IONA

Artix:

Managing Artix Solutions with
JMX

Version 4.1, September 2006

Making Software Work Together™

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work
Together, Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2006 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: September 22, 2006

Contents

List of Figures
List of Tables

Preface
What is Covered in this Book
Who Should Read this Book
How to Use this Book
The Artix Library
Getting the Latest Version
Searching the Artix Library
Artix Online Help
Artix Glossary
Additional Resources
Document Conventions

Chapter 1 Monitoring and Managing an Artix Runtime with JMX
Introduction
Managed Bus Components
Managed Service Components
Artix Locator Service
Artix Session Manager Service
Managed Port Components

Chapter 2 Configuring JMX in an Artix Runtime
Artix JMX Configuration

Chapter 3 Using JMX Consoles with Artix
Managing Artix Services with MC4J
Managing Logging Levels with MC4J
Managing Artix Services with JConsole
Managing Artix Services with the JMX HTTP adaptor

= e e e e
AP PWWWOOLOLWOLLO

17
18
23
29
34
36
37

41
42

45
46
57
65
69

CONTENTS

Index

73

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:

Artix JMX Architecture
Connecting to a Server
Server Connection Details
Creation of Server Connection
New Server Connection
Viewing Service Properties

Viewing Service Counters Properties

Stopping a Service

Deactivated Service

Activated a Service

Viewing Port Properties
Viewing Interceptor Properties
Logging Viewing Wizard
Entering a Logging Subsystem
Displayed Logging Level
Setting a Logging Level
Logging Level Set Successfully
Propagating a Logging Level
Managed Service in JConsole
Managed Port in JConsole
Managed Locator in JConsole
HTTP Adaptor Main View
HTTP Adaptor Bus View

19
47
48
49
50
51
52
52
53
54
55
56
58
59
60
61
62
63
66
67
68
70
71

LIST OF FIGURES

List of Tables

Table 1:
Table 2:
Table 3:
Table 4.
Table 5:
Table 6:
Table 7:
Table 8:

Managed Bus Attributes

Managed Bus Methods

Managed Service Attributes
serviceCounters Attributes
Managed Service Attributes
Locator MBean Attributes

Session Manager MBean Attributes
Supported Service Attributes

24
25
30
31
32
34
36
37

LIST OF TABLES

Preface

What is Covered in this Book

Managing Artix Solutions with JMX explains how to monitor and manage
Artix services in a runtime environment using Java Management Extensions.
This book does not discuss the specifics of the different middleware and
messaging products that Artix interacts with. It is assumed that you have a
working knowledge of the specific middleware products and transports you
are using.

Who Should Read this Book

The main audience of Managing Artix Solutions with JMX is Artix system
administrators. However, anyone involved in designing a large scale Artix
solution will find this book useful.

Knowledge of specific middleware or messaging transports is not required to
understand the general topics discussed in this book. However, if you are
using this book as a guide to deploying runtime systems, you should have a
working knowledge of the middleware transports that you intend to use in
your Artix solutions.

How to Use this Book

This book includes the following:

® Chapter 1 introduces the Artix JMX architecture and describes the Artix
components that can be managed using JMX.

® Chapter 2 explains how to configure an Artix runtime for JMX.

® Chapter 3 explains how to manage and monitor Artix services using
JMX consoles.

PREFACE

10

The Artix Library

The Artix documentation library is organized in the following sections:

Getting Started

Designing Artix Solutions

Configuring and Managing Artix Solutions
Using Artix Services

Integrating Artix Solutions

Integrating with Management Systems
Reference

Artix Orchestration

Getting Started

The books in this section provide you with a background for working with
Artix. They describe many of the concepts and technologies used by Artix.
They include:

Release Notes contains release-specific information about Artix.
Installation Guide describes the prerequisites for installing Artix and the
procedures for installing Artix on supported systems.

Getting Started with Artix describes basic Artix and WSDL concepts.
Using Artix Designer describes how to use Artix Designer to build Artix
solutions.

Artix Technical Use Cases provides a number of step-by-step examples
of building common Artix solutions.

Designing Artix Solutions

The books in this section go into greater depth about using Artix to solve
real-world problems. They describe how to build service-oriented
architectures with Artix and how Artix uses WSDL to define services:

Building Service-Oriented Infrastructures with Artix provides an
overview of service-oriented architectures and describes how they can
be implemented using Artix.

Writing Artix Contracts describes the components of an Artix contract.
Special attention is paid to the WSDL extensions used to define
Artix-specific payload formats and transports.

Developing Artix Solutions

The books in this section how to use the Artix APIs to build new services:

../release_notes/index.htm
../install_guide/index.htm
../getting_started/index.htm
../designer/index.htm
../cookbook/index.htm
../soa/index.htm
../contract/index.htm

PREFACE

® Developing Artix Applications in C++ discusses the technical aspects
of programming applications using the C++ API.

® Developing Advanced Artix Plug-ins in C+ + discusses the technical
aspects of implementing advanced plug-ins (for example, interceptors)
using the C++ API.

® Developing Artix Applications in Java discusses the technical aspects
of programming applications using the Java API.

Configuring and Managing Artix Solutions

This section includes:

® Configuring and Deploying Artix Solutions explains how to set up your
Artix environment and how to configure and deploy Artix services.

® Managing Artix Solutions with JMX explains how to monitor and
manage an Artix runtime using Java Management Extensions.

Using Artix Services

The books in this section describe how to use the services provided with

Artix:

® Artix Router Guide explains how to integrate services using the Artix
router.

® Artix Locator Guide explains how clients can find services using the
Artix locator.

® Artix Session Manager Guide explains how to manage client sessions
using the Artix session manager.

® Artix Transactions Guide, C++ explains how to enable Artix C+ +
applications to participate in transacted operations.

® Artix Transactions Guide, Java explains how to enable Artix Java
applications to participate in transacted operations.

® Artix Security Guide explains how to use the security features in Artix.

Integrating Artix Solutions

The books in this section describe how to integrate Artix solutions with other
middleware technologies.

® Artix for CORBA provides information on using Artix in a CORBA
environment.

® Artix for J2EE provides information on using Artix to integrate with
J2EE applications.

11

../prog_guide/index.htm
../plugin_guide/index.htm
../java_pguide/index.htm
../deploy/index.htm
../jmx_mgmt/index.htm
../routing/index.htm
../locator_guide/index.htm
../session_mgr/index.htm
../transactions_cxx/index.htm
../transactions_java/index.htm
../security/index.htm
../corba_ws/index.htm
../j2ee/index.htm

PREFACE

12

For details on integrating with Microsoft's .NET technology, see the
documentation for Artix Connect.

Integrating with Management Systems

The books in this section describe how to integrate Artix solutions with a
range of enterprise and SOA management systems. They include:

® |IBM Tivoli Integration Guide explains how to integrate Artix with the
IBM Tivoli enterprise management system.

® BMC Patrol Integration Guide explains how to integrate Artix with the
BMC Patrol enterprise management system.

® CA-WSDM Integration Guide explains how to integrate Artix with the
CA-WSDM SOA management system.

® AmberPoint Integration Guide explains how to integrate Artix with the
AmberPoint SOA management system.

Reference

These books provide detailed reference information about specific Artix
APIls, WSDL extensions, configuration variables, command-line tools, and
terms. The reference documentation includes:

® Artix Command Line Reference
® Artix Configuration Reference

® Artix WSDL Extension Reference
® Artix Java API Reference

® Artix C++ API Reference

® Artix .NET API Reference

® Artix Glossary

Artix Orchestration

These books describe the Artix support for Business Process Execution
Language (BPEL), which is available as an add-on to Artix. These books
include:

® Artix Orchestration Release Notes

® Artix Orchestration Installation Guide

® Understanding Artix Orchestration

® Artix Orchestration Administration Console Help.

../tivoli/index.htm
../bmc/index.htm
../ca_wsdm/index.htm
../amberpoint/index.htm
../command_ref/index.htm
../config_ref/index.htm
../wsdl_ref/index.htm
../javadoc/index.html
../cppdoc/index.html
../ndoc/index.html
../glossary/index.htm
../orch_relnotes/index.htm
../orch_install/index.htm
../orch_intro/index.htm
../orch_admin/index.htm

PREFACE

Getting the Latest Version

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Artix Library

You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right, for example:
http://www.iona.com/support/docs/artix/4.0/index.xml

You can also search within a particular book. To search within a HTML
version of a book, use the Search box at the top left of the page. To search

within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Artix Online Help

Artix Designer and Artix Orchestration Designer include comprehensive
online help, providing:

® Step-by-step instructions on how to perform important tasks

® A full search feature

® Context-sensitive help for each screen

There are two ways that you can access the online help:

® Select Help|Help Contents from the menu bar. The help appears in
the contents panel of the Eclipse help browser.

® Press F1 for context-sensitive help.

In addition, there are a number of cheat sheets that guide you through the

most important functionality in Artix Designer and Artix Orchestration
Designer. To access these, select Help|Cheat Sheets.

13

http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/4.0/index.xml

PREFACE

14

Artix Glossary

The Artix Glossary is a comprehensive reference of Artix terms. It provides

quick definitions of the main Artix components and concepts. All terms are
defined in the context of the development and deployment of Web services
using Artix.

Additional Resources

The IONA Knowledge Base contains helpful articles written by IONA experts
about Artix and other products.

The IONA Update Center contains the latest releases and patches for IONA
products.

If you need help with this or any other IONA product, go to IONA Online
Support.

Comments, corrections, and suggestions on IONA documentation can be
sent to docs-support@iona.com .

Document Conventions

Typographical conventions
This book uses the following typographical conventions:

Fixed width Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures.
For example, text might refer to the
IT Bus::AnyType Class.

Constant width paragraphs represent code
examples or information a system displays on the
screen. For example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

o

% cd /users/YourUserName

Italic Italic words in normal text represent emphasis and
introduce new terms.

http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml
../glossary/index.htm

Bold

Keying Conventions

PREFACE

Bold words in normal text represent graphical user
interface components such as menu commands
and dialog boxes. For example: the User
Preferences dialog.

This book uses the following keying conventions:

No prompt

When a command’s format is the same for multiple
platforms, the command prompt is not shown.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the Windows command
prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File | Open).

15

PREFACE

16

CHAPTER 1

Monitoring and
Managing an Artix
Runtime with JMX

This chapter explains how to monitor and manage an Artix
runtime using Java Management Extensions (JMX).

In this chapter This chapter discusses the following topics:
Introduction page 18
Managed Bus Components page 23
Managed Service Components page 29
Managed Port Components page 37

17

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX

Introduction

Overview

How it works

18

You can use Java Management Extensions (JMX) to monitor and manage
key Artix runtime components both locally and remotely. For example, using
any JMX-compliant client, you can perform the following tasks:

® View bus status.

® Stop or start a service.

® Change bus logging levels dynamically.

® Monitor service performance details.

® View the interceptors for a selected port.

Artix has been instrumented to allow runtime components to be exposed as
JMX Managed Beans (MBeans). This enables an Artix runtime to be
monitored and managed either in process or remotely with the help of the
JMX Remote API.

Artix runtime components can be exposed as JMX MBeans, out-of-the-box,
for both Java and C++ Artix servers. All leading vendor application servers
and containers can be managed using JMX. However, what is unique about
the Artix instrumentation is that its core runtime can also be managed. This
contrasts with the JVM 1.5 management capabilities where you can observe
garbage collection and thread activities using JMX.

In addition, support for registering custom MBeans is also available in Artix
since version 3.0. Java developers can create their own MBeans and
register them either with their MBeanServer of choice, or with a default
MBeanServer created by Artix (see “Relationship between runtime and
custom MBeans” on page 20).

Introduction

Figure 1 shows an overview of how the various components interact. The
Java custom MBeans are optional components.

JMX Console HTML Browser

RMI HTML
Connector Adaptor

MBean

Server °

f 3
A
Runtime Custom
MBean° “ MBean
/ N\
v

C++ Java .
Server Server

Figure 1: Artix JMX Architecture

19

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX

What can be managed

Relationship between runtime
and custom MBeans

20

Both Java and C+ + Artix servers can have their runtime components
exposed as JMX MBeans. The following components can be managed:

® Bus
® Service
® Port

All runtime components are registered with an MBeanServer as Open
Dynamic MBeans. This ensures that they can be viewed by third-party
management consoles without any additional client-side support libraries.

All MBeans for Artix runtime components conform with Sun’s JMX Best
Practices document on how to name MBeans (see
http://java.sun.com/products/JavaManagement/best-practices.html). Artix
runtime MBeans use com.iona.instrumentation as their domain name
when creating ObjectNames.

Note: An MBeanServerConnection, which is an interface implemented by
the MBeanServer is used in the examples in this chapter. This ensures that
the examples are correct for both local and remote access.

See also “Further information” on page 22 for details of how to access
MBean Server hosting runtime MBeans either locally and remotely.

The Artix runtime instrumentation provides an out-of-the-box JMX view of
C++ and Java services. Java developers can also create custom JMX
MBeans to manage Artix Java components such as services.

You may choose to write custom Java MBeans to manage a service because
the Artix runtime is not aware of the current service's application semantics.
For example, the Artix runtime can check service status and update
performance counters, while a custom MBean can provide details on the
status of a business loan request processing.

It is recommended that custom MBeans are created to manage
application-specific aspects of a given service. Ideally, such MBeans should
not duplicate what the runtime is doing already (for example, calculating
service performance counters).

http://java.sun.com/products/JavaManagement/best-practices.html

Accessing the MBeanServer
programmatically

Introduction

It is also recommended that custom MBeans use the same naming
convention as Artix runtime MBeans. Specifically, runtime MBeans are
named so that containment relationships can be easily established. For
example:

// Bus :
com.iona.instrumentation:type=Bus, name=demos.jmx runtime

Service :
com.iona.instrumentation:type=Bus.Service, name="{http://ws.iona.
com}SOAPService", Bus=demos.jmx runtime

// Port :

com.iona.instrumentation:type=Bus.Service.Port, name=SoapPort, Bus
.Service="{http://ws.iona.com}SOAPService",Bus=demos.jmx runt
ime

Using these names, you can infer the relationships between ports, services
and buses, and display or process a complete tree in the correct order. For
example, assuming that you write a custom MBean for a loan approval Java
service, you could name this MBean as follows:

com.iona.instrumentation:type=Bus.Service.LoanApprovalManager, na
me=LoanApprovalManager, Bus.Service="{http://ws.iona.com}SOAPS
ervice",Bus=demos.jmx runtime

For details on how to write custom MBeans, see Developing Artix
Applications in Java.

Artix runtime support for JMX is enabled using configuration settings only.
You do not need to write any additional Artix code. When configured, you
can use any third party console that supports JMX Remote to monitor and
manage Artix servers.

If you wish to write your own JMX client application, this is also supported.
To access Artix runtime MBeans in a JMX client, you must first get a handle
to the MBeanServer. The following code extract shows how to access the
MBeanServer locally:

Bus bus = Bus.init (args);

MBeanServer mbeanServer =
(MBeanServer)bus.getRegistry () .getEntry (ManagementConstants.M
BEAN SERVER INTERFACE NAME) ;

21

http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm
http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX

Further information

22

The following shows how to access the MBeanServer remotely:

// The address of the connector server
String url = "service:jmx:rmi://host:1099/jndi/artix";
JMXServiceURL address = new JMXServiceURL (url);

// Create the JMXConnectorServer
JMXConnector cntor = JMXConnectorFactory.connect (address, null);

// Obtain a "stub" for the remote MBeanServer
MBeanServerConnection mbsc = cntor.getMBeanServerConnection () ;

Please see the advanced/management/jmx_runtime demo for a complete
example on how to access, monitor and manage Artix runtime MBeans
remotely.

For further information, see the following URLs:

JMX
http://java.sun.com/products/JavaManagement/index.jsp

JMX Remote
http://www.jcp.org/aboutJava/communityprocess/final/jsr160/

Open Dynamic MBeans
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/pac
kage-summary.html

ObjectName

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.ht
ml

MBeanServerConnection
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServerCo
nnection.html

MBeanServer

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.ht
mi

http://java.sun.com/products/JavaManagement/index.jsp
http://www.jcp.org/aboutJava/communityprocess/final/jsr160/
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServerConnection.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.html

Managed Bus Components

Managed Bus Components

Overview

Bus MBean registration

Bus naming convention

This section describes the attributes and methods that you can use to
manage JMX MBeans representing Artix bus components. For example, you
can use any JMX client to perform the following tasks:

® View bus attributes.

® Enable monitoring of bus services.

® Dynamically change logging levels for known subsystems.

If you wish to write your own JMX client, this section describes methods

that you can use to access Artix logging levels and subsystems, and provides
a JMX code example.

When an Artix bus is initialized, a corresponding JMX MBean is created and
registered for that bus with an MBeanServer.

Java

For example, in an Artix Java application, this occurs after the following call:

String[] args = ...;
Bus serverBus = Bus.init (args);

C++

For example, in an Artix C+ + application, this occurs after the following
call:

Bus var server bus = Bus.init (argc, argv);

When a bus is shutdown, a corresponding MBean is unregistered from the
MBeanServer.

An Artix bus objectName uses the following convention:

com.iona.instrumentation:type=Bus, name=busIdentifier

23

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX

Bus attributes

The following bus component attributes can be managed by any JMX client:

Table 1: Managed Bus Attributes
Name Description Type Read/Write

scope Bus scope used to initialize a String No
bus.

identifier Bus identifier, typically the String No
same as its scope.

arguments Bus arguments, including the | Stringl[] No
executable name.

servicesMonitoring Used to enable/disable Boolean Yes
services performance
monitoring.

services A list of object names ObjectName] No
representing services on this
bus.

24

servicesMonitoring is a global attribute which applies to all services and
can be used to change a performance monitoring status.

Note: By default, service performance monitoring is enabled when JMX
management is enabled in a standalone server, and disabled in an

it container Process.

When using a JMX console to manage a it _container Server, you can
enable performance monitoring by setting the serviceMonitoring attribute
to true.

services is a list of object names that can be used by JMX clients to build a
tree of components. Given this list, you can find all other registered service
MBeans that belong to this bus.

For examples of bus attributes displayed in a JMX console, see “Using JMX
Consoles with Artix” on page 45.

Managed Bus Components

Bus methods If you wish to write your own JMX client, you can use the following bus
methods to access logging levels and subsystems:

Table 2: Managed Bus Methods

Name Description Parameters Return Type

getLoggingLevel Returns a logging level for subsystem (String) String
a subsystem.

setLogginglevel Sets a logging level for a subsystem (String), Boolean
SUbSyStenL level (String)
setLoggingLevelPropagate | Sets a logging level for a subsystem (String), Boolean
subsystem with level (String),
propagation. propagate (Boolean)

All the attributes and methods described in this section can be determined
by introspecting MBeanInfo for the Bus component (see
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html
).

Example JMX client The following code extract from an example JMX client application shows
how to access bus attributes and logging levels:

MBeanServerConnection mbsc = ...;
String busScope = ...;
ObjectName busName = new ObjectName ("com.iona.instrumentation:type=Bus,name=" + busScope) ;

if (mbsc.isRegistered(busName)) {
throw new MBeanException ("Bus mbean is not registered");

// MBeanInfo can be used to check for all known attributes and methods
MBeanInfo info = mbsc.getMBeanInfo (busName) ;

// bus scope

String scope = (String)mbsc.getAttribute (busName, "scope") ;

// bus identifier

String identifier = (String)mbsc.getAttribute (busName, "identifier");
// bus arguments

String[] busArgs = (String[])mbsc.getAttribute (busName, "arguments");

25

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX

26

// check servicesMonitoring attribute, then disable and reenable it
Boolean status = (Boolean)mbsc.getAttribute (busName, "servicesMonitoring");
if (!status.equals(Boolean.TRUE)) {
throw new MBeanException ("Service monitoring should be enabled by default");

mbsc.setAttribute (busName, new Attribute ("servicesMonitoring", Boolean.FALSE)) ;
status = (Boolean)mbsc.getAttribute (busName, "servicesMonitoring");
if (!status.equals (Boolean.FALSE)) {

throw new MBeanException ("Service monitoring should be disabled now") ;

mbsc.setAttribute (busName, new Attribute ("servicesMonitoring", Boolean.TRUE)) ;
status = (Boolean)mbsc.getAttribute (busName, "servicesMonitoring");
if (!status.equals(Boolean.TRUE)) {

throw new MBeanException ("Service monitoring should be reenabled now") ;

// list of service MBeans

ObjectName[] serviceNames = (ObjectName[])mbsc.getAttribute (busName, "services");
// logging
String level = (String)mbsc.invoke (

busName,

"getLoggingLevel",

new Object[] {"IT BUS"},
new String[] {"subsystem"});
if (!level.equals ("LOG ERROR")) {
throw new MBeanException ("Wrong IT BUS logging level");

level = (String)mbsc.invoke (
busName,
"getLoggingLevel",
new Object[] {"IT BUS.INITIAL REFERENCE"},
new String[] {"subsystem"});
if (!level.equals("LOG ERROR")) {
throw new MBeanException ("Wrong IT BUS.INITIAL REFERENCE logging level");
}
level = (String)mbsc.invoke (
busName,
"getLoggingLevel",
new Object[] {"IT BUS.CORE"},
new String[] {"subsystem"});
if (!level.equals("LOG INFO LOW")) {
throw new MBeanException ("Wrong IT BUS.CORE logging level");

Managed Bus Components

Boolean result = (Boolean)mbsc.invoke (
busName,
"setLoggingLevel",
new Object[] {"IT BUS", "LOG WARN"},
new String[] {"subsystem", "level"});

level = (String)mbsc.invoke (
busName,
"getLoggingLevel",
new Object[] {"IT BUS"},
new String[] {"subsystem"});
if (!level.equals ("LOG WARN")) {
throw new MBeanException ("IT BUS logging level has not been set properly");

level = (String)mbsc.invoke (
busName,
"getLoggingLevel",
new Object[] {"IT_BUS.INITIAL_REFERENCE"},
new String[] {"subsystem"});

if (!level.equals ("LOG WARN")) {
throw new MBeanException ("IT BUS.INITIAL REFERENCE logging level has not been set
properly");

level = (String)mbsc.invoke (
busName,
"getLoggingLevel",
new Object[] {"IT BUS.CORE"},

new String[] {"subsystem"});
if (!level.equals("LOG INFO LOW")) {
throw new MBeanException ("IT BUS.CORE logging level should not be changed");

// propagate
result = (Boolean)mbsc.invoke (
busName,
"setLoggingLevelPropagate",
new Object[] {"IT BUS", "LOG SILENT", Boolean.TRUE},
new String[] {"subsystem", "level", "propagate"});

level = (String)mbsc.invoke (
busName,
"getLoggingLevel",
new Object[] {"IT BUS"},
new String[] {"subsystem"});

27

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX

if (!level.equals("LOG SILENT")) {
throw new MBeanException ("IT BUS logging level has not been set properly");

level = (String)mbsc.invoke (
busName,
"getLoggingLevel",
new Object[] { "IT BUS.INITIAL REFERENCE"},
new String[] {"subsystem"});
if (!level.equals("LOG SILENT")) {
throw new Exception ("IT BUS.INITIAL REFERENCE logging level has not been set
properly") ;
}
level = (String)mbsc.invoke (
busName,
"getLoggingLevel",
new Object[] {"IT BUS.CORE"},
new String[] {"subsystem"});
if (!level.equals("LOG SILENT")) {
throw new MBeanException ("IT BUS.CORE logging level shouldve been set to LOG SILENT");

Further information For information on Artix logging levels and subsystems, see Configuring and

28

Deploying Artix Solutions.

../deploy/index.htm
../deploy/index.htm

Managed Service Components

Managed Service Components

Overview

Service MBean registration

This section describes the attributes and methods that you can use to
manage JMX MBeans representing Artix service components. For example,
you can use any JMX client to perform the following tasks:

® View managed services.

® Dynamically change a service status.

® Monitor service performance data.

® Manage service ports.

The Artix locator and session manager services have also been

instrumented. These provide an additional set of attributes on top of those
common to all services.

If you wish to write your own JMX client, this section describes methods
that you can use and provides a JMX code example.

When an Artix servant is registered for a service, a JMX Service MBean is
created and registered with an MBeanServer.

Java
For example, in an Artix Java application, this occurs after the following call:
Bus bus = Bus.init (args);
QName bankServiceName = new

QName ("http://www.iona.com/bus/tests", "BankService");
Servant servant = new SingleInstanceServant (new BankImpl (),

serviceWsdlURL, bus);

bus.registerServant (servant, bankServiceName, "BankPort");

29

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX

C++

For example, in an Artix C++ application, this happens after the following
call:

Bus var server bus = Bus.init (argc, argv);

BankServiceImpl servant;
bus->register servant (

servant,

wsdl location,

QName ("http://www.iona.com/bus/tests", "BankService")
)i

When a service is removed, a corresponding MBean is unregistered from the
MBeanServer.

Service naming convention An Artix service objectName uses the following convention:

com.iona.instrumentation:type=Bus.Service, name="{namespace}local
name", Bus=busIdentifier

In this format, a name has an expanded service QName as its value. This
value includes double quotes to permit for characters that otherwise would
not be allowed.

Service attributes The following service component attributes can be managed by any JMX
client:

Table 3: Managed Service Attributes

Name Description Type Read/Write
name Service QName in expanded String No
form.
state Service state. String No
serviceCounters Service performance data. CompositeData No
ports A list of ObjectNames ObjectName[] No
representing ports for this
service.

30

Managed Service Components

name is an expanded QName, such as

{http://www.iona.com/bus/tests}BankService.

state represents a current service state that can be manipulated by stop

and start methods.

ports is a list of ObjectNames that can be used by JMX clients to build a
tree of components. Given this list, you can find all other registered Port
MBeans which happen to belong to this Service.

serviceCounters attributes

The following service performance attributes can be retrieved from the

serviceCounters attribute:

Table 4: serviceCounters Attributes

request-processing errors.

Name Description Type

averageResponseTime Average response time in Float
milliseconds.

requestsOneway Total number of oneway requests Long
to this service.

requestsSincelastCheck | Number of requests happened Long
since last check.

requestsTotal Total number of requests Long
(including oneway) to this service.

timeSincelastCheck Number of seconds elapsed since Long
last check.

totalErrors Total number of Long

For examples of service attributes displayed in a JMX console, see “Using
JMX Consoles with Artix” on page 45

31

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX

Service methods If you wish to write your own JMX client, you can use the following service

methods to manage a specific service:

Table 5: Managed Service Attributes

Name Description Parameters | Return Type
name Start (activate) a service. None Void
state Stop (deactivate) a service. None Void

All the attributes and methods described in this section can be accessed by
introspecting MBeanInfo for the Service component.

Example JMX client The following code extract from an example JMX client application shows

32

how to access service attributes and methods:
MBeanServerConnection mbsc = ...;
String busScope = ...;
ObjectName serviceName = new ObjectName ("com.iona.instrumentation:type=Bus.Service" +
", name=\"{http://www.iona.com/hello world soap http}SOAPService\""
+",Bus=" + busScope) ;
if (!mbsc.isRegistered(serviceName)) {
throw new MBeanException ("Service MBean should be registered");
// MBeanInfo can be used to check for all known attributes and methods

MBeanInfo info = mbsc.getMBeanInfo (serviceName) ;

// service name
String name = (String)mbsc.getAttribute (serviceName, "name");

// check service state attribute then reset it by invoking stop and start methods
String state = (String)mbsc.getAttribute (serviceName, "state");

if (!state.equals ("ACTIVATED")) {
throw new MBeanException ("Service should be activated");

mbsc.invoke (serviceName, "stop", null, null);

Managed Service Components

state = (String)mbsc.getAttribute (serviceName, "state");
if (!state.equals("DEACTIVATED")) {
throw new MBeanException ("Service should be deactivated now");

mbsc.invoke (serviceName, "start", null, null);
state = (String)mbsc.getAttribute (serviceName, "state");

if (!state.equals("ACTIVATED")) {
throw new MBeanException ("Service should be activated again");

// check service counters

CompositeData counters = (CompositeData)mbsc.getAttribute (serviceName, "serviceCounters");
Long requestsTotal = (Long)counters.get ("requestsTotal") ;
Long requestsOneway = (Long)counters.get ("requestsOneway") ;
Long totalErrors = (Long)counters.get ("totalErrors") ;
Float averageResponseTime = (Float)counters.get ("averageResponseTime");
Long requestsSincelLastCheck = (Long)counters.get ("requestsSincelastCheck") ;
Long timeSincelastCheck = (Long)counters.get ("timeSincelLastCheck");
// ports
ObjectName[] portNames = (ObjectName[])mbsc.getAttribute (serviceName, "ports");
Further information MBeaninfo

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html

CompositeData

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/Co
mpositeData.html

33

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/CompositeData.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/CompositeData.html

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX

Artix Locator Service

Overview

Locator attributes

34

The Artix locator can also be exposed as a JMX MBean. A locator managed
component is a service managed component that can be managed like any
other bus service with the same set of attributes and methods. The Artix

locator also exposes it own specifc set of attributes.

An Artix locator MBean exposes the following locator-specific attributes:

Table 6: Locator MBean Attributes

failures.

Name Description Type
registeredEndpoints Number of registered endpoints. | Integer
registeredServices Number of registered services, Integer
less or equal to number of
endpoints.

serviceLookups Number of service lookup Integer
requests.

serviceLookupErrors Number of service lookup Integer
failures.

registeredNodeErrors Number of node (peer ping) Integer

Managed Service Components

Example JMX client The following code extract from an example JMX client application shows
how to access locator attributes and methods:

MBeanServerConnection mbsc = ...;
String busScope = ...;
ObjectName serviceName = new ObjectName ("com.iona.instrumentation:type=Bus.Service" +
", name=\"{http://ws.iona.com/2005/11/locator}LocatorService\""
+",Bus=" + busScope) ;

// use common attributes and methods, see an example above

// Locator specific attributes

Integer regServices = (Integer)mbsc.getAttribute (serviceName, "registeredServices");
Integer endpoints = (Integer)mbsc.getAttribute (serviceName, "registeredEndpoints");
Integer nodeErrors = (Integer)mbsc.getAttribute (servicetName, "registeredNodeErrors");
Integer lookupErrors = (Integer)mbsc.getAttribute (serviceName, "servicelLookupErrors");
Integer lookups = (Integer)mbsc.getAttribute (serviceName, "serviceLookups");

35

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX

Artix Session Manager Service

Overview The Artix session manager can also be exposed as a JMX MBean. A session
manager component is a service managed component that can be managed
like any other bus service with the same set of attributes and methods. The
Artix session manager also exposes it own specifc set of attributes.

Session manager attributes An Artix session manager MBean exposes the following session
manager-specific attributes:

Table 7: Session Manager MBean Attributes
Name Description Type
registeredEndpoints | Number of registered endpoints. Integer
registeredServices Number of registered services, Integer
less or equal to number of
endpoints.
serviceGroups Number of service groups. Integer
serviceSessions Number of service sessions Integer
Example JMX client The following code extract from an example JMX client application shows

36

how to access session manager attributes and methods:

MBeanServerConnection mbsc = ...;
String busScope = ...;
ObjectName serviceName = new ObjectName ("com.iona.instrumentation:type=Bus.Service" +

", name=\"{http://ws.iona.com/sessionmanager}SessionManagerService\"" +",Bus=" +
busScope) ;
// use common attributes and methods, see an example above

// SessionManager specific attributes

Integer regServices = (Integer)mbsc.getAttribute (serviceName, "registeredServices");
Integer endpoints = (Integer)mbsc.getAttribute (serviceName, "registeredEndpoints");
Integer serviceGroups = (Integer)mbsc.getAttribute (serviceName, "serviceGroups");
Integer serviceSessions = (Integer)mbsc.getAttribute (serviceName, "serviceSessions");

Managed Port Components

Managed Port Components

Overview

Port MBean registration

Naming convention

Port attributes

This section describes the attributes that you can use to manage JMX
MBeans representing Artix port components. For example, you can use any
JMX client to perform the following tasks:

® Monitor managed ports.

® View message and request interceptors.

If you wish to write your own JMX client, this section also shows an example
of accessing these attributes in JMX code.

Port managed components are typically created as part of a service servant
registration. When service is activated, all supported ports will also be
registered as MBeans.

When a service is removed, a corresponding Service MBean, as well as all
its child Port MBeans are unregistered from the MBeanServer.

An Artix port objectName uses the following convention:

com.iona.instrumentation:type=Bus.Service.Port, name=portName, Bus
.Service="{namespace}localname",Bus=busIdentifier

The following bus component attributes can be managed by any JMX client:

Table 8: Supported Service Attributes

Name Description Type Read/Write
name Port name. String No
address Transport specific address String No
representing an endpoint.
interceptors List of interceptors for this String[] No
port.

37

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX

38

Table 8: Supported Service Attributes

Name Description Type Read/Write
transport An optional attribute ObjectName [] No
representing a transport for
this port.
interceptors

The interceptors attribute is a list of interceptors for a given port.
Internally, interceptors is an instance of TabularbData that can be
considered an array/table of compositepata. However, due to a current
limitation of compositeData, (no insertion order is maintained, which makes
it impossible to show interceptors in the correct order), the interceptors are
currently returned as a list of strings, where each string has the following
format:

[name]: name [typel: type [level]: level [description]: optional
description

In this format, type can be cpPp or Java; level can be Message Of Request.

It is most likely that this limitation will be fixed in a future JDK release,
probably JDK 1.7 because the enhancement request has been accepted by
Sun. In the meantime, interceptors details can be retrieved by parsing a
returned string array.

For examples of port attributes displayed in a JMX console, see “Using JMX
Consoles with Artix” on page 45

Managed Port Components

Example JMX client The following code extract from an example JMX client application shows
how to access port attributes and methods:

MBeanServerConnection mbsc = ...;

String busScope = ...;
ObjectName portName = new ObjectName ("com.iona.instrumentation:type=Bus.Service.Port" +
", name=SoapPort" +

",Bus.Service=\"{http://www.iona.com/hello world soap http}SOAPService\"" +",Bus=" +
busScope) ;

if (!mbsc.isRegistered (portName)) {
throw new MBeanException ("Port MBean should be registered");

// MBeanInfo can be used to check for all known attributes and methods
MBeanInfo info = mbsc.getMBeanInfo (portName) ;

// port name
String name = (String)mbsc.getAttribute (portName, "name");

// port address
String address = (String)mbsc.getAttribute (portName, "address");

// check interceptors

String[] interceptors = (String[])mbsc.getAttribute (portName, "interceptors");
if (interceptors.length != 6) {
throw new MBeanException ("Number of port interceptors is wrong");

handleInterceptor (interceptors([0],
"MessageSnoop",
"Message",
"CPP") ;

handleInterceptor (interceptors(1l],
"MessagingPort",
"Request",
"CPP") ;

handleInterceptor (interceptors([2],
"http://schemas.xmlsoap.org/wsdl/soap/binding",
"Request",
"CPP") ;

39

CHAPTER 1 | Monitoring and Managing an Artix Runtime with JMX

handleInterceptor (interceptors[3],
"TestInterceptor",
"Request",
"Java") ;
handleInterceptor (interceptors([4],
"bus response monitor interceptor",
"Request",
"CPP") ;
handleInterceptor (interceptors([5],
"ServantInterceptor",
"Request",
"CPP") ;

For example, the handleInterceptor () function may be defined as follows:

private void handlelnterceptor (String interceptor,
String name,
String level,
String type) throws Exception {

if (interceptor.indexOf ("[name]: " + name) == -1 |
interceptor.indexOf (" [type]: " + type) == -1 |
interceptor.indexOf ("[level]l: " + level) == -1) {

throw new MBeanException ("Wrong interceptor details");
}

// analyze this interceptor further

40

In this chapter

CHAPTER 2

Configuring JMX in
an Artix Runtime

This chapter explains how to configure an Artix runtime to be
managed with Java Management Extensions (JMX).

This chapter discusses the following topic:

Artix JMX Configuration page 42

41

CHAPTER 2 | Configuring JMX in an Artix Runtime

Artix JMX Configuration

Overview

Enabling the management plugin

Configuring remote JMX clients

42

This section explains the Artix configuration variable settings that you must
configure to enable JMX monitoring of the Artix runtime, and access for
remote JMX clients.

To expose the Artix runtime using JMX MBeans, you must enable a
bus_management plug-in as follows:

jmx_local
{

plugins:bus management:enabled="true";
i

This setting enables local access to JMX runtime MBeans. The
bus_management plug-in wraps runtime components into Open Dynamic
MBeans and registers them with a local MBeanServer.

To enable remote JMX clients to access runtime MBeans, use the following
configuration settings:

jmx remote

{
plugins:bus management:enabled="true";
plugins:bus management:connector:enabled="true";

bi

These settings allow for both local and remote access.

Specifying a remote access URL

Remote access is performed through JMX Remote, using an RMI Connector
on a default port of 1099. Using this configuration, you can use the following
JNDI-based JMXServiceURL to connect remotely:

service:jmx:rmi:///jndi/rmi://host:1099/artix

Configuring a stub-based
JMXServiceURL

Publishing the JMXServiceURL to
a local file

Artix JMX Configuration

Configuring a remote access port

To specify a different port for remote access, use the following configuration
variable:

plugins:bus management:connector:port="2000";
You can then use the following JMXServiceURL:

service:jmx:rmi:///jndi/rmi://host:2000/artix

You can also configure the connector to use a stub-based JMXServiceURL
as follows:

jmx_remote stub

{
plugins:bus_management:enabled="true";
plugins:bus_management:connector:enabled="true";
plugins:bus management:connector:registry:required="false";

}i

See the javax.management.remote.rmi package for more details on remote
JMX.

You can also request that the connector publishes its JMXServiceURL to a
local file:

plugins:bus management:connector:url:publish="true";
The following entry can be used to override the default file name:

plugins:bus management:connector:url:file="../../service.url";

43

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/package-summary.html

CHAPTER 2 | Configuring JMX in an Artix Runtime

Further information For further information, see the following:

RMI Connector
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/RMI
Connector.html

JMXServiceURL
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/JMXServ
iceURL.html

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/pack
age-summary.htmi

44

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/RMIConnector.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/JMXServiceURL.html

In this chapter

CHAPTER 3

Using JMX
Consoles with
Artix

You can use third-party management consoles that support
JMX Remote to monitor and manage Artix servers (forexample,
JConsole and MC4J). You can view the status of a bus instance,
stop or start a service, change bus logging levels, or view
interceptor chains. For convenience, Artix installs the MC4J
management console, which you can run out-of-the-box with
the JMX demo.

This chapter discusses the following topics:

Managing Artix Services with MC4J page 46
Managing Artix Services with JConsole page 65
Managing Artix Services with the JMX HTTP adaptor page 69

45

CHAPTER 3 | Using JMX Consoles with Artix

Managing Artix Services with MC4J

Overview

Starting the MC4J console

Running the JMX demo

46

You can use the open source MC4J management console to view service
attributes and operations, stop or start a service, view interceptor chains,
and change bus logging levels dynamically.

Artix installs MC4J into the Installbir\artix\4.1\mc47j directory. This
section uses the jmx_runtime Artix demo to show a detailed walk-through
example of how to use MC4J to monitor and manage an Artix server.

To start the MC4J management console, perform the following steps:
1. Change directory to Installpir\artix\4.1\bin.

2. Run the following command:

Windows > start mc4j.bat
UNIX % ./start_mc4j

Before creating a new server connection in the MC4J console, perform the
following steps:

1. Change to the demo directory:

cd InstallDir\artix\4.l\demos\advanced\management\jmx runtime
2. Build the C++ or Java demo:
C++ nmake

Java ant

3. Runthe C++ or Java server:

C++ run_cxx_server.bat

Java run_java_server.bat

Managing Artix Services with MC4J

Creating a new server connection To create a new server connection in the MC4J console, perform the
following steps:

1. Select MC4J Connections, and right click, as shown in Figure 2.

ax

Eonnections. []
the ket of =l VX Managament connections.

iOuiput - MCA) Errers.
oall trow o org.med Lo Bean, FRGanod
oall Erow o org.med La. b
oall trow o org.med Lo Besn, FReanod

TR

Java: g2y
Juwa 5421

Jara; 891

[& " AL

Figure 2: Connecting to a Server

47

CHAPTER 3 | Using JMX Consoles with Artix

2. Click Connection server... to launch the My wizard dialog, as shown in

Figure

My Wizard

Steps

3.

1. Connectto Server

2. Select Server Installation
3, Custormize classpath

4. Choose connector

Steps | Help |

Panel Name wizard {1 of 4)

[psr160 |
Start by selecting your server connection bype above

Name | M demo |

INDT Name | |

Initial Context Factory),jndi,rmi registry, RegistyContexiF actory ¥

Server URL k. rmiifdIiB70findifrmiiDLIE70:50087arti v

Principle [|

Credentials | |

< Back iNsxt:v I Firish | Cancel || Help

Figure 3: Server Connection Details

3. Inthe My Wizard dialog, select Jsr160 as your server connection type.

Enter oMx demo as your connection Name.

5. Enter the contents of the following file as the Server URL:

demos/advanced/management/jmx runtime/etc/connector.url

48

Managing Artix Services with MC4J

6. Click Next to go to next screen, as shown in Figure 4.

Steps Panel Name wizard (3 of 4)

Cannect ko Sarvar o |eesep librarias
Select Server Installation
Customize classpath
Chooss cornsctor

ETE

 Adkdticnal meil directory lbraries

|

3
% o
!R

| I O I |

Figure 4: Creation of Server Connection

7. Click Finish to finish the creation of a new server connection.

CHAPTER 3 | Using JMX Consoles with Artix

8. In the left panel of the MC4J console, a new server connection named
JMX demo iS Created, as shown in Figure 5:

MECAS 1.7 beta 8

'ﬁl‘\tﬂ Cornectons

& Ewcdeno
& [5]Globsl Cashbaerds
=]

i MBaans - Properties 4 x

<No Proparties

|: Outpast v x|

Figure 5: New Server Connection

Monitoring and managing a To monitor and manage an example service in the Mc4J console, perform
service the following steps:

1. Expand the MBeans tree node in the left panel of MC4J.
2. Double click on the following tree node, as shown in Figure 6:

Name='{http://www.iona.com/jmx runtime}SOAPService', type=Bus.

Service

50

Managing Artix Services with MC4J

This displays the attributes and operations of the soapservice in the
service properties dialog.

(o Propsrty Editor)
manageenk openibean. ConposkeD |

0
=)
gererk. openmbe: Bear(_]|

Java managemert.cpermbesn. Operibear (]

TED

wPWLIONa, Comy JTo:_runti

L |

qummwmmmm

| <rwmi-<b: 1 DL > CRIGE! COM 0N JOL, TNAgRMANt, urtine. | -

s rice m‘ . servee <be>

" Outpart - MC4) Ervors. x
call from ar ory.med).consele. bean ava: 140} -
call froa 1 3 ¥ ek ¥ 3.0
call from 43 console. benn - Java: 3221

Figure 6: Viewing Service Properties

51

CHAPTER 3 | Using JMX Consoles with Artix

3. Click the ... button at the right of the serviceCounters attribute in the
service properties dialog. This displays the details for the
serviceCounters attribute, as shown in Figure 7.

name="[htip:/Awww.iona.com/jmx_runtime JSOAPService”,lype... ‘z

8 Composite ftems
averageResponseTime oo
reguestsOneway o
requestsSincel astCheck o
requestsTotal 1]
timeSinceLastCheck 150
totalErrors o
service counters @

Figure 7: Viewing Service Counters Properties

4. Click the ... button at right of the stop operation on the service
properties dialog. This displays a dialog for the stop operation, as
shown in Figure 8.

Figure 8: Stopping a Service

52

Managing Artix Services with MC4J

5. Click Execute... to stop the service. In the soarservice properties
dialog, the state attribute of the service becomes DEACTIVATED, as
shown in Figure 9.

name="[htip:/hwww.iona.com/jmx_runtime JSOAPService”,lype... |X

ports (Mo Property Editar)

serviceCounters]a'vax.management‘Duenmhean.CDmpnsltaDm

State DEACTIVATED Q

name {http: [fvwiw jona.cq —— 50APSe()
= Operstions

start]avax.managament‘openmbean.ODEnMBeanm

Javax.man an =

stop @
pause service

Figure 9: Deactivated Service

6. Click the ... button at the right of start operation on SOAP service
properties. This displays a dialog for the start operation, which is the
same as the one shown in Figure 8.

53

CHAPTER 3 | Using JMX Consoles with Artix

7. Click Execute... to restart the service. In the service properties dialog,
the state of the soapservice becomes ACTIVATED, as shown in
Figure 10.

name-"{ hiip:hwww. iona.com/jmx_runtime JSOAPService™, type... ‘Xl

= Attributes
ports (Mo Praperty Editor)
serviceCounters iavax.management.Dpenmhean.tnmposwteDD
state ACTIVATED [
name {hitp: /e iona ‘comfimx_runt\me}-SOAPSeE]
ezr il
stop javax.management.Dpenmhean.OpenMEeanD
start @
restart service

Figure 10: Activated a Service

54

Managing Artix Services with MC4J

Monitoring a service port To monitor an example service port in the Mc4J console, perform the
following steps:

1. Click the following node in the left panel of the MC4J console:

name=SoapPort, tyoe=Bus.Service.Port
This displays the attributes for soaprort, as shown in Figure 11.

9
Tooks Wiow Help

=11 B

“MCA) Connections:
M43 Conrections

<Pk b >gonm, <> o Uk,

b

- Outpart - MC4J Errors

call from AL oky.med). console. bean MEeasRo

call from &t org.mcd) La. b L5l i Java: £421

Figure 11: Viewing Port Properties

55

CHAPTER 3 | Using JMX Consoles with Artix

2. Click the ... button at the right of the interceptors attribute in
Figure 11. This displays the interceptors properties for the selected
bus, as shown in Figure 12.

name-SoapPort type Bus_Service.Porl - interceptors

[name]: MessageSnoop , [level): Message , [type]: CPP
[name]: MessagingPort , [level]): Request , [type]: CPP
xmlsoap

[name]: http: /isch g/wsdijsoap/binding, [level]: Request , [type]: CPP
[name]: bus_response_monitor_interceptor , [level]: Request , [type]: CPP
[name]: Servantinterceptor, [level]: Request, [type]: CPP

Figure 12: Viewing Interceptor Properties

Further information For full details on using the MC4J management console, see the MC4J
documentation:

http://mc4j.org/confluence/display/MC4J/User+Guide

56

http://mc4j.org/confluence/display/MC4J/User+Guide

Managing Artix Services with MC4J

Managing Logging Levels with MC4J

Overview

Defined demo logging
configuration

Viewing logging levels for a
subsystem

This section uses the jmx_runtime Artix demo to show a detailed
walk-through example of how to use the MC4J console to manage Artix bus
logging levels dynamically at runtime.

The following logging configuration is defined in the demos.jmx_runtime
configuration scope:

Logging Subsystem Logging Level

IT BUS LOG_ERROR

IT BUS.CORE LOG INFO LOW

This means that the logging level for 1T_Bus, and all of its child subsystems,
is LoG_ERROR. The only exception is 1T_BUS.CORE, which has a logging level
of LOG_INFO_LOW.

To view logging levels for a specified Artix logging subsystem in MC4J,
perform the following steps:

1. Expand the following tree node in the left panel of MC4J:

name=demos.Jjmx runtime.server, type=Bus

2. Expand the operations node.

Double click getLoggingLevel. This displays the My Wizard screen, as
shown in Figure 13.

57

CHAPTER 3 | Using JMX Consoles with Artix

You can use this wizard to view the logging level of a specified
subsystem.

<o Fanpeties

Figure 13: Logging Viewing Wizard

58

4.

Managing Artix Services with MC4J

Enter the 1T _BUs subsystem, as shown in Figure 14.

[=B | [We> || Fwish | [concel || Hep |

Figure 14: Entering a Logging Subsystem

5.

6.

Click Next. This displays the logging level of IT BUS as LOG_ERROCR, as

shown in Figure 15.
Click Finish.

59

CHAPTER 3 | Using JMX Consoles with Artix

60

3 -

Steps Panel Name wizord (2 of 2) W
b EoEEEe Gl

LOG_ERROR
e
o .
= &
e R | D e 1 .aJ
[<Back || mests | [Pmsh | [cancel][beb

Figure 15: Displayed Logging Level

7.

10.

Similarly, use the My Wizard screen to enter a logging subsystem of
IT BUS.INITIAL REFERENCE.

Click Next. The logging level for the IT BUS.INITIAL REFERENCE
subsystem is also displayed as LoG_ERROR. The

IT BUS.INITIAL REFERENCE Subsystem inherits the same logging level
from its 1T BUS parent.

Finally, use the My Wizard screen to enter a logging subsystem of

IT BUS.CORE.

Click Next. The logging level for 1T BUs.cORE is displayed as
LoG_INFO_LOW. The logging level for 1T _BUS.CORE has been configured

differently from its 1T _Bus parent (see “Defined demo logging
configuration” on page 57).

Setting the logging level for a
subsystem

Managing Artix Services with MC4J

To set the logging level for a specified logging subsystem, perform the

following steps:

1. Double click the setLoggingLevel node in the left panel of the MC4J
console. This displays the My Wizard screen, as show in Figure 16.

2. Enter 1T_Bus for the subsystem, and Loc_waRN for the logging 1evel, as
as show in Figure 16.

[=B | [We> || Fwish | [concel || Hep |

Figure 16: Setting a Logging Level

61

CHAPTER 3 | Using JMX Consoles with Artix

62

3.

Click Next. This displays true, as shown in Figure 17, which means
that the logging level is set successfully.

My Wizard

I

=8 S
8 T I—— s |l .Z.J

3]

Steps Panel Name wizord (2 of 2)

1. Erkerparametees e TER
2. View results

e

[<Back || mests | [Pmsh | [cancel][beb

Figure 17: Logging Level Set Successfully

4.

View the logging level of the 1T BUS subsystem to verify your setting
(as described in “Viewing logging levels for a subsystem” on page 57).
The logging level for IT BUS is NOW LOG_WARN.

View the logging level for the IT BUS.INITIAL REFERENCE Subsystem.
The logging level for IT BUS.INITIAL REFERENCE iS alSO LOG WARN.
View the logging level for 1T _BUS.CORE. The logging level of

IT BUS.CORE is still Loc_INFO Low. It does not inherit the LoG waRN
level from its parent because its logging level has been configured
separately (see “Defined demo logging configuration” on page 57).

Setting the logging level for a
subsystem with propagation

Managing Artix Services with MC4J

To set a logging level to override a child subsystem with a separately

configured logging level, perform the following steps:

1. Double click the setLoggingLevelPropagate tree node in left panel of
MC4J. This displays the My Wizard screen, as shown in Figure 17.

Steps. Panel Name wizard {1 of 2}

1. Enter parameters
2, Miew resuls

[=pack | [me> || Frish | [concel][Hep |

Figure 18: Propagating a Logging Level

2. Enter 1T _BUS as the subsystem, and LoG_SILENT as the logging level.

3. Click Next. The returned value is true, which means that the logging
level is set successfully.

4. View the logging level for 1T BUS (as described in “Viewing logging
levels for a subsystem” on page 57). The logging level for 1T _BUS is
LOG_SILENT.

63

CHAPTER 3 | Using JMX Consoles with Artix

5. View the logging level for IT BUS.INITIAL REFERENCE. The logging
level for IT BUS.INITIAL REFERENCE iS alSO LOG SILENT.

6. View the logging level for 1T BUs.coRE. The logging level for
IT BUS.CORE is also LoG_SILENT. Specifying propagation overrides log
levels for all child logging subsystems.

Further information For detailed information on Artix logging, see Configuring and Deploying
Artix Solutions.

64

../deploy/index.htm
../deploy/index.htm

Managing Artix Services with JConsole

Managing Artix Services with JConsole

Overview You can also use JConsole, which is provided with JDK 1.5, to monitor and
manage Artix applications. JConsole displays Artix runtime managed
components in a hierarchical tree, as shown in Figure 19.

Using JConsole To use JConsole, perform the following steps:
1. Start up JConsole using the following command:
JDK_HOME/bin/jconsole
2. Select the Advanced tab.
Enter or paste a JMXServiceURL (either the default URL, or one copied
from a published connector.url file).

Managing services Figure 19 shows the attributes displayed for a managed service component
(for example, the serviceCounters performance metrics displayed in the
right pane). For detailed information on these attributes, see “Service
attributes” on page 30.

65

CHAPTER 3 | Using JMX Consoles with Artix

J25E 5.0 Monitoring & Management Console: service: jmx:rmi:/jndifrmi://sberyoz: 5008/artix
Connection

rSummary rMemory rThreads rCIasses rMBeans vM |
MBeans

ﬁ Tree

o= 9 Caonnectar

attributes | Operations | Notifications | Info |

Mame Walue
& O Jmimplementation name {httpfwewiona. comijrruntime }SOAP Service
? [com.iona.instrumentation ports javax, t.Ohject [1]

¢ CJEBus
@ demos jmx_runtime.server
¢ 3 Bus.Service
¢ 3 demos jrme_runtime.server
&3 "{hitp e iona.comijm_runtime}S0AP Service"

Tahular Havigation

Composite Havigation

¢ [J Bus.Service.Port Mame Walue
& [dernos jr_runtime.server sericeCounters averag?Rgsponseﬂme 3-023500001
" . :] " o requestsOneway
hitp:fiwnees iona.comijrme_runtime }30AP Service
L= fe goapPon I ! requestzSincelastCheck 1]
i reguestsTotal g
¢ 3 Bus.Service. Part Transpart fimeSinceLastoheck 510
¢ 3 demos jrme_runtime.server totalErrars il
- 3 "ihttp: v iona.comijrmz_runtime lS0APService”
¢ 3 SoapPart
@ HTTP state ACTIVATED

Figure 19: Managed Service in JConsole

66

Managing Artix Services with JConsole

Managing ports Figure 20 shows the attributes displayed for a managed port component (for
example, the interceptors list displayed in the right pane). For detailed
information on these attributes, see “Port attributes” on page 37.

J2SE 5.0 Monitoring & Management Console: service: jmx:rmi:fifjndifrmi://sberyoz: 5008/ artix

Conhection
Summary rMEll'H]ly r Threads rCIassES r’ MBeans | VM ‘
MBeans
Tree | attributes | Operations | ofifications | Info |
o [Connectar : MName Value
& [JMimplemmentation “|[address hitpi 0.5.2.47:90007
? [T com.onainstrumentation - [name]: [level]: [type]: CPP
: s : . :
7 CJEBus) [name]: MessagingPort , [level]: Request , [type]: CPP
@@ demos jmx_runtime server [name]: : org inding , [levell;
4[] Bus.Serice

[name]: bus_response_monitor_interceptor , [level]l: Reguest ,

[demos.jm_runtime.senver [name]: Servantinterceptor , [levell: Request, [type]: CPP

@@ "{httpfaeee iona.comims_runtime}SO0APSerice” flinterceptars
¢] Bus Genvice Part |

93 demos jrmy_runtime server

@ 3 "{httpcitanane inna comijrme_runtime}30APSemvice"

3 SoapPor :
¢ [Bus Sewice PorLTransport : B" — Il I [v
. Jname 0apFol
dermas.jmy_runtime. server a1
? l? = "{hrt:o'ﬂ\;wwiona oM runtimeS0AP Service” transpor com.iona instrurmentationtype=Bus.Serice Port Transport Bus=...
¢ [SoapPort :
@ HTTP

Refresh

Figure 20: Managed Port in JConsole

67

CHAPTER 3 | Using JMX Consoles with Artix

Managing containers Figure 21 shows an example of a locator service deployed into an Artix

container. For more information, see “Locator attributes” on page 34.

J2SE 5.0 Monitoring & Management Console: service: jmx: rmi:/i/jndifrmi://sberyoz: 500B/artix

Connection

rSummary rMEll'H]ly rThrEads rCIassEs rMBeans Vi |

MBeans

ﬁTree
o [Connectar
o 7 Jmimplementation
¢ [comiona.instrurnentation
¢ CJBus
@ demos locator_lnad_balancing locator
¢] Bus.Service
¢ 3 demos.locator_load_balancing. locator
@ "{httpiws.iona.comiz0050 1locatoriLocator3erice”
@@ “{hitpivwes. iona.comfcontaineriContainergervice”

o [Bus Service.Port

Marne

|| Attributes | Operations | Notifications | Info |

Walue

“Aname

fhttpifes.iona.com20051 1ocatoriLocatorService

“ports

java:

:|registeredEndpoints

“|registeredModeErors

“registeredGenices

@@ "[http:ffws iona comipeer_manageriPeertanagerSerice”

Tabular Havigation

& [J Bus.Service.Port Transport _: Natne Value
“|senviceCounters averageResponseTime 0.0010
E reguests Dnewsay i
requestsSincelastCheck 1
requestsTotal 1
tirmesincelastCheck 3
totalErrors i]
HsemvicelookupErrors (1]
sernviceLookups 1
ACTIVATED

“state

Figure 21: Managed Locator in JConsole

Note: When using a JMX console to manage a service running in an Artix
container, set the serviceMonitoring attribute to true to enable service
performance monitoring (see “Bus attributes” on page 24).

Further information For more information on using JConsole, see the following:

http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html

68

http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html

Managing Artix Services with the JMX HTTP adaptor

Managing Artix Services with the JMX HTTP
adaptor

Overview You can also manage Artix services using the default HTTP adaptor console
that is provided with the JMX reference implementation. This console is
browser-based, as shown in Figure 22.

Using the JMX HTTP adaptor To use the JMX HTTP adaptor, perform the following steps:
1. Specify following configuration settings:
plugins:bus management:http adaptor:enabled="true";
plugins:bus management:http adaptor:port="7659";

2. Enter the following URL in your browse:

http://localhost:7659
This displays the main HTTP adaptor management view, as shown in
Figure 22.

69

CHAPTER 3 | Using JMX Consoles with Artix

70

] [JDMK5. 1_r01] Agent View - Microsoft Internet Explorer

i

Fle Edt Wew Favorkes Tools Hslp

Qe - € - |£] @ “h pSaarch i‘:/Favnntes & [’})- ; - @ é% 32
Address (@] httpijflocalhost 7653} Y B ks >
Gouogle - | v| [C search - | Ei72blocked | ¥ heck + SR Autolik ~ . |auroril] options

[IDMES.1_101]

Agent View

Biferby objectnams[” |

This agent 15 registered on the domain DefusliDomain
This page contains 6 MBean(s)

List of registered MBeans by domain:

o Adaptor
+ name=html port=765%

o JMhnplementation

» type=MBeanServerDelegate

o comionainstrumentation
+ type=Bus name=demos.jm= _runtime. server
o type=Bus. Service Bus=demos. jmx runtime. server name="{http.fwww iona comfine runtime} SOAP Service”
+ type=Bus Serwice Port Bus=democs ym=z runtime.server Bus. Serwice="{http /fwww iona com/fimz runtime} SOAP Service" name=SoapPort
o type=Bus.Service Port. Transport Bus=demos jmwx runtime. server Bus. Service="{http/ferww.iona com/fjms runtime}
SOAPService” Bus Sernice Port=3capFort name=HTTFE

&) % Lacal intranet

Figure 22: HTTP Adaptor Main View

Managing Artix Services with the JMX HTTP adaptor

Figure 23 shows the attributes displayed for a managed bus component (for

example, the services that it includes). For detailed information on these
attributes, see “Bus attributes” on page 24.

2 MBean View of com.iona.instrumentation:type=Bus,name=demos. jmx_runtime.server - Microsoft Internet Explorer
File Edt Wew Favortes Tools Help

Qe -) @ @ \;j pSaarch %i\\?Favnmtes @ B"; v@ é% 2

Adivess [{€] httpijjlacalhast 7653 ViewObjectRes]feoms2Eionat2Einstrumenation™: 3atype ™ 30Bus%2Cname %, 30demos ¥ iM% SFrUnt e ZEserver

Google - | v [G search - | B 172blocked | 4

S Check - U5 Auolink - | Auroril [options A

F

Y B ks ™

Reload Penod i seconds €

MBean description:

Bus

List of MBean attributes:

Name Type ‘ Access ‘ Value
arguments javalang String[] | RO |wew the values of arguments 5
identifier javalang String | RO art
scope javalang String | RO demos jm=_runtime. server
services javaz.management. ObjectName[] RO view the values of services
| servicesMonitoring

JavalangBoolEan‘ EW ‘@True (O False

&) Dane

3

% Lacal intranet

Figure 23: HTTP Adaptor Bus View

Further information For further information on using the HTTP JMX adaptor, see the following:

http://java.sun.com/developer/technicalArticles/J2SE/jmx.html

71

http://java.sun.com/developer/technicalArticles/J2SE/jmx.html

CHAPTER 3 | Using JMX Consoles with Artix

72

Index

A

address 37

arguments 24
averageResponseTime 31

B
bus
attributes 24
ObjectName 23
bus_management 42

C

CompositeData 38
connector.url 65
custom JMX MBeans 20

G
getLogginglLevel 25

H
HTTP adaptor 69

|
identifier 24
interceptors 37, 67

J

Java Management Extensions 17, 41
JConsole 65

JMX 17, 41

JMX HTTP adaptor 69

JMX Remote 21

JMXServiceURL 42

L
locator

managed attributes 34
logging

levels 25

subsystems 25

M

Managed Beans 18
management consoles 45
MBeans 18

MBeanServer 18
MBeanServerConnection 20
MC4J 46

P

plugins:bus_management:connector:enabled 42
plugins:bus_management:connector:registry:require
d 43

plugins:bus_management:connector:url:file 43
plugins:bus_management:connector:url:publish 43
plugins:bus_management:enabled 42
plugins:bus_management:http_adaptor:enabled 69
plugins:bus_management:http_adaptor:port 69
port

name 37

ObjectName 37
ports 30

R

registeredEndpoints 34, 36
registeredNodeErrors 34
registeredServices 34, 36
remote access port 43
remote JMX clients 42
requestsOneway 31
requestsSincelLastCheck 31
requestsTotal 31

RMI Connector 42

runtime MBeans 20

S

scope 24
service
attributes 30
managed components 29
methods 32
name 30
ObjectName 30

73

INDEX

serviceCounters 30
serviceGroups 36
serviceLookupErrors 34
serviceLookups 34
services 24
serviceSessions 36
servicesMonitoring 24
session manager
managed attributes 36
setLogginglevel 25

74

setLogginglevelPropagate 25

state 30

T

TabularData 38
timeSincelLastCheck 31
totalErrors 31
transport 38

	List of Figures
	List of Tables
	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	The Artix Library
	Getting the Latest Version
	Searching the Artix Library
	Artix Online Help
	Artix Glossary
	Additional Resources
	Document Conventions

	Monitoring and Managing an Artix Runtime with JMX
	Introduction
	Managed Bus Components
	Managed Service Components
	Artix Locator Service
	Artix Session Manager Service

	Managed Port Components

	Configuring JMX in an Artix Runtime
	Artix JMX Configuration

	Using JMX Consoles with Artix
	Managing Artix Services with MC4J
	Managing Logging Levels with MC4J

	Managing Artix Services with JConsole
	Managing Artix Services with the JMX HTTP adaptor

	Index

