo]
B
liSc:e CLrEor
2=l
Used Al
=
<l 2l#Ece auenTizee sal 4 | M
I (" Change @ Insert | Spply
E my_query.xmll

Rules CheckingOn | i

E-6 Web Deployment Option User Guide

Building Macro Elements

Defining the
<i3ce_sgl> Statement

Within the <i3ce_sql> element, you will see the <i3ce_statement> element.
Select this element and enter the statement select * from plays directly

into the Document window pane where the {i3ce_statement} placeholder
appears, as follows:

Metal - [my_query.xmi]

EEile Edit “iew [nzertt Format Toolz Table ‘Window Help ;Iilll
- o] B ?
DEERG AMY oo BH]IY «= B2
IiSCe_statement 'l 25 = ‘
BE
[Eli3ce_guery’> [Fisce_sql» [Fi3ce_statemert »"select * il idce_statemnent I
from icetable'I =]
[EliBce_relation_displayl> <> <) <iBce_sql) <f3ce_guery)
B
Used Al
|<:fc =l®lle saliizee staternent. 4| | 3|
I " Change ™ Inzert | Aol
E my_query.xmll

Rules Checking On ’_ A

Appendix E: Using an XML Authoring Tool E-7

Building Macro Elements

Adding <i3ce_sgl> The next elements that need to be added are the <i3ce_rowsPerRequest>

Child Tags and <i3ce_relation_display> elements. In Tags On view, click on the
diamond icon after <i3ce_relation_display> and you will see that the
i3ce_typename attribute is already set to i3ce_table, which is the value we
need (if necessary, you could have clicked in this edit control, displaying a
drop-down list of other valid values).

Metal - [my_query.xmi]

EEile Edit “iew [nzertt Format Toolz Table ‘Window Help _|ﬁ'|1|
NSH@ ey ioaoc|E@ly |« 2|

|i3c:e_sql 'l = = ‘
=l x|
- " P— =
[Eli3ce_guery’> [Fisce_sql» [Fi3ce_statemert »"select * il idce_relation_display I
from icetable" i3ce_typename |idce table =
=lidce_relation_display/ O i3ce_sql) < fiice_guery]
-
B
Used Al
=
|<:[lc l®lliTizce relation diselay 4| | 3
| " Change ™ Inzert Sl
E my_query.xmll

Rules Checking On ’_ A

E-8 Web Deployment Option User Guide

Building Macro Elements

Clicking before the <i3ce_relation_display> element, notice the Element List
displays a list of valid elements at this point in the <i3ce_query> element.

Metal - [my_query.xml]

EEile Edit “iew [nzertt Format Toolz Table ‘Window Help _|ﬁ'|1|
D HT MY (s aR|oc BBy e« B2
|i3c:e_sql 'l i= 1= ‘
= x|
N . E—
[HiEce_query > [FiGce_sal» [lidce_statement > "select * — i3ce_sql =
om icetable" <i5ce_statemert) i3ce_transactior| 'myT ranzaction” -
(e et BatesT <) <1Be_54) <IBeE) Boa_cusor_|"myureor
2=l
Used Al
i3ce_extension
idce_headers
i3ce_html
idce_links
= i3ee_nullvar
|<>l_D @IOI]—BCE S e] ‘I I ’r idce_rowsPerRequest
! " Change ™ Inzert Apply
E my_query.xmll i3ce attribute
Riules Checking On 5

Appendix E: Using an XML Authoring Tool E-9

Building Macro Elements

In the Element List window, select the <i3ce_rowsPerRequest> element and,
while Insert is selected, click Apply. The <i3ce_rowsPerRequest> element is
added to the Document window. In the Attribute Inspector window, you will
notice that attribute i3ce_rowcount appears:

Translating the XML
File

XMetal - [my_query_xmil]
EEile Edit “iew Inzert Format Toolz Table ‘window Help _|ﬁ'|1|

DESR@ HHY| L =e|oc)
IiSCe_sqI Y”§E -E‘

8|
- -
(Hizce_guery’» [EiEce_sdl» [Hisce_statemert > select * il idoe_rowsPerRequest =
from plays <JiSce_statement) i3ce_rowcount 4]
=l i3ce_rowsPerRequesty O [Si3ce_relation, disEIaEI} e a-diype i3ce_rowcourt ink
-
2=l
Used Al
=
|<>||:> aloll solfidce rowsPerReduest '| | >|
" Change (% Insert | SpEpll

| E ray_quier. rml I

Rules Checking On l_ A

In the i3ce_rowcount text box, enter "5” and press Enter (or click outside the
field). This completes the creation of the first <i3ce_query> element in the
example. You can save the document by choosing File, Save.

You are now ready to translate the XML file into an ICE Template file. To do
this, you must use the ICETranslate utility, whose syntax is shown below.
Note that the HTML file must also be registered with the Web server.
input_xml_file.xml > output_ICE _HTML_macro_ file.html

Type the following at the command prompt (assuming you saved the file as
“my_query.xml”):

ICETranslate my_query.xml > my_query.html

Note: On UNIX, the first four letters of this command must be uppercase. On
Windows, it is not necessary.

E-10 Web Deployment Option User Guide

Building Macro Elements

The my_query.html file should contain the following:

<!-- #ICE
DATABASE="1icetutor"
TRANSACTION="my_Transaction’
CURSOR="my_Cursor"
SQL="select * from plays"
ROWS="5"
TYPE="TABLE"

Note: The error checker in XMetal detects if there are any problems in your
document and notifies you so that you can make debug the program on the

fly.

So you see how quick and easy the process is to build XML programs and
translate them into HTML macro template files! You can use the same
procedure to construct other XML elements that will make up your XML
document.

Appendix E: Using an XML Authoring Tool

E-11

Index

A

accessing Web Deployment Option pages, B-7
Active_Users() function, D-12
Apache Web Server, 2-11

applications
creating, 6-1

example of a data browsing application, 6-

28
example of an Internet shopping
application, 6-54

associating
business units with Web users, 4-4
database connections with profiles, 6-27
database connections with Web users, 4-4
facets with business units, 6-22
locations with business units, 4-18, 6-21
pages and facets with Web users, 4-4
pages with business units, 6-21
roles with business units, 6-27
roles with profiles, 6-26
roles with Web users, 4-4

associating with roles, 6-27

creating, 6-20

defined, 4-13

managing, 4-13

registering and deregistering multiple files,
4-14

use of, 4-14

C

business unit functions
Document() function, D-8
Document_Role() function, D-9
Document_User() function, D-10
Session_Grp() function, D-11
Unit() function, D-6
Unit_Copy() function, D-8
Unit_Location() function, D-7
Unit_Role() function, D-6
Unit_User() function, D-7

business units
associating with facets, 6-22
associating with locations, 6-21
associating with pages, 6-21

C API
ICE_C_CLIENT structure, 7-9
ICE_C_Close() function, 7-1
ICE_C_Connect() function, 7-2
ICE_C_Disconnect() function, 7-3
ICE_C_Execute() function, 7-3
ICE_C_Fetch() function, 7-5
ICE_C_GetAttribute() function, 7-6
ICE_C_Initialize() function, 7-7
ICE_C_LastError() function, 7-8
ICE_C_PARAMS structure, 7-9
ICE_STATUS data type, 7-8
using, 7-1

C API, sample, 7-11
COMMIT keyword, 5-22
Configuration Manager, 2-15

configuring
ICE Server, 2-14
1IS, 2-5
the Apache Web Server, 2-11
the HTTP server, 2-1

creating
applications, 6-1
business units, 6-20
database connections, 6-24
locations, 6-18
profiles, 6-24
roles, 6-25
session groups, 6-18

Index—1

D

data sources, granting access to, 4-3

database connections
associating with profiles, 6-27
creating, 6-24
defined, 4-6
managing, 4-6
usage of, 4-7

database users
defined, 4-5
managing, 4-5
usage of, 4-6

Database() function, D-2
DBUser() function, D-1

DECLARE keyword, 5-23
designing applications pages, 6-1

dialogs
Associate a Location to Business Unit, 6-21
Associate DB Connection to ICE Profile, 6-
27
Associate Role to ICE Profile, 6-26
Create ICE Business Unit, 6-20
Create ICE Database Connection, 6-24
Create ICE Facet for Business Unit, 6-23
Create ICE Location, 6-19
Create ICE Page for Business Unit, 6-22
Create ICE Profile, 6-25
Create ICE Role, 6-26
Create ICE Session Group, 6-18
Enter Login/Password for Accessing ICE
Information, 4-2
Role Access Definition for Business Unit, 6-
28

Dir() function, D-16

Document() function, D-8
Document_Role() function, D-9
Document_User() function, D-10

documents, defined, 4-15

extension functions
calling from a Web page, 8-4
description, 8-2
initialization, 8-1
sample, 8-5
syntax description, 8-3

facets
associating with business units, 6-22
defined, 4-15
managing, 4-15
usage of, 4-16

FUNCTION keyword, 5-25

G

GetVariables() function, D-16

granting access to Web resources, 4-3

HTML
basics, B-1
documents, B-1
elements generated by Web Deployment
Option, B-7
elements used by Web Deployment Option,
B-5

HTTP server. See web server

ICE server
addressing, 6-2

ICE Server

Index—2 Web Deployment Option User Guide

configuring, 2-14
extension functions, 8-1

ICE_C_CLIENT structure, 7-9
ICE_C_Close() function, 7-1
ICE_C_Connect() function, 7-2
ICE_C_Disconnect() function, 7-3
ICE_C_Execute() function, 7-3
ICE_C_Fetch() function, 7-5
ICE_C_GetAttribute() function, 7-6
ICE_C_Initialize() function, 7-7
ICE_C_LastError() function, 7-8
ICE_C_PARAMS structure, 7-9
ICE_Cache() function, D-14
ICE_Connect_Info() function, D-15
ICE_Locations() function, D-11
ICE_STATUS data type, 7-8
ICE_User_Cursors() function, D-14

ICE_User_Transactions() function, D-13

ICE_Users() function, D-13
IF keyword, 5-27

I1S, 2-5

INCLUDE keyword, 5-28

installing web server, 2-1

managing, 4-11
usage of, 4-11
use for, 4-14
use of, 4-10

logging into the Web Deployment Option, 4-2

M

keywords, used with Web Deployment Option

macros, 5-22

locations

associating with business units, 6-21

creating, 6-18, 6-19
defined, 4-10

macro language
keywords, 5-22
macro tag syntax, 5-2
macro tags, 5-2
statement syntax, 5-21
using macros, 5-21

macro language keywords, 5-22
COMMIT, 5-22
DECLARE, 5-23
FUNCTION, 5-25
IF, 5-27
INCLUDE, 5-28
ROLLBACK, 5-30
SQL, 5-31
SWITCH, 5-39
VAR, 5-41

managing
business units, 4-13
database connections, 4-6
database users, 4-5
locations, 4-11
pages and facets, 4-15
profiles, 4-8
role access definitions, 4-16
roles, 4-7
server variables, 4-12
session groups, 4-9

Web Deployment Option objects, 4-1, 6-18

Web user access definitions, 4-17

Web users, 4-3

Microsoft Internet Information Server, 2-5

monitoring functions

Active_Users() function, D-12

ICE_Cache() function, D-14

ICE_Connect_Info() function, D-15
ICE_User_Cursors() function, D-14

ICE_User_Transactions() function, D-13

Index-3

ICE_Users() function, D-13

monitoring Web Deployment Option
information, 4-19

pages
associating with business units, 6-21
creating for applications, 6-1
defined, 4-15
managing, 4-15
usage of, 4-16

Performance Monitor, viewing Web Deployment
Option information, 4-19

permissions, for pages and facets, 4-18

Plays tutorial application
data used, 6-73
re-creating, 6-2
touring, 6-2

Profile() function, D-4
Profile_Database() function, D-5
Profile_Role() function, D-5

profiles
associating with database connections, 6-
27
associating with roles, 6-26
creating, 6-24
defined, 4-8
managing, 4-8
use of, 4-9

public files, setting up, 6-19

Role() function, D-2

roles
associating with business units, 6-27
associating with profiles, 6-26
creating, 6-25
defined, 4-7
managing, 4-7
usage of, 4-8

ROLLBACK keyword, 5-30

reserved words in Web Deployment Option, C-
1

role access definitions
defined, 4-16
managing, 4-16
usage of, 4-17

security
managing, 4-3
setting up, 6-1

security functions
Database() function, D-2
DBUser() function, D-1
Profile() function, D-4
Profile_Database() function, D-5
Profile_Role() function, D-5
Role() function, D-2
User() function, D-2
User_Database() function, D-4
User_Role() function, D-3

server extension functions
ICE_Locations() function, D-11

server functions, miscellaneous
Dir() function, D-16
GetVariables() function, D-16
TagToString() function, D-16

server variables
defined, 4-11
managing, 4-12
usage of, 4-12

session groups
creating, 6-18
defined, 4-9
managing, 4-9
usage of, 4-10

Session_Grp() function, D-11
SQL keyword, 5-31
SWITCH keyword, 5-39

Index—-4 Web Deployment Option User Guide

syntax
for macro statements, 5-21
for macro tags, 5-2

TagToString() function, D-16

tutorial application, 6-1

Unit() function, D-6
Unit_Copy() function, D-8
Unit_Location() function, D-7
Unit_Role() function, D-6
Unit_User() function, D-7
User() function, D-2
User_Database() function, D-4

User_Role() function, D-3

\'

VAR keyword, 5-41
variables, using, 4-12

Visual DBA, using with Web Deployment
Option, 4-1

W

architecture, 3-3

business unit functions. See business unit
functions

C API. See C API

description of users, 3-2

logging into, 4-2

macro language. See macro language
miscellaneous functions. See server
functions, miscellaneous

monitoring functions. See monitoring
functions

overview, 3-1

reserved words, C-1

security functions. See security functions
server extension functions. See server
extension functions

viewing and managing information, 4-1
web site components, 3-4

XML tag set, using, 5-1

Web resources, managing, 4-3

web server
configuring, 2-1
Document Root Directory, 2-15
installing, 2-1
supported, 2-1

Web user access definitions
defined, 4-17
managing, 4-17
usage of, 4-18

Web users
defined, 4-3
managing, 4-3
usage of, 4-4

X

Web Deployment Option

XML macro tags, 5-1, 5-2

Index-5

	Bookshelf
	Ingres Web Deployment Option User Guide
	Contents
	1: Introduction
	What You Need to Know
	Where to Go from Here

	2: Getting Started
	HTTP Server
	Configuring the HTTP Server
	What the Web Server Needs to Know
	Adding Virtual Directories
	Enabling the Native HTTP Server Extensions
	Rebooting Windows
	Value of II_System

	Microsoft Internet Information Server (IIS)
	Environment (IIS)
	Create a User for Web Deployment Option
	How You Configure IIS for Web Deployment Option
	Virtual Directories (IIS)
	ICE File Type (IIS)
	Using Your Web Server as a Windows Service

	Apache Web Server
	Environment (Apache)
	Virtual Directories (Apache)
	ICE File Type (Apache)
	Using Your Web Server as a Windows Service

	Setting Up Your ICE Server
	Web Server Document Directory

	3: Understanding the Web Deployment Option
	Overview
	Users
	Architecture
	Web Site Components
	Web Browser
	Web Deployment Option Client
	ICE Server
	Information Systems

	4: Managing the Web Deployment Option
	Accessing Web Deployment Option Information
	Managing Security
	Web Users
	Working with Web User Objects
	How Web Users Are Used

	Database Users
	Working with Database User Objects
	How Database Users Are Used

	Database Connections
	Working with Database Connections
	How Database Connections Are Used

	Roles
	Working with Role Objects
	How Role Objects Are Used

	Profiles
	Working with Profile Objects
	How Profiles Are Used

	Managing Server Information
	Session Groups
	Working with Session Groups
	How Session Groups Are Used

	Locations
	Working with Locations
	How Locations Are Used

	ICE Server Variables
	Working with ICE Server Variables
	How Server Variable Objects Are Used

	Managing Business Units
	Business Units
	Working with Business Units
	Adding Multiple Files to a Business Unit
	How Business Units Are Used

	Documents, Pages, and Facets
	Working with Page and Facet Objects
	How Pages and Facets Are Used

	Role Access Definitions
	Working with Role Access Definitions
	How Role Access Definitions Are Used

	Web User Access Definitions
	Working with Web User Access Definitions
	How Web User Access Definitions Are Used

	Associating a Location with a Business Unit

	Monitoring Web Deployment Option Information
	Shutting Down

	5: Using the Macro Language
	Web Deployment Option XML Tag Set
	Web Deployment Option XML Macro Tag Format
	Web Deployment Option Macro Tags
	Tag Hierarchy

	Macro Tags
	<i3ce_commit> Tag
	<i3ce_declare> Tag
	<i3ce_extend> Tag
	<i3ce_function> Tag
	<i3ce_if> Tag
	<i3ce_include> Tag
	<i3ce_query> Tag
	<i3ce_rollback> Tag
	<i3ce_switch> Tag
	<i3ce_var> Tag

	Macro Statements
	Macro Statement Format
	Macro Keywords

	Macro Keywords
	COMMIT Keyword
	DECLARE Keyword
	FUNCTION Keyword
	IF Keyword
	INCLUDE Keyword
	ROLLBACK Keyword
	SQL Keyword
	SWITCH Keyword
	VAR Keyword

	6: Creating Web Applications: An Example
	Before You Begin
	A Tour of the Plays Application
	Plays Welcome Page
	Plays Login Page
	Automatic Declaration Page
	Plays Home Page
	Plays View Options
	Globe Boutique

	Creating Application Directories
	Creating Directories for Non-Web Deployment Option Registered Files
	Creating Directories for Web Deployment Option-Registered Files

	Creating Application Files
	Creating the Starting Application Page
	Creating the Welcome Page and Facets
	Creating the Remaining Pages and Facets
	Using Style Sheets

	Gaining Access to Web Deployment Option Information
	Registering Your Files and Location
	Creating a Session Group
	Setting Up Public Files
	Creating a Server Location for Secured Pages
	Creating a Business Unit
	Associating the Server Location with the Business Unit
	Associating Pages with the Business Unit
	Associating Facets with the Business Unit
	Creating a Database Connection
	Creating a Profile
	Creating a Role
	Associating a Role with a Profile
	Associating a Database Connection with a Profile
	Associating a Role with a Business Unit

	Designing a Data Browsing Application
	Creating a Welcome Page
	Creating a Login Page
	Creating a Home Page
	Creating a User Account Automatically
	Displaying All Table Rows
	Displaying All Table Rows with Wrapping
	Creating an Automatically-Generated Selector Control
	Displaying a Subset of Table Rows by Selector
	Creating Automatically-Generated Hyperlinks
	Displaying a Subset of Table Rows by Hyperlink
	Creating Graphical Hyperlinks
	Creating Switch Image Links

	Designing an Internet Shopping Application
	The Globe Boutique Home Page
	Creating the Tables for the Globe Boutique Application
	Creating the New Order Procedure
	Creating the New Order Extension Header File
	Creating the New Order Extension
	Building the New Order Extension
	Displaying an Item Description
	Adding an Item to the Shopping Bag
	Displaying Shopping Bag Contents
	Confirming an Order
	Rolling Back a Transaction

	Plays Tutorial Application Data

	7: Using the C API
	Web Deployment Option C API Reference
	ICE_C_Close() Function
	ICE_C_Connect() Function
	ICE_C_Disconnect() Function
	ICE_C_Execute() Function
	ICE_C_Fetch() Function
	ICE_C_GetAttribute() Function
	ICE_C_Initialize() Function
	ICE_C_LastError() Function
	ICE_STATUS Data Type
	ICE_C_CLIENT Structure
	ICE_C_PARAMS Structure

	Sample C API for Web Deployment Option

	8: Writing ICE Server Extension Functions
	Defining an Initialization Function
	Providing a Function Description
	Defining Your Extension Function
	Calling an Extension Function from a Web Page
	Sample Extension Library
	Plays Example

	A: XML Primer
	XML Overview
	Extensible
	Complementary with HTML

	XML Syntax
	All Elements Have A Closing Tag
	XML Tags Are Case Sensitive
	XML Elements Must Be Properly Nested
	XML Documents Must Have a Root Tag
	Attribute Values Must Always Be In Quotation Marks

	XML Example
	XML and Web Deployment Option Queries

	B: HTML Primer
	The Development of HTML
	Anatomy of an HTML Document
	Elements Used by Web Deployment Option
	Elements Generated by Web Deployment Option
	Accessing Web Deployment Option Pages

	C: Reserved Words
	Reserved Words

	D: ICE Server Functions
	Security Functions
	DBUser() Function
	Database() Function
	Role() Function
	User() Function
	User_Role() Function
	User_Database() Function
	Profile() Function
	Profile_Role() Function
	Profile_Database() Function

	Business Unit Functions
	Unit() Function
	Unit_Role() Function
	Unit_User() Function
	Unit_Location() Function
	Unit_Copy() Function
	Document() Function
	Document_Role() Function
	Document_User() Function
	Session_Grp() Function

	Server Function
	ICE_Locations() Function

	Monitoring Functions
	Active_Users() Function
	ICE_Users() Function
	ICE_User_Transactions() Function
	ICE_User_Cursors() Function
	ICE_Cache() Function
	ICE_Connect_Info() Function

	Additional Functions
	TagToString() Function
	Dir() Function
	GetVariables() Function

	E: Using an XML Authoring Tool
	Starting XMetaL
	Creating a New Document
	Building Macro Elements
	Using the XMetaL Environment

	Index

