
WSDL Extension Reference
Version 4.1, September 2006

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work
Together, Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2006 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: May 4, 2007

Contents

Preface 11

What is Covered in this Book 11
Who Should Read this Book 11
How to Use this Book 11
The Artix Library 11
Getting the Latest Version 14
Searching the Artix Library 15
Artix Online Help 15
Artix Glossary 15
Additional Resources 16
Document Conventions 16

Part I Bindings

SOAP 1.1 Binding 21
soap:binding 21
soap:operation 22
soap:body 23
soap:header 25
soap:fault 26

SOAP 1.2 Binding 29
wsoap12:binding 29
wsoap12:operation 30
wsoap12:body 31
wsoap12:header 33
wsoap12:fault 34

MIME Multipart/Related Binding 37
Namespace 37
mime:multipartRelated 37
 3

CONTENTS
mime:part 38
mime:content 38

CORBA Binding and Type Map 41
CORBA Binding Extension Elements 42

Namespace 42
Primitive Type Mapping 42
corba:binding 44
corba:operation 44
corba:param 45
corba:return 45
corba:raises 46

CORBA Type Map Extension Elements 47
corba:typeMapping 47
corba:struct 48
corba:member 48
corba:enum 49
corba:enumerator 50
corba:fixed 50
corba:union 52
corba:unionbranch 52
corba:case 53
corba:alias 54
corba:array 55
corba:sequence 56
corba:exception 57
corba:anonsequence 58
corba:anonstring 60
corba:object 61

Tuxedo FML Binding 67
Namespace 67
FML\XMLSchema Support 67
tuxedo:binding 68
tuxedo:fieldTable 68
tuxedo:field 69
tuxedo:operation 69
4

CONTENTS
Fixed Binding 71
Namespace 71
fixed:binding 71
fixed:operation 72
fixed:body 72
fixed:field 73
fixed:enumeration 76
fixed:choice 77
fixed:case 78
fixed:sequence 80

Tagged Binding 83
Namespace 83
tagged:binding 83
tagged:operation 85
tagged:body 85
tagged:field 86
tagged:enumeration 86
tagged:sequence 87
tagged:choice 89
tagged:case 90

TibrvMsg Binding 93
Namespace 93
TIBRVMSG to XMLSchema Type Mapping 93
tibrv:binding 95
tibrv:operation 96
tibrv:input 96
tibrv:output 98
tibrv:array 99
tibrv:msg 102
tibrv:field 103
tibrv:context 104

XML Binding 107
Namespace 107
xformat:binding 107
xformat:body 108
 5

CONTENTS
RMI Binding 109
Namespace 109
rmi:class 109
rmi:address 110

Part II Ports

HTTP Port 113
Standard WSDL Elements 114

http:address 114
soap:address 114
wsoap12:address 114

Artix Extension Elements 115
Namespace 115
http-conf:client 115
http-conf:server 118

Attribute Details 121
AuthorizationType 121
Authorization 121
Accept 121
AcceptLanguage 122
AcceptEncoding 123
ContentType 123
ContentEncoding 124
Host 124
Connection 125
CacheControl 125
BrowserType 128
Referer 128
ProxyServer 129
ProxyAuthorizationType 129
ProxyAuthorization 129
UseSecureSockets 130
RedirectURL 130
ServerCertificateChain 130
6

CONTENTS
CORBA Port 131
Namespace 131
corba:address 131
corba:policy 132

IIOP Tunnel Port 133
Namespace 133
iiop:address 133
iiop:payload 134
iiop:policy 134

WebSphere MQ Port 137
Artix Extension Elements 138

Namespace 138
mq:client 138
mq:server 140

Attribute Details 143
Server_Client 143
AliasQueueName 144
UsageStyle 146
CorrelationStyle 146
AccessMode 147
MessagePriority 148
Delivery 149
Transactional 149
ReportOption 150
Format 152

JMS Port 155
Namespace 155
jms:address 155
jms:JMSNamingProperty 156
jms:client 157
jms:server 157

Tuxedo Port 159
Namespace 159
 7

CONTENTS
tuxedo:server 159
tuxedo:service 159
tuxedo:input 160

Tibco/Rendezvous Port 161
Artix Extension Elements 162

Namespace 162
tibrv:port 162

Attribute Details 166
bindingType 166
callbackLevel 166
responseDispatchTimeout 167
transportService 167
transportNetwork 167
cmTransportServerName 167
cmQueueTransportServerName 167

File Transfer Protocol Port 169
Namespace 169
ftp:port 169
ftp:properties 170
ftp:property 170

Part III Other Extensions

Routing 175
Namespace 175
routing:expression 175
routing:route 176
routing:source 176
routing:query 177
routing:destination 177
routing:transportAttribute 178
routing:equals 179
routing:greater 180
routing:less 180
8

CONTENTS
routing:startswith 181
routing:endswith 181
routing:contains 182
routing:empty 182
routing:nonempty 183
Transport Attribute Context Names 183

Security 185
Namespace 185
bus-security:security 185

Codeset Conversion 189
Namespace 189
i18n-context:client 189
i18n-context:server 190

Index 191
 9

CONTENTS
10

Preface
What is Covered in this Book
This book is a reference to all of the Artix specific WSDL extensions used in
Artix contracts.

Who Should Read this Book
This book is intended for Artix users who are familiar with Artix concepts
including:

� WSDL

� XMLSchema

� Artix interface design

In addition, this book assumes that the reader is familiar with the transports
and middleware implementations with which they are working.

How to Use this Book
This book contains the following parts:

� �Bindings��contains descriptions for all the WSDL extensions used to
define the payload formats supported by Artix.

� �Ports��contains descriptions for all the WSDL extensions used to
define the transports supported by Artix.

� �Other Extensions��contains descriptions for the WSDL extensions
used by Artix to support features like routing.

The Artix Library
The Artix documentation library is organized in the following sections:

� Getting Started

� Designing Artix Solutions
 11

PREFACE
� Configuring and Managing Artix Solutions

� Using Artix Services

� Integrating Artix Solutions

� Integrating with Management Systems

� Reference

� Artix Orchestration

Getting Started

The books in this section provide you with a background for working with
Artix. They describe many of the concepts and technologies used by Artix.
They include:

� Release Notes contains release-specific information about Artix.

� Installation Guide describes the prerequisites for installing Artix and the
procedures for installing Artix on supported systems.

� Getting Started with Artix describes basic Artix and WSDL concepts.

� Using Artix Designer describes how to use Artix Designer to build Artix
solutions.

� Artix Technical Use Cases provides a number of step-by-step examples
of building common Artix solutions.

Designing Artix Solutions

The books in this section go into greater depth about using Artix to solve
real-world problems. They describe how to build service-oriented
architectures with Artix and how Artix uses WSDL to define services:

� Building Service-Oriented Infrastructures with Artix provides an
overview of service-oriented architectures and describes how they can
be implemented using Artix.

� Writing Artix Contracts describes the components of an Artix contract.
Special attention is paid to the WSDL extensions used to define
Artix-specific payload formats and transports.

Developing Artix Solutions

The books in this section how to use the Artix APIs to build new services:

� Developing Artix Applications in C++ discusses the technical aspects
of programming applications using the C++ API.
 12

../release_notes/index.htm
../install_guide/index.htm
../getting_started/index.htm
../designer/index.htm
../cookbook/index.htm
../soa/index.htm
../contract/index.htm
../prog_guide/index.htm

PREFACE
� Developing Advanced Artix Plug-ins in C++ discusses the technical
aspects of implementing advanced plug-ins (for example, interceptors)
using the C++ API.

� Developing Artix Applications in Java discusses the technical aspects
of programming applications using the Java API.

Configuring and Managing Artix Solutions

This section includes:

� Configuring and Deploying Artix Solutions explains how to set up your
Artix environment and how to configure and deploy Artix services.

� Managing Artix Solutions with JMX explains how to monitor and
manage an Artix runtime using Java Management Extensions.

Using Artix Services

The books in this section describe how to use the services provided with
Artix:

� Artix Router Guide explains how to integrate services using the Artix
router.

� Artix Locator Guide explains how clients can find services using the
Artix locator.

� Artix Session Manager Guide explains how to manage client sessions
using the Artix session manager.

� Artix Transactions Guide, C++ explains how to enable Artix C++
applications to participate in transacted operations.

� Artix Transactions Guide, Java explains how to enable Artix Java
applications to participate in transacted operations.

� Artix Security Guide explains how to use the security features in Artix.

Integrating Artix Solutions

The books in this section describe how to integrate Artix solutions with other
middleware technologies.

� Artix for CORBA provides information on using Artix in a CORBA
environment.

� Artix for J2EE provides information on using Artix to integrate with
J2EE applications.

For details on integrating with Microsoft�s .NET technology, see the
documentation for Artix Connect.
 13

../plugin_guide/index.htm
../java_pguide/index.htm
../deploy/index.htm
../jmx_mgmt/index.htm
../routing/index.htm
../locator_guide/index.htm
../session_mgr/index.htm
../transactions_cxx/index.htm
../transactions_java/index.htm
../security/index.htm
../corba_ws/index.htm
../j2ee/index.htm

PREFACE
Integrating with Management Systems

The books in this section describe how to integrate Artix solutions with a
range of enterprise and SOA management systems. They include:

� IBM Tivoli Integration Guide explains how to integrate Artix with the
IBM Tivoli enterprise management system.

� BMC Patrol Integration Guide explains how to integrate Artix with the
BMC Patrol enterprise management system.

� CA-WSDM Integration Guide explains how to integrate Artix with the
CA-WSDM SOA management system.

� AmberPoint Integration Guide explains how to integrate Artix with the
AmberPoint SOA management system.

Reference

These books provide detailed reference information about specific Artix
APIs, WSDL extensions, configuration variables, command-line tools, and
terms. The reference documentation includes:

� Artix Command Line Reference

� Artix Configuration Reference

� Artix WSDL Extension Reference

� Artix Java API Reference

� Artix C++ API Reference

� Artix .NET API Reference

� Artix Glossary

Artix Orchestration

These books describe the Artix support for Business Execution Process
Language (BEPL), which is available as an add-on to Artix. These books
include:

� Artix Orchestration Release Notes

� Artix Orchestration Installation Guide

� Understanding Artix Orchestration

� Artix Orchestration Administration Console Help.

Getting the Latest Version
The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.
 14

../tivoli/index.htm
../bmc/index.htm
../ca_wsdm/index.htm
../amberpoint/index.htm
../command_ref/index.htm
../config_ref/index.htm
../wsdl_ref/index.htm
../javadoc/index.html
../cppdoc/index.html
../ndoc/index.html
../glossary/index.htm
../orch_relnotes/index.htm
../orch_install/index.htm
../orch_intro/index.htm
http://www.iona.com/support/docs
http://www.iona.com/support/docs
../orch_admin/index.htm

PREFACE
Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Artix Library
You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right, for example:

http://www.iona.com/support/docs/artix/4.0/index.xml

You can also search within a particular book. To search within a HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Artix Online Help
Artix Designer and Artix Orchestration Designer include comprehensive
online help, providing:

� Step-by-step instructions on how to perform important tasks

� A full search feature

� Context-sensitive help for each screen

There are two ways that you can access the online help:

� Select Help|Help Contents from the menu bar. The help appears in
the contents panel of the Eclipse help browser.

� Press F1 for context-sensitive help.

In addition, there are a number of cheat sheets that guide you through the
most important functionality in Artix Designer and Artix Orchestration
Designer. To access these, select Help|Cheat Sheets.

Artix Glossary
The Artix Glossary is a comprehensive reference of Artix terms. It provides
quick definitions of the main Artix components and concepts. All terms are
defined in the context of the development and deployment of Web services
using Artix.
 15

http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/4.0/index.xml
../glossary/index.htm

PREFACE
Additional Resources
The IONA Knowledge Base contains helpful articles written by IONA experts
about Artix and other products.

The IONA Update Center contains the latest releases and patches for IONA
products.

If you need help with this or any other IONA product, go to IONA Online
Support.

Comments, corrections, and suggestions on IONA documentation can be
sent to .

Document Conventions
This book uses the following typographical and keying conventions

Typographical conventions

This book uses the following typographical conventions:

Fixed width Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/YourUserName

Italic Italic words in normal text represent emphasis and
new terms.

Bold Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes (for example, the User Preferences
dialog.)
 16

http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml

PREFACE
Keying conventions

This book uses the following keying conventions:

No prompt When a command�s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).
 17

PREFACE
 18

Part I
Bindings

In this part This part contains the following chapters:

SOAP 1.1 Binding page 21

SOAP 1.2 Binding page 29

MIME Multipart/Related Binding page 37

CORBA Binding and Type Map page 41

Tuxedo FML Binding page 67

Fixed Binding page 71

Tagged Binding page 83

TibrvMsg Binding page 93

XML Binding page 107

RMI Binding page 109
 19

20

CHAPTER 1

SOAP 1.1 Binding
This chapter describes the extensions used to define a SOAP
1.1 message in an Artix contract.

soap:binding

Synopsis <soap:binding style="..." transport="..." />

Description The soap:binding element specifies that the payload format to use is a SOAP
1.1 message. It is a child of the WSDL binding element.

Attributes The following attributes are defined within the soap:binding element.

� style
� transport

style

The value of the style attribute within the soap:binding element acts as
the default for the style attribute within each soap:operation element. It
indicates whether request/response operations within this binding are
RPC-based (that is, messages contain parameters and return values) or
document-based (that is, messages contain one or more documents).

Valid values are rpc and document. The specified value determines how the
SOAP Body element within a SOAP message is structured.

If rpc is specified, each message part within the SOAP Body element is a
parameter or return value and will appear inside a wrapper element within
the SOAP Body element. The name of the wrapper element must match the
operation name. The namespace of the wrapper element is based on the
value of the soap:body namespace attribute. The message parts within the
 21

CHAPTER 1 | SOAP 1.1 Binding
wrapper element correspond to operation parameters and must appear in
the same order as the parameters in the operation. Each part name must
match the parameter name to which it corresponds.

For example, the SOAP Body element of a SOAP request message is as
follows if the style is RPC-based:

If document is specified, message parts within the SOAP Body element
appear directly under the SOAP Body element as body entries and do not
appear inside a wrapper element that corresponds to an operation. For
example, the SOAP Body element of a SOAP request message is as follows if
the style is document-based:

transport

The transport attribute defaults to the URL that corresponds to the HTTP
binding in the W3C SOAP specification
(http://schemas.xmlsoap.org/soap/http). If you want to use another transport
(for example, SMTP), modify this value as appropriate for the transport you
want to use.

soap:operation

Synopsis <soap:operation style="..." soapAction="..." />

Description The soap:operation element is a child of the WSDL operation element. A
soap:operation element is used to encompass information for an operation
as a whole, in terms of input criteria, output criteria, and fault information.

Attributes The following attributes are defined within a soap:operation element:

� style

<SOAP-ENV:Body>
 <m:GetStudentGrade xmlns:m="URL">
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
 </m:GetStudentGrade>
</SOAP-ENV:Envelope>

<SOAP-ENV:Body>
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
</SOAP-ENV:Envelope>
22

� soapAction

style

This indicates whether the relevant operation is RPC-based (that is,
messages contain parameters and return values) or document-based (that
is, messages contain one or more documents).

Valid values are rpc and document. The default value for soap:operation
style is based on the value specified for the soap:binding style attribute.

See �style� on page 21 for more details of the style attribute.

soapAction

This specifies the value of the SOAPAction HTTP header field for the relevant
operation. The value must take the form of the absolute URI that is to be
used to specify the intent of the SOAP message.

soap:body

Synopsis <soap:body use="..." encodingStyle="..." namespace="..."
parts="..." />

Description The soap:body element in a binding is a child of the input, output, and fault
child elements of the WSDL operation element. A soap:body element is used
to provide information on how message parts are to be appear inside the body
of a SOAP message. As explained in �soap:operation� on page 22, the
structure of the SOAP Body element within a SOAP message is dependent on
the setting of the soap:operation style attribute.

Attributes The following attributes are defined within a soap:body element:

� use
� encodingStyle
� namespace
� parts

use

This mandatory attribute indicates how message parts are used to denote
data types. Each message part relates to a particular data type that in turn
might relate to an abstract type definition or a concrete schema definition.

Note: This attribute is mandatory only if you want to use SOAP over
HTTP. Leave it blank if you want to use SOAP over any other transport.
 23

CHAPTER 1 | SOAP 1.1 Binding
An abstract type definition is a type that is defined in some remote encoding
schema whose location is referenced in the WSDL contract via an
encodingStyle attribute. In this case, types are serialized based on the set
of rules defined by the specified encoding style.

A concrete schema definition relates to types that are defined in the WSDL
contract itself, within a schema element within the types component of the
contract.

The following are valid values for the use attribute:

� encoded
� literal

If encoded is specified, the type attribute that is specified for each message
part (within the message component of the WSDL contract) is used to
reference an abstract type defined in some remote encoding schema. In this
case, a concrete SOAP message is produced by applying encoding rules to
the abstract types. The encoding rules are based on the encoding style
identified in the soap:body encodingStyle attribute. The encoding takes as
input the name and type attribute for each message part (defined in the
message component of the WSDL contract). If the encoding style allows
variation in the message format for a given set of abstract types, the receiver
of the message must ensure they can understand all the format variations.

If literal is specified, either the element or type attribute that is specified
for each message part (within the message component of the WSDL
contract) is used to reference a concrete schema definition (defined within
the types component of the WSDL contract). If the element attribute is used
to reference a concrete schema definition, the referenced element in the
SOAP message appears directly under the SOAP Body element (if the
operation style is document-based) or under a part accessor element that
has the same name as the message part (if the operation style is
RPC-based). If the type attribute is used to reference a concrete schema
definition, the referenced type in the SOAP message becomes the schema
type of the SOAP Body element (if the operation style is documented-based)
or of the part accessor element (if the operation style is document-based).

encodingStyle

This attribute is used when the soap:body use attribute is set to encoded. It
specifies a list of URIs (each separated by a space) that represent encoding
styles that are to be used within the SOAP message. The URIs should be
listed in order, from the most restrictive encoding to the least restrictive.
24

This attribute can also be used when the soap:body use attribute is set to
literal, to indicate that a particular encoding was used to derive the
concrete format, but that only the specified variation is supported. In this
case, the sender of the SOAP message must conform exactly to the specified
schema.

namespace

If the soap:operation style attribute is set to rpc, each message part
within the SOAP Body element of a SOAP message is a parameter or return
value and will appear inside a wrapper element within the SOAP Body
element. The name of the wrapper element must match the operation
name. The namespace of the wrapper element is based on the value of the
soap:body namespace attribute.

parts

This attribute is a space separated list of parts from the parent input,
output, or fault element. When parts is set, only the specified parts of the
message are included in the SOAP Body element. The unlisted parts are not
transmitted unless they are placed into the SOAP header.

soap:header

Synopsis <soap:header message="..." part="..." use="..." encodingStyle="..."
namespace="..."/>

Description The soap:header element in a binding is an optional child of the input,
output, and fault elements of the WSDL operation element. A soap:header
element defines the information that is placed in a SOAP header element. You
can define any number of soap:header elements for an operation. As
explained in �soap:operation� on page 22, the structure of the SOAP header
within a SOAP message is dependent on the setting of the soap:operation
element�s style attribute.

Attributes The soap:header element has the following attributes.

message Specifies the qualified name of the message from which
the contents of the SOAP header is taken.

part Specifies the name of the message part that is placed
into the SOAP header.
 25

CHAPTER 1 | SOAP 1.1 Binding
soap:fault

Synopsis <soap:fault name="..." use="..." encodingStyle="..." />

Description The soap:fault element is a child of the WSDL fault element within an
operation component. Only one soap:fault element is defined for a
particular operation. The operation must be a request-response or
solicit-response type of operation, with both input and output elements. The
soap:fault element is used to transmit error and status information within a
SOAP response message.

Attributes The soap:fault element has the following attributes:

use Used in the same way as the use attribute within the
soap:body element. See �use� on page 23 for more
details.

encodingStyle Used in the same way as the encodingStyle attribute
within the soap:body element. See �encodingStyle� on
page 24 for more details.

namespace If the soap:operation style attribute is set to rpc, each
message part within the SOAP header of a SOAP
message is a parameter or return value and will appear
inside a wrapper element within the SOAP header. The
name of the wrapper element must match the operation
name. The namespace of the wrapper element is based
on the value of the soap:header namespace attribute.

Note: A fault message must consist of only a single message part. Also, it
is assumed that the soap:operation element�s style attribute is set to
document, because faults do not contain parameters.

name Specifies the name of the fault. This relates back to the
name attribute for the fault element specified for the
corresponding operation within the portType component
of the WSDL contract.

use This attribute is used in the same way as the use
attribute within the soap:body element. See �use� on
page 23 for more details.
26

encodingStyle This attribute is used in the same way as the
encodingStyle attribute within the soap:body element.
See �encodingStyle� on page 24 for more details.
 27

CHAPTER 1 | SOAP 1.1 Binding
28

CHAPTER 2

SOAP 1.2 Binding
This chapter describes the extensions used to define a SOAP
1.2 message in an Artix contract.

wsoap12:binding

Synopsis <wsoap12:binding style="..." transport="..." />

Description The wsoap12:binding element specifies that the payload format to use is a
SOAP 1.2 message. It is a child of the WSDL binding element.

Attributes The following attributes are defined within the wsoap12:binding element.

� style
� transport

style

The value of the style attribute acts as the default for the style attribute
within each wsoap12:operation element. It indicates whether
request/response operations within this binding are RPC-based (that is,
messages contain parameters and return values) or document-based (that
is, messages contain one or more documents).

Valid values are rpc and document. The specified value determines how the
SOAP Body element within a SOAP message is structured.

If rpc is specified, each message part within the SOAP Body element is a
parameter or return value and will appear inside a wrapper element within
the SOAP Body element. The name of the wrapper element must match the
operation name. The namespace of the wrapper element is based on the
value of the soap:body namespace attribute. The message parts within the
 29

CHAPTER 2 | SOAP 1.2 Binding
wrapper element correspond to operation parameters and must appear in
the same order as the parameters in the operation. Each part name must
match the parameter name to which it corresponds.

For example, the SOAP Body element of a SOAP request message is as
follows if the style is RPC-based:

If document is specified, message parts within the SOAP Body element
appear directly under the SOAP Body element as body entries and do not
appear inside a wrapper element that corresponds to an operation. For
example, the SOAP Body element of a SOAP request message is as follows if
the style is document-based:

transport

The transport attribute specifies a URL describing the SOAP transport to
which this binding corresponds. The URL that corresponds to the HTTP
binding in the W3C SOAP specification is
http://schemas.xmlsoap.org/soap/http. If you want to use another
transport (for example, SMTP), modify this value as appropriate for the
transport you want to use.

wsoap12:operation

Synopsis <wsoap12:operation style="..." soapAction="..."
soapActionRequired="..."/>

Description The wsoap12:operation element is a child of the WSDL operation element.
A soap:operation element is used to encompass information for an operation
as a whole, in terms of input criteria, output criteria, and fault information.

Attributes The following attributes are defined within a wsoap12:operation element:

<SOAP-ENV:Body>
 <m:GetStudentGrade xmlns:m="URL">
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
 </m:GetStudentGrade>
</SOAP-ENV:Envelope>

<SOAP-ENV:Body>
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
</SOAP-ENV:Envelope>
30

� style
� soapAction
� soapActionRequired

style

This indicates whether the relevant operation is RPC-based (that is,
messages contain parameters and return values) or document-based (that
is, messages contain one or more documents).

Valid values are rpc and document. The default value for the
wsoap12:operation element�s style attribute is based on the value
specified for the wsoap12:binding element�s style attribute.

soapAction

This specifies the value of the SOAPAction HTTP header field for the relevant
operation. The value must take the form of the absolute URI that is to be
used to specify the intent of the SOAP message.

soapActionRequired

The soapActionRequired is a boolean that specifies if the value of the
soapAction attribute must be conveyed in the request message. When the
value of soapActionRequired is true, the soapAction attribute must be
present. The default is to true.

wsoap12:body

Synopsis <wsoap12:body use="..." encodingStyle="..." namespace="..."
parts="..." />

Description The wsoap12:body element in a binding is a child of the input, output, and
fault child elements of the WSDL operation element. A wsoap12:body
element is used to provide information on how message parts are to be appear
inside the body of a SOAP 1.2 message. As explained in �wsoap12:operation�
on page 30, the structure of the SOAP Body element within a SOAP message
is dependent on the setting of the soap:operation style attribute.

Attributes The following attributes are defined within a wsoap12:body element:

Note: This attribute is mandatory only if you want to use SOAP 1.2 over
HTTP. Leave it blank if you want to use SOAP 1.2 over any other
transport.
 31

CHAPTER 2 | SOAP 1.2 Binding
� use
� encodingStyle
� namespace
� parts

use

This mandatory attribute indicates how message parts are used to denote
data types. Each message part relates to a particular data type that in turn
might relate to an abstract type definition or a concrete schema definition.

An abstract type definition is a type that is defined in some remote encoding
schema whose location is referenced in the WSDL contract via an
encodingStyle attribute. In this case, types are serialized based on the set
of rules defined by the specified encoding style.

A concrete schema definition relates to types that are defined in the WSDL
contract itself, within a schema element within the types component of the
contract.

The following are valid values for the use attribute:

� literal

� encoded

If literal is specified, either the element or type attribute that is specified
for each message part (within the message component of the WSDL
contract) is used to reference a concrete schema definition (defined within
the types component of the WSDL contract). If the element attribute is used
to reference a concrete schema definition, the referenced element in the
SOAP 1.2 message appears directly under the SOAP Body element (if the
operation style is document-based) or under a part accessor element that
has the same name as the message part (if the operation style is
RPC-based). If the type attribute is used to reference a concrete schema
definition, the referenced type in the SOAP 1.2 message becomes the
schema type of the SOAP Body element (if the operation style is
documented-based) or of the part accessor element (if the operation style is
document-based).

Note: Artix 4.1 does not support encoded messages when using SOAP
1.2.
32

encodingStyle

This attribute is only used when the wsoap12:body element�s use attribute is
set to encoded. and the wsoap12:binding element�s style attribute is set to
rpc. It specifies the URI that represents the encoding rules that used to
construct the SOAP 1.2 message.

namespace

If the soap:operation element�s style attribute is set to rpc, each message
part within the SOAP Body element of a SOAP 1.2 message is a parameter
or return value and will appear inside a wrapper element within the SOAP
Body element. The name of the wrapper element must match the operation
name. The namespace of the wrapper element is based on the value of the
soap:body namespace attribute.

parts

This attribute is a space separated list of parts from the parent input,
output, or fault element. When the parts attribute is set, only the
specified parts of the message are included in the SOAP Body element. The
unlisted parts are not transmitted unless they are placed into the SOAP
header.

wsoap12:header

Synopsis <wsoap12:header message="..." part="..." use="..."
encodingStyle="..." namespace="..."/>

Description The wsoap12:header element in a binding is an optional child of the input,
output, and fault elements of the WSDL operation element. A
wsoap12:header element defines the information that is placed in a SOAP 1.2
header element. You can define any number of wsoap12:header elements for
an operation. As explained in �wsoap12:operation� on page 30, the structure
of the header within a SOAP 1.2 message is dependent on the setting of the
wsoap12:operation element�s style attribute.

Attributes The wsoap12:header element has the following attributes.

message Specifies the qualified name of the message from which
the contents of the SOAP header is taken.

part Specifies the name of the message part that is placed
into the SOAP header.
 33

CHAPTER 2 | SOAP 1.2 Binding
wsoap12:fault

Synopsis <wsoap12:fault name="..." namespace="..." use="..."
encodingStyle="..." />

Description The wsoap12:fault element is a child of the WSDL fault element within a
WSDL operation element. The operation must have both input and output
elements. The wsoap12:fault element is used to transmit error details and
status information within a SOAP 1.2 response message.

Attributes The wsoap12:fault element has the following attributes:

use Used in the same way as the wsoap12:body element�s
use attribute.

encodingStyle Used in the same way as the wsoap12:body element�s
encodingStyle attribute.

namespace Specifies the namespace to be assigned to the header
element when the use attribute is set to encoded. The
header is constructed in all cases as if the
wsoap12:binding element�s style attribute had a value
of document.

Note: A fault message must consist of only a single message part. Also, it
is assumed that the wsoap12:operation element�s style attribute is set to
document, because faults do not contain parameters.

name Specifies the name of the fault. This relates back to the
name attribute for the fault element specified for the
corresponding operation within the portType component
of the WSDL contract.

namespace Specifies the namespace to be assigned to the wrapper
element for the fault. This attribute is ignored if the
style attribute of either the wsoap12:binding element of
the containing binding or of the wsoap12:operation
element of the containing operation is either omitted or
has a value of document. This attribute is required if the
value of the wsoap12:binding element�s style attribute
is set to rpc.

use This attribute is used in the same way as the
wsoap12:body element�s use attribute.
34

encodingStyle This attribute is used in the same way as the
wsoap12:body element�s encodingStyle attribute
 35

CHAPTER 2 | SOAP 1.2 Binding
36

CHAPTER 3

MIME
Multipart/Related
Binding
This chapter describes the extentions that are used to define
a SOAP message binding that contains binary data in an Artix
contract.

Namespace

The WSDL extensions used to define the MIME multipart/related messages
are defined in the namespace http://schemas.xmlsoap.org/wsdl/mime/.

In the discussion that follows, it is assumed that this namespace is prefixed
with mime. The entry in the WSDL defintion element to set this up is
shown in Example 1.

mime:multipartRelated

Synopsis <mime:multipartRelated>

Example 1: MIME Namespace Specification in a Contract

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 37

CHAPTER 3 | MIME Multipart/Related Binding
 <mime:part ...>

 ...

 </mime:part>

 ...

</mime:multipartRelated>

Description The mime:multipartRelated element is the child of an input element or an
output element that is part of a SOAP binding. It tells Artix that the message
body is going to be a multipart message that potentially contains binary data.
mime:multipartReleated elements in Artix contain one or more mime:part
elements that describe the individual parts of the message.

mime:part

Synopsis <mime:part name="...">

 ...

</mime:part>

Description The mime:part element is the child of a mime:multipartRelated element. It
is used to define the parts of a multi-part message. The first mime:part
element must contain the soap:body element or the wsoap12:body element
that would normally appear in a SOAP binding. The remaining mime:part
elements define the attachments that are being sent in the message using a
mime:content element.

Attributes The mime:part element has a single attribute called name. name is a unique
string that is used to identify the part being described.

mime:content

Synopsis <mime:content part="..." type="..." />

Description The mime:content element is the child of a mime:part element. It defines the
binary content being passed as an attachment to a SOAP message.

Attributes The mime:content element has the following attributes:

part Specifies the name of the WSDL part element, from the
parent message definition, that is used as the content of
this part of the MIME multipart message being placed on
the wire.
38

type Specifies the MIME type of the data in this message part.
MIME types are defined as a type and a subtype using
the syntax type/subtype.

There are a number of predefined MIME types such as
image/jpeg and text/plain. The MIME types are
maintained by IANA and described in the following:

� Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies
(ftp://ftp.isi.edu/in-notes/rfc2045.txt)

� Multipurpose Internet Mail Extensions (MIME) Part
Two: Media Types
(ftp://ftp.isi.edu/in-notes/rfc2046.txt).
 39

ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt

CHAPTER 3 | MIME Multipart/Related Binding
40

CHAPTER 4

CORBA Binding
and Type Map
Artix CORBA support uses a combination of a WSDL binding
element and a corba:typeMapping element to unambiguously
define CORBA Messages.

In this chapter This chapter discusses the following topics:

CORBA Binding Extension Elements page 42

CORBA Type Map Extension Elements page 47
 41

CHAPTER 4 | CORBA Binding and Type Map
CORBA Binding Extension Elements

Namespace

The WSDL extensions used for the CORBA binding and the CORBA data
mappings are defined in the namespace
http://schemas.iona.com/bindings/corba. The Artix designer adds the
following namespace declaration to any contract that uses the CORBA
binding:

Primitive Type Mapping

Most primitive IDL types are directly mapped to primitive XML Schema
types. Table 1 lists the mappings for the supported IDL primitive types.

xmlns:corba="http://schemas.iona.com/bindings/corba"

Table 1: Primitive Type Mapping for CORBA Plug-in

IDL Type XML Schema Type CORBA Binding
Type

Artix C++ Type Artix Java Type

Any xsd:anyType corba:any IT_Bus::AnyHolder com.iona.webservices
.reflect.types.AnyTy
pe

boolean xsd:boolean corba:boolean IT_Bus::Boolean boolean

char xsd:byte corba:char IT_Bus::Char byte

wchar xsd:string corba:wchar java.lang.String

double xsd:double corba:double IT_Bus::Double double

float xsd:float corba:float IT_Bus::Float float

octet xsd:unsignedByte corba:octet IT_Bus::Octet short

long xsd:int corba:long IT_Bus::Long int

long long xsd:long corba:longlong IT_Bus::LongLong long
42

CORBA Binding Extension Elements
Unsupported types The following CORBA types are not supported:

� long double

� Value types

� Boxed values

� Local interfaces

� Abstract interfaces

� Forward-declared interfaces

Unsupported time/date values The following xsd:dateTime values cannot be mapped to TimeBase::UtcT:

� Values with a local time zone. Local time is treated as a 0 UTC time
zone offset.

� Values prior to 15 October 1582.

� Values greater than approximately 30,000 A.D.

The following TimeBase::UtcT values cannot be mapped to xsd:dateTime:

� Values with a non-zero inacclo or inacchi.

� Values with a time zone offset that is not divisible by 30 minutes.

� Values with time zone offsets greater than 14:30 or less than -14:30.

� Values with greater than millisecond accuracy.

� Values with years greater than 9999.

short xsd:short corba:short IT_Bus::Short short

string xsd:string corba:string IT_Bus::String java.lang.String

wstring xsd:string corba:wstring java.lang.String

unsigned short xsd:unsignedShort corba:ushort IT_Bus::UShort int

unsigned long xsd:unsignedInt corba:ulong IT_Bus::ULong long

unsigned long
long

xsd:unsignedLong corba:ulonglong IT_Bus::ULongLong java.math.BigInteger

TimeBase::UtcT xsd:dateTimea corba:dateTime IT_Bus::DateTime java.util.Calendar

a. The mapping between xsd:dateTime and TimeBase:UtcT is only partial. For the restrictions see �Unsupported
time/date values� on page 43

Table 1: Primitive Type Mapping for CORBA Plug-in

IDL Type XML Schema Type CORBA Binding
Type

Artix C++ Type Artix Java Type
 43

CHAPTER 4 | CORBA Binding and Type Map
corba:binding

Synopsis <corba:binding repositoryID="..." bases=".." />

Description The corba:binding element indicates that the binding is a CORBA binding.

Attributes This element has two attributes:

Examples For example, the following IDL:

would produce the following corba:binding:

corba:operation

Synopsis <corba:operation name="..." >

 <corba:param ... />

 ...

 <corba:return ... />

 <corba:raises ... />

</corba:operation>

Description The corba:operation element is a child element of the WSDL operation
element and describes the parts of the operation�s messages. It has one or
more of the following children:

� corba:param

� corba:return

repositoryID A required attribute whose value is the full type ID of the
CORBA interface. The type ID is embedded in an object�s
IOR and must conform to the format
IDL:module/interface:1.0.

bases An optional attribute whose value is the type ID of the
interface from which the interface being bound inherits.

//IDL
interface clash{};
interface bad : clash{};

<corba:binding repositoryID="IDL:bad:1.0"
 bases="IDL:clash:1.0"/>
44

CORBA Binding Extension Elements
� corba:raises

Attributes The corba:operation attribute takes a single attribute, name, which
duplicates the name given in operation.

corba:param

Synopsis <corba:param name="..." mode="..." idltype="..." />

Description The corba:param element is a child of corba:operation. Each part element
of the input and output messages specified in the logical operation, except
for the part representing the return value of the operation, must have a
corresponding corba:param element. The parameter order defined in the
binding must match the order specified in the IDL definition of the operation.

Attributes The corba:param element has the following required attributes:

corba:return

Synopsis <corba:return name="..." idltype="..." />

Description The corba:return element is a child of corba:operation and specifies the
return type, if any, of the operation.

mode Specifies the direction of the parameter. The values
directly correspond to the IDL directions: in, inout, out.
Parameters set to in must be included in the input
message of the logical operation. Parameters set to out
must be included in the output message of the logical
operation. Parameters set to inout must appear in both
the input and output messages of the logical operation.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with corba: for primitive IDL types, and
corbatm: for complex data types, which are mapped out
in the corba:typeMapping portion of the contract. See
�CORBA Type Map Extension Elements� on page 47.

name Specifies the name of the parameter as given in the name
attribute of the corresponding part element.
 45

CHAPTER 4 | CORBA Binding and Type Map
Attributes The corba:return element has two attributes:

corba:raises

Synopsis <corba:raises exception="..." />

Description The corba:raises element is a child of corba:operation and describes any
exceptions the operation can raise. The exceptions are defined as fault
messages in the logical definition of the operation. Each fault message must
have a corresponding corba:raises element.

Attributes The corba:raises element has one required attribute, exception, which
specifies the type of data returned in the exception.

name Specifies the name of the parameter as given in the
logical portion of the contract.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with corba: for primitive IDL types and
corbatm: for complex data types which are mapped out
in the corba:typeMapping portion of the contract.
46

CORBA Type Map Extension Elements
CORBA Type Map Extension Elements

corba:typeMapping

Synopsis <corba:typeMapping
targetNamespace="http://schemas.iona.com/bindings/corba/typemap">

...

</corba:typeMapping>

Description Because complex types (such as structures, arrays, and exceptions) require
a more involved mapping to resolve type ambiguity, the full mapping for a
complex type is described in a corba:typeMapping element at the bottom of
an Artix contract. This element contains a type map describing the metadata
required to fully describe a complex type as a CORBA data type. This metadata
may include the members of a structure, the bounds of an array, or the legal
values of an enumeration.

Attributes The corba:typeMapping element requires a targetNamespace attribute that
specifies the namespace for the elements defined by the type map. The default
URI is http://schemas.iona.com/bindings/corba/typemap.

Examples Table 2 shows the mappings from complex IDL types to Artix CORBA types.

Table 2: Complex IDL Type Mappings

IDL Type CORBA Binding Type

struct corba:struct

enum corba:enum

fixed corba:fixed

union corba:union

typedef corba:alias

array corba:array

sequence corba:sequence

exception corba:exception
 47

CHAPTER 4 | CORBA Binding and Type Map
corba:struct

Synopsis <corba:struct name="..." type="..." repositoryID="..." />

 <corba:member ... />

 ...

</corba:struct>

The corba:struct element is used to represent XMLSchema types that are
defined using complexType elements. The elements of the structure are
described by a series of corba:member elements.

Attributes A corba:struct element requires three attributes:

corba:member

Synopsis <corba:member name="..." idlType="..." />

Description The corba:member element is used to define the parts of the structure
represented by the parent element. The elements must be declared in the
same order used in the IDL representation of the CORBA type.

Attributes A corba:member requires two attributes:

name A unique identifier used to reference the CORBA type in
the binding.

type The logical type the structure is mapping.

repositoryID The fully specified repository ID for the CORBA type.

name The name of the element

idltype The IDL type of the element. This type can be either a
primitive type or another complex type that is defined in
the type map.
48

CORBA Type Map Extension Elements
Examples For example, you may have a structure, personalInfo, similar to the one in
Example 2.

It can be represented in the CORBA type map as shown in Example 3.

The idltype corbatm:hairColorType refers to a complex type that is defined
earlier in the CORBA type map.

corba:enum

Synopsis <corba:enum name="..." type="..." repositoryID="...">

 <corba:enumerator ... />

 ...

</corba:enum>

The corba:enum element is used to represent enumerations. The values for
the enumeration are described by a series of corba:enumerator elements.

Attributes A corba:enum element requires three attributes:

Example 2: personalInfo

enum hairColorType {red, brunette, blonde};

struct personalInfo
{
 string name;
 int age;
 hairColorType hairColor;
}

Example 3: CORBA Type Map for personalInfo

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:struct name="personalInfo" type="xsd1:personalInfo" repositoryID="IDL:personalInfo:1.0">
 <corba:member name="name" idltype="corba:string"/>
 <corba:member name="age" idltype="corba:long"/>
 <corba:member name="hairColor" idltype="corbatm:hairColorType"/>
 </corba:struct>
</corba:typeMapping>

name A unique identifier used to reference the CORBA type in
the binding.
 49

CHAPTER 4 | CORBA Binding and Type Map
corba:enumerator

Synopsis <corba:enumerator value="..." />

Description The corba:enumerator element represents the values of an enumeration. The
values must be listed in the same order used in the IDL that defines the CORBA
enumeration.

Attributes A corba:enumerator element takes one attribute, value.

Examples For example, the enumeration defined in Example 2 on page 49,
hairColorType, can be represented in the CORBA type map as shown in
Example 4:

corba:fixed

Synopsis <corba:fixed name="..." repositoryID="..." type="..." digits="..."
scale="..." />

Description Fixed point data types are a special case in the Artix contract mapping. A
CORBA fixed type is represented in the logical portion of the contract as the
XML Schema primitive type xsd:decimal. However, because a CORBA fixed
type requires additional information to be fully mapped to a physical CORBA
data type, it must also be described in the CORBA type map section of an
Artix contract using a corba:fixed element.

type The logical type the structure is mapping.

repositoryID The fully specified repository ID for the CORBA type.

Example 4: CORBA Type Map for hairColorType

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:enum name="hairColorType" type="xsd1:hairColorType"

repositoryID="IDL:hairColorType:1.0">
 <corba:enumerator value="red"/>
 <corba:enumerator value="brunette"/>
 <corba:enumerator value="blonde"/>
 </corba:enum>
</corba:typeMapping>
50

CORBA Type Map Extension Elements
Attributes A corba:fixed element requires five attributes:

Examples For example, the fixed type defined in Example 5, myFixed, would be

described by a type entry in the logical type description of the contract, as
shown in Example 6.

In the CORBA type map portion of the contract, it would be described by an
entry similar to Example 7. Notice that the description in the CORBA type
map includes the information needed to fully represent the characteristics of
this particular fixed data type.

name A unique identifier used to reference the CORBA type in
the binding.

repositoryID The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping (for CORBA
fixed types, this is always xsd:decimal).

digits The upper limit for the total number of digits allowed.
This corresponds to the first number in the fixed type
definition.

scale The number of digits allowed after the decimal point.
This corresponds to the second number in the fixed type
definition.

Example 5: myFixed Fixed Type

\\IDL
typedef fixed<4,2> myFixed;

Example 6: Logical description from myFixed

<xsd:element name="myFixed" type="xsd:decimal"/>

Example 7: CORBA Type Map for myFixed

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:fixed name="myFixed" repositoryID="IDL:myFixed:1.0" type="xsd:decimal" digits="4"

scale="2"/>
</corba:typeMapping>
 51

CHAPTER 4 | CORBA Binding and Type Map
corba:union

Synopsis <corba:union name="..." type="..." discriminator="..."

 repositoryID="...">

 <corba:unionbranch ... />

 ...

</corba:union>

Description The corba:union element is used to resolve the relationship between a union�s
discriminator and its members. A corba:union element is required for every
CORBA union defined in an IDL contract. The members of the union are
described using a series of nested corba:unionbranch elements.

Attributes A corba:union element has four mandatory attributes:

corba:unionbranch

Synopsis <corba:unionbranch name="..." idltype="..." default="...">

 <corba:case ... />

 ...

</corba:unionbranch>

Description The corba:unionbranch element defines the members of a union. Each
corba:unionbranch except for one describing the union�s default member will
have at least one corba:case element as a child.

Attributes A corba:unionbranch element has two required attributes and one optional
attribute.

name A unique identifier used to reference the CORBA type in
the binding.

type The logical type the structure is mapping.

discriminator The IDL type used as the discriminator for the union.

repositoryID The fully specified repository ID for the CORBA type.

name A unique identifier used to reference the union member.

idltype The IDL type of the union member. This type can be
either a primitive type or another complex type that is
defined in the type map.
52

CORBA Type Map Extension Elements
corba:case

Synopsis <corba:case label="..." />

Description The corba:case element defines the explicit relationship between the
discriminator�s value and the associated union member.

Attributes The corba:case element�s only attribute, label, specifies the value used to
select the union member described by the corba:unionbranch.

Examples For example consider the union, myUnion, shown in Example 8:

For example myUnion, Example 8, would be described with a CORBA type
map entry similar to that shown in Example 9.

default The optional attribute specifying if this member is the
default case for the union. To specify that the value is the
default set this attribute to true.

Example 8: myUnion IDL

//IDL
union myUnion switch (short)
{
 case 0:
 string case0;
 case 1:
 case 2:
 float case12;
 default:
 long caseDef;
};

Example 9: myUnion CORBA type map

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:union name="myUnion" type="xsd1:myUnion" discriminator="corba:short"

repositoryID="IDL:myUnion:1.0">
 <corba:unionbranch name="case0" idltype="corba:string">
 <corba:case label="0"/>
 </corba:unionbranch>
 53

CHAPTER 4 | CORBA Binding and Type Map
corba:alias

Synopsis <corba:alias name="..." type="..." repositoryID="..." />

Description The corba:alias element is used to represent a typedef statement in an IDL
contract.

Attributes The corba:alias element has three attributes:

Examples For example, the definition of myLong in Example 10, can be described as

shown in Example 11:

 <corba:unionbranch name="case12" idltype="corba:float">
 <corba:case label="1"/>
 <corba:case label="2"/>
 </corba:unionbranch>
 <corba:unionbranch name="caseDef" idltype="corba:long" default="true"/>
 </corba:union>
</corba:typeMapping>

name The value of the name attribute from the XMLSchema
simpleType element representing the renamed type.

type The XMLSchema type for the base type.

repositoryID The fully specified repository ID for the CORBA type.

Example 10: myLong IDL

//IDL
typedef long myLong;

Example 11: myLong WSDL

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="typedef.idl" ...>

Example 9: myUnion CORBA type map
54

CORBA Type Map Extension Elements
corba:array

Synopsis <corba:array name="..." repositoryID="..." type="..."
elemtype="..." bound="..." />

Description In the CORBA type map, arrays are described using a corba:array element.

Attributes A corba:array has the following required attributes:

Examples For example, consider an array, myArray, as defined in Example 12.

 <types>
 ...
 <xsd:simpleType name="myLong">
 <xsd:restriction base="xsd:int"/>
 </xsd:simpleType>
 ...
 </types>
...
 <corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:alias name="myLong" type="xsd:int" repositoryID="IDL:myLong:1.0"

basetype="corba:long"/>
 </corba:typeMapping>
</definitions>

name A unique identifier used to reference the CORBA type in
the binding.

repositoryID The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping.

elemtype The IDL type of the array�s element. This type can be
either a primitive type or another complex type that is
defined within the type map.

bound The size of the array.

Example 12: myArray IDL

//IDL
typedef long myArray[10];

Example 11: myLong WSDL
 55

CHAPTER 4 | CORBA Binding and Type Map
The array myArray will have a CORBA type map description similar to the
one shown in Example 13.

corba:sequence

Synopsis <corba:sequence name="..." repositoryID="..." elemtype="..."
bound="..." />

Description The corba:sequence element represents an IDL sequence.

Attributes A corba:sequence has five required attributes.

Examples For example, consider the two sequences defined in Example 14, longSeq
and charSeq.

Example 13: myArray CORBA type map

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:array name="myArray" repositoryID="IDL:myArray:1.0" type="xsd1:myArray"

elemtype="corba:long" bound="10"/>
</corba:typeMapping>

name A unique identifier used to reference the CORBA type in
the binding.

repositoryID The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping.

elemtype The IDL type of the sequence�s elements. This type can
be either a primitive type or another complex type that is
defined within the type map.

bound The size of the sequence.

Example 14: IDL Sequences

\\ IDL
typedef sequence<long> longSeq;
typedef sequence<char, 10> charSeq;
56

CORBA Type Map Extension Elements
The sequences described in Example 14 has a CORBA type map description
similar to that shown in Example 15.

corba:exception

Synopsis <corba:exception name="..." type="..." repositoryID="...">

 <corba:member ... />

 ...

</corba:exception>

Description The corba:exception element is a child of a corba:typeMapping element. It
describes an exception in the CORBA type map. The pieces of data returned
with the exception are described by a series of corba:member elements. The
elements must be declared in the same order as in the IDL representation of
the exception.

Attributes A corba:exception element has the following required attributes:

Examples For example, consider the exception idNotFound defined in Example 16.

Example 15: CORBA type map for Sequences

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:sequence name="longSeq" repositoryID="IDL:longSeq:1.0" type="xsd1:longSeq"

elemtype="corba:long" bound="0"/>
 <corba:sequence name="charSeq" repositoryID="IDL:charSeq:1.0" type="xsd1:charSeq"

elemtype="corba:char" bound="10"/>
 </corba:typeMapping>

name A unique identifier used to reference the CORBA type in
the binding.

type The logical type the structure is mapping.

repositoryID The fully specified repository ID for the CORBA type.

Example 16: idNotFound Exception

\\IDL
exception idNotFound
{
 short id;
};
 57

CHAPTER 4 | CORBA Binding and Type Map
In the CORBA type map portion of the contract, idNotFound is described by
an entry similar to that shown in Example 17:

corba:anonsequence

Synopsis <corba:anonsequence name="..." bound="..." elemtype="..."
type="..." />

Description The corba:anonsequence element is used when representing recursive types.
Because XMLSchema recursion requires the use of two defined types and IDL
recursion does not, the CORBA type map uses the corba:anonsequence
element as a means of bridging the gap. When Artix generates IDL from a
contract, it will not generate new IDL types for XMLSchema types that are
used in a corba:anonsequence element.

Attributes The corba:anonsequence element has four required attributes:

Example 17: CORBA Type Map for idNotFound

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:exception name="idNotFound" type="xsd1:idNotFound" repositoryID="IDL:idNotFound:1.0">
 <corba:member name="id" idltype="corba:short"/>
 </corba:exception>
</corba:typeMapping>

name A unique identifier used to reference the CORBA type in the
binding.

bound The size of the sequence.

elemtype The name of the CORBA type map element that defines the
contents of the sequence.

type The logical type the element represents.
58

CORBA Type Map Extension Elements
Examples Example 18 shows a recursive XMLSchema type, allAboutMe, defined using
a named type.

Example 19 shows the how Artix maps the recursive type into the CORBA
type map of an Artix contract.

Example 18: Recursive XML Schema Type

<complexType name="allAboutMe">
 <sequence>
 <element name="shoeSize" type="xsd:int"/>
 <element name="mated" type="xsd:boolean"/>
 <element name="conversation" type="tns:moreMe"/>
 </sequence>
</complexType>
<complexType name="moreMe">
 <sequence>
 <element name="item" type="tns:allAboutMe"
 maxOccurs="unbounded"/>
 </sequence>
</complexType>

Example 19: Recursive CORBA Typemap

<corba:anonsequence name="moreMe" bound="0"
 elemtype="ns1:allAboutMe" type="xsd1:moreMe"/>
<corba:struct name="allAboutMe"
 repositoryID="IDL:allAboutMe:1.0"
 type="xsd1:allAboutMe">
 <corba:member name="shoeSize" idltype="corba:long"/>
 <corba:member name="mated" idltype="corba:boolean"/>
 <corba:member name="conversation" idltype="ns1:moreMe"/>
</corba:struct>
 59

CHAPTER 4 | CORBA Binding and Type Map
While the XML in the CORBA typemap does not explicitly retain the
recursive nature of recursive XMLSchema types, the IDL generated from the
typemap restores the recursion in the IDL type. The IDL generated from the
type map in Example 19 defines allAboutMe using recursion. Example 20
shows the generated IDL.

corba:anonstring

Synopsis <corba:anonstring name="..." bound="..." type="..." />

Description The corba:anonstring element is used to represent instances of anonymous
XMLSchema simple types that are derived from xsd:string. As with
corba:anonsequence elements, corba:anonstring elements do not result in
generated IDL types.

Attributes corba:anonstring elements have three attributes.

Example 20: IDL for a Recursive Data Type

\\IDL
struct allAboutMe
{
 long shoeSize;
 boolean mated;
 sequence<allAboutMe> conversation;
};

name A unique identifier used to reference the CORBA type in
the binding.

bound The maximum length of the string.

type The XMLSchema type of the base type. Typically this is
xsd:string.
60

CORBA Type Map Extension Elements
Examples The complex type, madAttr, described in Example 21 contains a member,
style, that is an instance of an anonymous type derived from xsd:string.

madAttr would generate the CORBA typemap shown in Example 22. Notice
that style is given an IDL type defined by a corba:anonstring element.

corba:object

Synopsis <corba:object binding="..." name="..." repositoryID="..."
type="..." />

Description The corba:object element is used to represent Artix references in the CORBA
type map.

Attributes corba:object elements have four attributes:

Example 21: madAttr XML Schema

<complexType name="madAttr">
 <sequence>
 <element name="style">
 <simpleType>
 <restriction base="xsd:string">
 <maxLength value="3"/>
 </restriction>
 </simpleType>
 </element>
 <element name="gender" type="xsd:byte"/>
 </sequence>
</complexType>

Example 22: madAttr CORBA typemap

<corba:typeMapping targetNamespace="http://schemas.iona.com/anonCat/corba/typemap/">
 <corba:struct name="madAttr" repositoryID="IDL:madAttr:1.0" type="xsd1:madAttr">
 <corba:member idltype="ns1:styleType" name="style"/>
 <corba:member idltype="corba:char" name="gender"/>
 </corba:struct>
 <corba:anonstring bound="3" name="styleType" type="xsd:string"/>
</corba:typeMapping>

binding Specifies the binding to which the object refers. If the
annotation element is left off the reference declaration in
the schema, this attribute will be blank.
 61

CHAPTER 4 | CORBA Binding and Type Map
Examples Example 23 shows an Artix contract fragment that uses Artix references.

name Specifies the name of the CORBA type. If the annotation
element is left off the reference declaration in the
schema, this attribute will be Object. If the annotation is
used and the binding can be found, this attribute will be
set to the name of the interface that the binding
represents.

repositoryID Specifies the repository ID of the generated IDL type. If
the annotation element is left off the reference declaration
in the schema, this attribute will be set to
IDL:omg.org/CORBA/Object/1.0. If the annotation is
used and the binding can be found, this attribute will be
set to a properly formed repository ID based on the
interface name.

type Specifies the schema type from which the CORBA type is
generated. This attribute is always set to
references:Reference.

Example 23: Reference Sample

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="bankService"
 targetNamespace="http://schemas.myBank.com/bankTypes"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://schemas.myBank.com/bankService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://schemas.myBank.com/bankTypes"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:corbatm="http://schemas.iona.com/typemap/corba/bank.idl"
 xmlns:references="http://schemas.iona.com/references">
 <types>
 <schema
 targetNamespace="http://schemas.myBank.com/bankTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:import schemaLocation="./references.xsd"
 namespace="http://schemas.iona.com/references"/>
62

CORBA Type Map Extension Elements
...
 <xsd:element name="account" type="references:Reference">
 <xsd:annotation>
 <xsd:appinfo>
 corba:binding=AccountCORBABinding
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 </schema>
</types>
...
 <message name="find_accountResponse">
 <part name="return" element="xsd1:account"/>
 </message>
 <message name="create_accountResponse">
 <part name="return" element="xsd1:account"/>
 </message>
 <portType name="Account">
 <operation name="account_id">
 <input message="tns:account_id" name="account_id"/>
 <output message="tns:account_idResponse"
 name="account_idResponse"/>
 </operation>
 <operation name="balance">
 <input message="tns:balance" name="balance"/>
 <output message="tns:balanceResponse"
 name="balanceResponse"/>
 </operation>
 <operation name="withdraw">
 <input message="tns:withdraw" name="withdraw"/>
 <output message="tns:withdrawResponse"
 name="withdrawResponse"/>
 <fault message="tns:InsufficientFundsException"

name="InsufficientFunds"/>
 </operation>
 <operation name="deposit">
 <input message="tns:deposit" name="deposit"/>
 <output message="tns:depositResponse"
 name="depositResponse"/>
 </operation>
 </portType>

Example 23: Reference Sample (Continued)
 63

CHAPTER 4 | CORBA Binding and Type Map
The element named account is a reference to the interface defined by the
Account port type and the find_account operation of Bank returns an
element of type account. The annotation element in the definition of
account specifies the binding, AccountCORBABinding, of the interface to
which the reference refers.

Example 24 shows the generated CORBA typemap resulting from generating
both the Account and the Bank interfaces into the same contract.

There are two entries because wsdltocorba was run twice on the same file.
The first CORBA object is generated from the first pass of wsdltocorba to
generate the CORBA binding for Account. Because wsdltocorba could not
find the binding specified in the annotation, it generated a generic Object
reference. The second CORBA object, Account, is generated by the second

 <portType name="Bank">
 <operation name="find_account">
 <input message="tns:find_account" name="find_account"/>
 <output message="tns:find_accountResponse"
 name="find_accountResponse"/>
 <fault message="tns:AccountNotFound"
 name="AccountNotFound"/>
 </operation>
 <operation name="create_account">
 <input message="tns:create_account" name="create_account"/>
 <output message="tns:create_accountResponse"
 name="create_accountResponse"/>
 <fault message="tns:AccountAlreadyExistsException"
 name="AccountAlreadyExists"/>
 </operation>
 </portType>
</definitions>

Example 23: Reference Sample (Continued)

Example 24: CORBA Typemap with References

<corba:typeMapping
 targetNamespace="http://schemas.myBank.com/bankService/corba/typemap/">
...
 <corba:object binding="" name="Object"
 repositoryID="IDL:omg.org/CORBA/Object/1.0" type="references:Reference"/>
 <corba:object binding="AccountCORBABinding" name="Account"
 repositoryID="IDL:Account:1.0" type="references:Reference"/>
</corba:typeMapping>
64

CORBA Type Map Extension Elements
pass when the binding for Bank was generated. On that pass, wsldtocorba
could inspect the binding for the Account interface and generate a
type-specific object reference.

Example 25 shows the IDL generated for the Bank interface.

Example 25: IDL Generated From Artix References

//IDL
...
interface Account
{
 string account_id();
 float balance();
 void withdraw(in float amount)
 raises(::InsufficientFundsException);
 void deposit(in float amount);
};
interface Bank
{
 ::Account find_account(in string account_id)
 raises(::AccountNotFoundException);
 ::Account create_account(in string account_id,
 in float initial_balance)
 raises(::AccountAlreadyExistsException);
};
 65

CHAPTER 4 | CORBA Binding and Type Map
66

CHAPTER 5

Tuxedo FML
Binding
Artix supports the use of Tuxedo�s FML buffers. It uses a set
of Artix specific elements placed in the WSDL binding
element.

Namespace

The WSDL extensions used for the FML binding are defined in the
namespace http://schemas.iona.com/transports/tuxedo. Add the
following namespace declaration to any contracts that use an FML binding:

FML\XMLSchema Support

An FML buffer can only contain the data types listed in Table 3.

xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"

Table 3: FML Type Support

XML Schema Type FML Type

xsd:short short

xsd:unsignedShort short
 67

CHAPTER 5 | Tuxedo FML Binding
Due to FML limitations, support for complex types is limited to
xsd:sequence and xsd:all.

tuxedo:binding

Synopsis <tuxedo:binding />

Description The tuxedo:binding element informs Artix that the payload being described
is an FML buffer. It is a child of the WSDL binding element and has no
children.

tuxedo:fieldTable

Synopsis <tuxedo:fieldTable type="...">

 <tuxedo:field ... />

 ...

</tuxedo:fieldTable>

Description The tuxedo:fieldTable element contains the mappings between the
elements defined in the logical section of the contract and their associated
FML fieldid.

xsd:int long

xsd:unsignedInt long

xsd:float float

xsd:double double

xsd:string string

xsd:base64Binary string

xsd:hexBinary string

Table 3: FML Type Support

XML Schema Type FML Type
68

Attributes The tuxedo:fieldTable element has one required attribute, type, that
specifies if the FML buffer is an FML16 buffer or an FML32 buffer. Table 4
shows the values of the type attribute.

tuxedo:field

Synopsis <tuxedo:field name="..." id="..." />

Description The tuxedo:field element defines the association between an element in the
logical contract and its corresponding entry in the physical FML buffer. Each
element in a message, either a message part or an element in a complex type,
must have a corresponding tuxedo:field element in the FML binding.

Attributes The tuxedo:field element takes two attributes:

tuxedo:operation

Synopsis <tuxedo:operaiton />

Description The tuxedo:operation element is a child of the WSDL binding�s operation
element. It informs Artix that the messages used by the operation are being
passed as FML buffers.

Table 4: Values of tuxedo:fieldTable Element�s type Attribute

Value Meaning

FML The represented FML buffer is a FML16 buffer.

FML32 The represented FML buffer is an FML32 buffer.

name The value of the name attribute from the logical message
element to which this tuxedo:field element
corresponds.

id The fieldId value of the corresponding element in the
generated C++ header defining the FML buffer.
 69

CHAPTER 5 | Tuxedo FML Binding
70

CHAPTER 6

Fixed Binding
The Artix fixed binding supports mapping between
XMLSchema message definitions and messages formatted in
fixed length records.

Namespace

The IONA extensions used to describe fixed record length messages are
defined in the namespace http://schemas.iona.com/bindings/fixed. Artix
tools use the prefix fixed to represent the fixed record length extensions.
Add the following line to your contract:

fixed:binding

Synopsis <fixed:binding justification="..." encoding="..."

 padHexCode="..." />

Description The fixed:binding element is a child of the WSDL binding element. It
specifies that the binding defines a mapping between fixed record length data
and the XMLSchema representation of the data.

Attributes The fixed:binding element has three attributes:

xmlns:fixed="http://schemas.iona.com/bindings/fixed

justification Specifies the default justification of the data contained in
the messages. Valid values are left and right. Default is
left.
 71

CHAPTER 6 | Fixed Binding
The settings for the attributes on the fixed:binding element become the
default settings for all the messages being mapped to the current binding.

fixed:operation

Synopsis <fixed:operation discriminator="..." />

Description The fixed:operation element is a child element of the WSDL operation
element and specifies that the operation�s messages are being mapped to
fixed record length data.

Attributes The fixed:operation element has one attribute, discriminator, that assigns
a unique identifier to the operation. If your service only defines a single
operation, you do not need to provide a discriminator. However, if your
operation has more than one service, you must define a unique discriminator
for each operation in the service. Not doing so will result in unpredictable
behavior when the service is deployed.

fixed:body

Synopsis <fixed:body justification="..." encoding="..." padHexCode="...">

 ...

</fixed:body>

Description The fixed:body element is a child element of the input, output, and fault
messages being mapped to fixed record length data. It specifies that the
message body is mapped to fixed record length data on the wire and describes
the exact mapping for the message�s parts.

The order in which the message parts are listed in the fixed:body element
represent the order in which they are placed on the wire. It does not need to
correspond to the order in which they are specified in the WSDL message
element defining the logical message.

encoding Specifies the codeset used to encode the text data. Valid
values are any valid ISO locale or IANA codeset name.
Default is UTF-8.

padHexCode Specifies the hex value of the character used to pad the
record.
72

The following child elements are used in defining how logical data is
mapped to a concrete fixed format message:

� fixed:field maps message parts defined using a simple type.

� fixed:sequence maps message parts defined using a sequence
complex type.

� fixed:choice maps message parts defined using a choice complex
type.

Attributes The fixed:body element has three attributes:

fixed:field

Synopsis <fixed:field name="..." "size="..." format="..."

 justification="..." fixedValue="..." bindingOnly="...">

 <fixed:enumeration ... />

 ...

</fixed:field>

Description The fixed:field element is used to map simple data types to a field in a
fixed record length message. It is the child of a fixed:body element.

Attributes The fixed:field element has the following attributes:

Note: Complex types defined using all are not supported by the fixed
binding.

justification Specifies how the data in the messages are justified.
Valid values are left and right.

encoding Specifies the codeset used to encode text data. Valid
values are any valid ISO locale or IANA codeset name.

padHexCode Specifies the hex value of the character used to pad the
record.

name Specifies the name of the logical message part that this
element represents. It is a required attribute.
 73

CHAPTER 6 | Fixed Binding
Examples The following examples show different ways of representing data using a
fixed:field element:

� String data

� Numeric data

� Dates

� Binding only records

size Specifies the maximum number of characters in a
message part whose base type is xsd:string. Also used
to specify the number of characters in the on-wire values
used to represent the values of an enumerated type. For
more information see �fixed:enumeration� on page 76.

format Specifies how non-string data is formatted when it is
placed on the wire. For numerical data, formats are
entered using # to represent numerical fields and . to
represent decimal places. For example ##.## would be
used to represent 12.04.

Also can be used for string data that is a date. Date
formats use the standard date format syntax. For
example, mm/dd/yy would represent dates such as
02/23/04 and 11/02/98.

justification Specifies the default justification of the data contained in
the field. Valid values are left and right. Default is
left.

fixedValue Specifies the value to use for the represented logical
message part. The value of fixedValue is always the
value placed on the wire for the represented message
part. It will override any values set in the application
code.

bindingOnly Specifies if the field appears in the logical definition of
the message. The default value is false.

When set to true, this attribute signals Artix that it needs
to insert a field into the on-wire message that does not
appear in the logical message.

bindingOnly is used in conjunction with the fixedValue
attribute. The fixedValue attribute is used to specify the
data to be written into the binding-only field.
74

String data

The logical message part, raverID, described in Example 26 would be
mapped to a fixed:field similar to Example 27.

In order to complete the mapping, you must know the length of the record
field and supply it. In this case, the field, raverID, can contain no more
than twenty characters.

Numeric data

If a field contains a 2-digit numeric value with one decimal place, it would
be described in the logical part of the contract as an xsd:float, as shown in
Example 28.

From the logical description of the message, Artix has no way of determining
that the value of rageLevel is a 2-digit number with one decimal place
because the fixed record length binding treats all data as characters. When
mapping rageLevel in the fixed binding you would specify its format with
##.#, as shown in Example 29. This provides Artix with the metadata
needed to properly handle the data.

Example 26: Fixed String Message

<message name="fixedStringMessage">
 <part name="raverID" type="xsd:string"/>
</message>

Example 27: Fixed String Mapping

<fixed:field name="raverID" size="20"/>

Example 28: Fixed Record Numeric Message

<message name="fixedNumberMessage">
 <part name="rageLevel" type="xsd:float"/>
</message>

Example 29: Mapping Numerical Data to a Fixed Binding

<fixed:flield name="rageLevel" format="##.#"/>
 75

CHAPTER 6 | Fixed Binding
Dates

Dates are specified in a similar fashion. For example, the format of the date
12/02/72 is MM/DD/YY. When using the fixed binding it is recommended that
dates are described in the logical part of the contract using xsd:string. For
example, a message containing a date would be described in the logical part
of the contract as shown in Example 30.

If goDate is entered using the standard short date format for US English
locales, mm/dd/yyyy, you would map it to a fixed record field as shown in
Example 31.

Binding only records

If you were sending reports that included a fixed expiration date that you did
not want exposed to the application, you could create a binding only record
called expDate. It would be mapped to the fixed field shown in Example 32.

fixed:enumeration

Synopsis <fixed:enumeration value="..." fixedValue="..." />

Description The fixed:enumeration element is a child of a fixed:body element. It is used
to represent the possible values of an enumerated type and define how those
values are represented on the wire.

Example 30: Fixed Date Message

<message name="fixedDateMessage">
 <part name="goDate" type="xsd:string"/>
</message>

Example 31: Fixed Format Date Mapping

<fixed:field name="goDate" format="mm/dd/yyyy"/>

Example 32: fixedValue Mapping

<fixed:field name="goDate" bindingOnly="true"
 fixedValue="11/11/2112"/>
76

Attributes The fixed:enumeration element has two required attributes:

Examples If you had an enumerated type with the values FruityTooty, Rainbow,
BerryBomb, and OrangeTango the logical description of the type would be
similar to Example 33.

When you map the enumerated type, you need to know the concrete
representation for each of the enumerated values. The concrete
representations can be identical to the logical definitions or some other
value. The enumerated type in Example 33 could be mapped to the fixed
field shown in Example 34. Using this mapping Artix will write OT to the
wire for this field if the enumerations value is set to OrangeTango.

fixed:choice

Synopsis <fixed:choice name="..." discriminatorName="...">

value Is the value of the corresponding enumeration value in
the logical description of the message part.

fixedValue Specifies the string value that will be used to represent
the logical value on the wire. The length of the string
used is determined by the value of the parent
fixed:field element�s length attribute.

Example 33: Ice Cream Enumeration

<xs:simpleType name="flavorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="FruityTooty"/>
 <xs:enumeration value="Rainbow"/>
 <xs:enumeration value="BerryBomb"/>
 <xs:enumeration value="OrangeTango"/>
 </xs:restriction>
</xs:simpleType>

Example 34: Fixed Ice Cream Mapping

<fixed:field name="flavor" size="2">
 <fixed:enumeration value="FruityTooty" fixedValue="FT"/>
 <fixed:enumeration value="Rainbow" fixedValue="RB"/>
 <fixed:enumeration value="BerryBomb" fixedValue="BB"/>
 <fixed:enumeration value="OrangeTango" fixedValue="OT"/>
</fixed:field>
 77

CHAPTER 6 | Fixed Binding
 <fixed:case ... >

 ...

 </fixed:case>

 ...

</fixed:choice>

Description The fixed:choice element is a child of a fixed:body element. It maps choice
complex types to a field in a fixed record length message. The actual values
of the choice are defined using fixed:case child elements. A fixed:choice
element must have a fixed:case child element for each possible value defined
in the choice complex type it represents.

Attributes The fixed:choice element has the following attributes:

fixed:case

Synopsis <fixed:case name="..." fixedValue="...">

 ...

</fixed:case>

Description The fixed:case element is a child of the fixed:choice element. It describes
the complete mapping for an element of a choice complex type to a field in
a fixed record length message.

To fully describe how the logical data that is represented by a fixed:case
element is mapped into a field in a fixed record length message, you need to
create a mapping for the logical element using children to the fixed:case
element. The child elements used to map the part�s type to the fixed
message are the same as the possible child elements of a fixed:body
element. fixed:field elements describe simple types. fixed:choice elements
describe choice complex types. fixed:sequence elements describe sequence
complex types.

name Specifies the name of the logical message part the
choice element is mapping. This attribute is required.

discriminatorName Specifies the name of a binding-only field that is used
as the discriminator for the union. The binding-only
field must defined as part of the parent fixed:body
element and must be capable of representing the
discriminator.
78

Attributes The fixed:case element has the following required attributes:

Examples Example 35 shows an Artix contract fragment mapping a choice complex type
to a fixed record length message.

name Specifies the value of the name attribute of the
corresponding element in the choice complex type being
mapped.

fixedValue Specifies the discriminator value that selects this case. If
the parent fixed:choice element has its
discriminatorName attribute set, the value must conform
to the format specified for that field.

Example 35: Mapping a Union to a Fixed Record Length Message

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/FixedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/fixed"
 xmlns:tns="http://www.iona.com/FixedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/FixedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="unionStationType">
 <xsd:choice>
 <xsd:element name="train" type="xsd:string"/>
 <xsd:element name="bus" type="xsd:int"/>
 <xsd:element name="cab" type="xsd:int"/>
 <xsd:element name="subway" type="xsd:string"/>
 </xsd:choice>
 </xsd:complexType>
...
</types>
<message name="fixedSequence">
 <part name="stationPart" type="tns:unionStationType"/>
</message>
<portType name="fixedSequencePortType">
...
</portType>
<binding name="fixedSequenceBinding"
 type="tns:fixedSequencePortType">
 <fixed:binding/>
...
 79

CHAPTER 6 | Fixed Binding
fixed:sequence

Synopsis <fixed:sequence name="..." occurs="..." counterName="...">

 ...

</fixed:field>

Description The fixed:sequence element can be a child to a fixed:body element, a
fixed:case element, or another fixed:sequence element. It maps a sequence
complex type to a field in a fixed record length message.

To fully describe how the complex type that is represented by a
fixed:sequence element is mapped into a field in a fixed record length
message, you need to create a mapping for each of the complex type�s
elements using children to the fixed:sequence element. The child elements
used to map the part�s type to the fixed message are the same as the
possible child elements of a fixed:body element. fixed:field elements
describe simple types. fixed:choice elements describe choice complex types.
fixed:sequence elements describe sequence complex types.

 <fixed:field name="disc" format="##" bindingOnly="true"/>
 <fixed:choice name="stationPart"
 descriminatorName="disc">
 <fixed:case name="train" fixedValue="01">
 <fixed:field name="name" size="20"/>
 </fixed:case>
 <fixed:case name="bus" fixedValue="02">
 <fixed:field name="number" format="###"/>
 </fixed:case>
 <fixed:case name="cab" fixedValue="03">
 <fixed:field name="number" format="###"/>
 </fixed:case>
 <fixed:case name="subway" fixedValue="04">
 <fixed:field name="name" format="10"/>
 </fixed:case>
 </fixed:choice>
...
</binding>
...
</definition>

Example 35: Mapping a Union to a Fixed Record Length Message
80

Attributes The fixed:sequence element has the following attributes:

Examples A structure containing a name, a date, and an ID number would contain three
fixed:field elements to fully describe the mapping of the data to the fixed
record message. Example 36 shows an Artix contract fragment for such a
mapping.

name Specifies the value of the name attribute from the
corresponding logical complex type. This attribute is
required.

occurs Specifies the number of times this sequence occurs in the
message buffer. This value corresponds the value of the
maxOccurs attribute of the corresponding logical complex
type.

counterName Specifies the name of the binding-only field that is used
to store the actual number of times this sequence occurs
in the on-wire message. The corresponding fixed:field
element must have enough digits to hold the any whole
number up the value of the occurs attribute.

Example 36: Mapping a Sequence to a Fixed Record Length Message

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/FixedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/fixed"
 xmlns:tns="http://www.iona.com/FixedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/FixedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="person">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="date" type="xsd:string"/>
 <xsd:element name="ID" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
...
</types>
<message name="fixedSequence">
 <part name="personPart" type="tns:person"/>
</message>
 81

CHAPTER 6 | Fixed Binding
<portType name="fixedSequencePortType">
...
</portType>
<binding name="fixedSequenceBinding"
 type="tns:fixedSequencePortType">
 <fixed:binding/>
...
 <fixed:sequence name="personPart">
 <fixed:field name="name" size="20"/>
 <fixed:field name="date" format="MM/DD/YY"/>
 <fixed:field name="ID" format="#####"/>
 </fixed:sequence>
...
</binding>
...
</definition>

Example 36: Mapping a Sequence to a Fixed Record Length Message
82

CHAPTER 7

Tagged Binding
The Artix tagged binding maps between XMLSchema message
definitions and self-describing, variable record length
messages.

Namespace

The IONA extensions used to describe tagged data bindings are defined in
the namespace http://schemas.iona.com/bindings/tagged. Artix tools
use the prefix tagged to represent the tagged data extensions. Add the
following line to the definitions element of your contract:

tagged:binding

Synopsis <tagged:binding selfDescribing="..." fieldSeperator="..."

 fieldNameValueSeperator="..." scopeType="..."

 flattened="..." messageStart="..." messageEnd="..."

 unscopedArrayElement="..." ignoreUnknownElement="..."

 ignoreCase="..." />

Description The tagged:binding element specifies that the binding maps logical
messages to tagged data messages.

xmlns:tagged="http://schemas.iona.com/bindings/tagged"
 83

CHAPTER 7 | Tagged Binding
Attributes The tagged:binding element has the following ten attributes:

selfDescribing Specifies if the message data on the wire
includes the field names. Valid values are true
or false. If this attribute is set to false, the
setting for fieldNameValueSeparator is
ignored. This attribute is required.

fieldSeparator Specifies the delimiter the message uses to
separate fields. Valid values include any
character that is not a letter or a number. This
attribute is required.

fieldNameValueSeparator Specifies the delimiter used to separate field
names from field values in self-describing
messages. Valid values include any character
that is not a letter or a number.

scopeType Specifies the scope identifier for complex
messages. Supported values are tab(\t),
curlybrace({data}), and none. The default is
tab.

flattened Specifies if data structures are flattened when
they are put on the wire. If selfDescribing is
false, then this attribute is automatically set
to true.

messageStart Specifies a special token at the start of a
message. It is used when messages that
require a special character at the start of a the
data sequence. Valid values include any
character that is not a letter or a number.

messageEnd Specifies a special token at the end of a
message. Valid values include any character
that is not a letter or a number.

unscopedArrayElement Specifies if array elements need to be scoped
as children of the array. If set to true arrays
take the form
echoArray{myArray=2;item=abc;item=def}.
If set to false arrays take the form
echoArray{myArray=2;{0=abc;1=def;}}.
Default is false.

ignoreUnknownElements Specifies if Artix ignores undefined element in
the message payload. Default is false.
84

The settings for the attributes on these elements become the default settings
for all the messages being mapped to the current binding.

tagged:operation

Synopsis <tagged:operation discriminator="..." discrininatorStyle="..." />

Description The tagged:operation element is a child element of the WSDL operation
element. It specifies that the operation�s messages are being mapped to a
tagged data message.

Attributes The tagged:operation element takes two optional attributes:

tagged:body

Synopsis <tagged:body>

 ...

</tagged:body>

Description The tagged:body element is a child element of the input, output, and fault
messages being mapped to a tagged data format. It specifies that the message
body is mapped to tagged data on the wire and describes the exact mapping
for the message�s parts.

The tagged:body element will have one or more of the following child
elements:

� tagged:field

� tagged:sequence

ignoreCase Specifies if Artix ignores the case with element
names in the message payload. Default is
false.

discriminator Specifies a discriminator to be used by the Artix
runtime to identify the WSDL operation that will
be invoked by the message reciever.

discriminatorStyle Specifies how the Artix runtime will locate the
discriminator as it processes the message.
Supported values are msgname, partlist,
fieldvalue, and fieldname.
 85

CHAPTER 7 | Tagged Binding
� tagged:choice

The children describe the detailed mapping of the XMLSchema message to
the tagged data to be sent on the wire.

tagged:field

Synopsis <tagged:field name="..." alias="...">

 <tagged:enumeration ... />

 ...

</tagged:field>

The tagged:field element is a child of a tagged:body element. It maps
simple types and enumerations to a field in a tagged data message. When
describing enumerated types a tagged:field element will have one or more
tagged:enumeration child elements.

Attributes The tagged:field element has two attributes:

tagged:enumeration

Synopsis <tagged:enumeration value="..." />

Description The tagged:enumeration element is a child element of a tagged:field element.
It is used to map the value of an enumerated types to a field in a tagged data
message.

Parameters The tagged:enumeration element has one required attribute, value, that
corresponds to the enumeration value as specified in the logical description
of the enumerated type.

name A required attribute that must correspond to the name of
the logical message part that is being mapped to the
tagged data field.

alias An optional attribute specifying an alias for the field that
can be used to identify it on the wire.
86

Examples If you had an enumerated type, flavorType, with the values FruityTooty,
Rainbow, BerryBomb, and OrangeTango the logical description of the type
would be similar to Example 37.

flavorType would be mapped to a tagged data field as shown in
Example 38.

tagged:sequence

Synopsis <tagged:sequence name="..." alias="..." occurs="...">

 ...

</tagged:sequence>

Description The taggeded:sequence element is a child of a tagged:body element, a
tagged:sequence element, or a tagged:case element. It maps arrays and
sequence complex types to fields in a tagged data message. A
tagged:sequence element contains one or more children to map the
corresponding logical type�s parts to fields in a tagged data message. The
child elements can be of the following types:

� tagged:field

� tagged:sequence

� tagged:choice

Example 37: Ice Cream Enumeration

<xs:simpleType name="flavorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="FruityTooty"/>
 <xs:enumeration value="Rainbow"/>
 <xs:enumeration value="BerryBomb"/>
 <xs:enumeration value="OrangeTango"/>
 </xs:restriction>
</xs:simpleType>

Example 38: Tagged Data Ice Cream Mapping

<tagged:field name="flavor">
 <tagged:enumeration value="FruityTooty"/>
 <tagged:enumeration value="Rainbow"/>
 <tagged:enumeration value="BerryBomb"/>
 <tagged:enumeration value="OrangeTango"/>
</tagged:field>
 87

CHAPTER 7 | Tagged Binding
Attributes The taggeded:sequence element has three attributes:

Examples A structure containing a name, a date, and an ID number would contain three
tagged:field elements to fully describe the mapping of the data to the fixed
record message. Example 39 shows an Artix contract fragment for such a
mapping.

name Specifies the name of the logical message part that is
being mapped into the tagged data message. This is a
required attribute.

alias Specifies an alias for the sequence that can be used to
identify it on the wire.

occurs Specifying the number of times the sequence appears.
This attribute is used to map arrays.

Example 39: Mapping a Sequence to a Tagged Data Format

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="taggedDataMappingsample"

targetNamespace="http://www.iona.com/taggedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/tagged"
 xmlns:tns="http://www.iona.com/taggedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/taggedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="person">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="date" type="xsd:string"/>
 <xsd:element name="ID" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
...
</types>
<message name="taggedSequence">
 <part name="personPart" type="tns:person"/>
</message>
<portType name="taggedSequencePortType">
...
</portType>
88

tagged:choice

Synopsis <tagged:choice name="..." discriminatorName="..." alais="...">

 <tagged:case ...>

 ...

</tagged:choice>

The tagged:choice element is a child of a tagged:body element, a
tagged:sequence element, or a tagged:case element. It maps unions to a
field in a tagged data message. A tagged:choice element may contain one
or more tagged:case child elements to map the cases for the union to a field
in a tagged data message.

Parameters The tagged:choice element has three attributes:

<binding name="taggedSequenceBinding"
 type="tns:taggedSequencePortType">
 <tagged:binding selfDescribing="false" fieldSeparator="pipe"/>
...
 <tagged:sequence name="personPart">
 <tagged:field name="name"/>
 <tagged:field name="date"/>
 <tagged:field name="ID"/>
 </tagged:sequence>
...
</binding>
...
</definition>

Example 39: Mapping a Sequence to a Tagged Data Format

name Specifies the name of the logical message part
being mapped into the tagged data message. This
is a required attribute.

discriminatorName Specifies the message part used as the
discriminator for the union.

alias Specifies an alias for the union that can be used
to identify it on the wire.
 89

CHAPTER 7 | Tagged Binding
tagged:case

Synopsis <tagged:case value="..." />

Description The tagged:case element is a child element of a tagged:choice element. It
describes the complete mapping of a union�s individual cases to a field in a
tagged data message. A tagged:case element must have one child element
to describe the mapping of the case�s data to a field, or fields, to a tagged
data message. Valid child elements are tagged:field, tagged:sequence, and
tagged:choice.

Attributes The tagged:case element has one required attribute, name, that corresponds
to the name of the case element in the union�s logical description.

Examples Example 40 shows an Artix contract fragment mapping a union to a tagged
data format.

Example 40: Mapping a Union to a Tagged Data Format

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/tagService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/tagged"
 xmlns:tns="http://www.iona.com/tagService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/tagService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="unionStationType">
 <xsd:choice>
 <xsd:element name="train" type="xsd:string"/>
 <xsd:element name="bus" type="xsd:int"/>
 <xsd:element name="cab" type="xsd:int"/>
 <xsd:element name="subway" type="xsd:string"/>
 </xsd:choice>
 </xsd:complexType>
...
</types>
<message name="tagUnion">
 <part name="stationPart" type="tns:unionStationType"/>
</message>
90

<portType name="tagUnionPortType">
...
</portType>
<binding name="tagUnionBinding" type="tns:tagUnionPortType">
 <tagged:binding selfDescribing="false"
 fieldSeparator="comma"/>
...
 <tagged:choice name="stationPart" descriminatorName="disc">
 <tagged:case name="train">
 <tagged:field name="name"/>
 </tagged:case>
 <tagged:case name="bus">
 <tagged:field name="number"/>
 </tagged:case>
 <tagged:case name="cab">
 <tagged:field name="number"/>
 </tagged:case>
 <tagged:case name="subway">
 <tagged:field name="name"/>
 </tagged:case>
 </tagged:choice>
...
</binding>
...
</definition>

Example 40: Mapping a Union to a Tagged Data Format
 91

CHAPTER 7 | Tagged Binding
92

CHAPTER 8

TibrvMsg Binding
The Artix TibrvMsg binding elements describe a mapping
between XMLSchema messages and the TibrvMsg messages
used by Tibco Rendevous.

Namespace

The IONA extensions used to describe TibrvMsg bindings are defined in the
namespace http://schemas.iona.com/transports/tibrv. Artix tools use
the prefix tibrv to represent the tagged data extensions. Add the following
line to the definitions element of your contract:

TIBRVMSG to XMLSchema Type Mapping

Table 5 shows how TibrvMsg data types are mapped to XMLSchema types
in Artix contracts.

xmlns:tibrv="http://schemas.iona.com/transports/tibrv"

Table 5: TIBCO to XMLSchema Type Mapping

TIBRVMSG XSD

TIBRVMSG_STRING xsd:string

TIBRVMSG_BOOL xsd:boolean

TIBRVMSG_I8 xsd:byte
 93

CHAPTER 8 | TibrvMsg Binding
TIBRVMSG_I16 xsd:short

TIBRVMSG_I32 xsd:int

TIBRVMSG_I64 xsd:long

TIBRVMSG_U8 xsd:unsignedByte

TIBRVMSG_U16 xsd:unsignedShort

TIBRVMSG_U32 xsd:unsignedInt

TIBRVMSG_U64 xsd:unsignedLong

TIBRVMSG_F32 xsd:float

TIBRVMSG_F64 xsd:double

TIBRVMSG_STRING xsd:decimal

TIBRVMSG_DATETIMEa xsd:dateTime

TIBRVMSG_OPAQUE xsd:base64Binary

TIBRVMSG_OPAQUE xsd:hexBinary

TIBRVMSG_STRING xsd:QName

TIBRVMSG_STRING xsd:nonPositiveInteger

TIBRVMSG_STRING xsd:negativeInteger

TIBRVMSG_STRING xsd:nonNegativeInteger

TIBRVMSG_STRING xsd:positiveInteger

TIBRVMSG_STRING xsd:time

TIBRVMSG_STRING xsd:date

TIBRVMSG_STRING xsd:gYearMonth

TIBRVMSG_STRING xsd:gMonthDay

TIBRVMSG_STRING xsd:gDay

TIBRVMSG_STRING xsd:gMonth

Table 5: TIBCO to XMLSchema Type Mapping

TIBRVMSG XSD
94

tibrv:binding

Synopsis <tibrv:binding stringEncoding="..." stringAsOpaque="...">

 ...

</tibrv:binding>

Description The tibrv:binding element is a child of the WSDL binding element. It
identifies that the data is to be packed into a TibrvMsg. The tibrv:binding
element can be used to set a default array policy for the TibrvMsg generated
by the binding by adding a tibrv:array child element.

The tibrv:binding element can also define binding-only message data by
including child elements. The following elements can be a child:

� tibrv:msg

� tibrv:field

� tibrv:context

Any binding-only data defined at the binding level is attached to all
messages that use the binding.

TIBRVMSG_STRING xsd:anyURI

TIBRVMSG_STRING xsd:token

TIBRVMSG_STRING xsd:language

TIBRVMSG_STRING xsd:NMTOKEN

TIBRVMSG_STRING xsd:Name

TIBRVMSG_STRING xsd:NCName

TIBRVMSG_STRING xsd:ID

a. While TIBRVMSG_DATETIME has microsecond precision, xsd:dateTime
only supports millisecond precision. Therefore, Artix rounds all times to the
nearest millisecond.

Table 5: TIBCO to XMLSchema Type Mapping

TIBRVMSG XSD
 95

CHAPTER 8 | TibrvMsg Binding
Attributes The tibrv:binding element has the following attributes:

tibrv:operation

Synopsis <tibrv:operation>

 ...

</tibrv:operation>

Description The tibrv:operation element is a child of a WSDL operation element. It
signifies that the messages used for this operation are mapped into a TibrvMsg
and defines any operation specific array policies and data fields.

A tibrv:operation element can specify an operation specific array policy by
adding a child tibrv:array element. This array policy overrides any array
policy set at the binding level.

A tibrv:operation element can define binding-only message data to be
inserted into all TibrvMsg messages generated by the operation by adding
children to define the data. The following elements are valid children:

� tibrv:msg

� tibrv:field

� tibrv:context

Any binding-only data defined by a tibrv:operation element is attached to
all messages generated by the operation.

tibrv:input

Synopsis <tibrv:input messageNameFieldPath="..."

 messageNameFieldValue="..."

 stringEncoding="..."

stringEncoding Specifies the character set used in encoding
string data included in the message. The
default value is utf-8.

stringAsOpaque Specifies how string data is passed in
messages. false, the default value, specifies
that strings data is passed as TIRBMSG_STRING.
true specifies that string data is passed as
OPAQUE.
96

 stringAsOpaque="...">

 ...

</tibrv:input>

Description The tibrv:input element is a child of a WSDL input element. It defines the
exact mapping of the logical input message to the TibrvMsg that is used to
make requests on a service. When the tibrv:input element does not have
any children, it signifies that the default XMLSchema message to TibrvMsg
message mappings are used. If you want to define a custom mapping from
the XMLSchema message to the TibrvMsg message, want to add context
information to the TibrvMsg message, or want to add binding only elements
to the TibrvMsg message, you can add children to the tibrv:input element.
Valid child elements include:

� tibrv:msg

� tibrv:field

� tibrv:context

A tibrv:input element can specify an operation specific array policy by
adding a child tibrv:array element. This array policy overrides any array
policy set at the binding level or the operation level.

Attributes The tibrv:input element has the following attributes:

messageNameFieldPath Specifies the field path that includes the
message name. If this attribute is not specified,
the first field in the top level message will be
used as the message name and given the value
IT_BUS_MESSAGE_NAME.

messageNameFieldValue Specifies the field value that corresponds to the
message name. If this attribute is not specified,
the value of the WSDL message element�s name
attribute will be used.

stringEncoding Specifies the character set used in encoding
string data included in the message. This value
will override the value set in tibrv:binding.

stringAsOpaque Specifies how string data is passed in the
message. false specifies that strings data is
passed as TIBRVMSG_STRING. true specifies that
string data is passed as OPAQUE. This value will
override the value set in tibrv:binding.
 97

CHAPTER 8 | TibrvMsg Binding
tibrv:output

Synopsis <tibrv:outputmessageNameFieldPath="..."

 messageNameFieldValue="..."

 stringEncoding="..."

 stringAsOpaque="...">

 ...

</tibrv:output>

Description The tibrv:output element is a child of a WSDL output element. It defines
the exact mapping of the logical output message to the TibrvMsg that is used
when responding to requests. When the tibrv:output element does not have
any children, it signifies that the default XMLSchema message to TibrvMsg
message mappings are used. If you want to define a custom mapping from
the XMLSchema message to the TibrvMsg message, want to add context
information to the TibrvMsg message, or want to add binding only elements
to the TibrvMsg message, you can add children to the tibrv:output element.
Valid child elements include:

� tibrv:msg

� tibrv:field

� tibrv:context

A tibrv:output element can specify an operation specific array policy by
adding a child tibrv:array element. This array policy overrides any array
policy set at the binding level or the operation level.

Attributes The tibrv:output element has the following attributes:

messageNameFieldPath Specifies the field path that includes the
message name. If this attribute is not specified,
the first field in the top level message will be
used as the message name and given the value
IT_BUS_MESSAGE_NAME.

messageNameFieldValue Specifies the field value that corresponds to the
message name. If this attribute is not specified,
the value of the WSDL message element�s name
attribute will be used.

stringEncoding Specifies the character set used in encoding
string data included in the message. This value
will override the value set in tibrv:binding.
98

tibrv:array

Synopsis <tibrv:array elementName="..." integralAsSingleField="..."

 loadSize="..." sizeName="..." />

Description The tibrv:array element defines how arrays are mapped into elements as a
TibrvMsg message. The array mapping properties can be set at any level of
granuality by making it the child of different TibrvMsg binding elements. The
array mapping properties at lower levels always override the array mapping
properties. For example, the mapping properties defined by a tibrv:array
element that is the child of a tibrv:msg element will override the array mapping
properties defined by a tibrv:array element that is a child of the parent
tibrv:operation element.

Attributes The array mapping properties are set using the attributes of the tibrv:array
element. The tibrv:array element has the following attributes:

stringAsOpaque Specifies how string data is passed in the
message. false specifies that strings data is
passed as TIRBMSG_STRING. true specifies that
string data is passed as OPAQUE. This value will
override the value set in tibrv:binding.

elementName Specifies an expression that when evaluated
will be used as the name of the TibrvMsg field
to which array elements are mapped. The
default element naming scheme is to
concatenate the value of WSDL element
element�s name attribute with a counter. For
information on specifying naming expressions
see �Custom array naming expressions�.

integralAsSingleField Specifies how scalar array data is mapped
into TibrvMsgField instances. true, the
default, specifies that arrays are mapped into
a single TibrvMsgField. false specifies that
each member of an array is mapped into a
separate TibrvMsgField.
 99

CHAPTER 8 | TibrvMsg Binding
Custom array naming expressions When specifying a naming policy for array element names you use a string
expression that combines XML properties, strings, and custom naming
functions. For example, you could use the expression
concat(xml:attr(�name�), �_�, counter(1,1)) to specify that each
element in the array street is named street_n.

Table 6 shows the available functions for use in building array element
names.

Examples Example 41 shows an example of an Artix contract containing a TibrvMsg
binding that uses array policies. The policies are set at the binding level and:

� Force the name of the TibrvMsg containing array elements to be
named street0, street1,

loadSize Specifies if the number of elements in an array
is included in the TibrvMsg. true specifies
that the number of elements in the array is
added as a TibrvMsgField in the same
TibrvMsg as the array. false, the default,
specifies that the number of elements in the
array is not included in the TibrvMsg.

sizeName Specifies an expression that when evaluated
will be used as the name of the TibrvMsgField
to which the size of the array is written. The
default naming scheme is to concatenate the
value of WSDL element element�s name
attribute with @size. For information on
specifying naming expressions see �Custom
array naming expressions� on page 100.

Table 6: Functions Used for Specifying TibrvMsg Array Element Names

Function Purpose

xml:attr(�attribute�) Inserts the value of the named
attribute.

concat(item1, item2, ...) Concatenates all of the elements
into a single string.

counter(start, increment) Adds an increasing numerical
value. The counter starts at start
and increases by increment.
100

� Write out the number of elements in each street array.

� Force each element of a street array to be written out as a separate
field.

Example 41: TibrvMsg Binding with Array Policies Set

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tibrv="http://schemas.iona.com/transports/tibrv"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
 <types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string" minOccurs="1" maxOccurs="5"
 nillable="true"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zipCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </schema>
 </types>
 <message name="addressRequest">
 <part name="resident" type="xsd:string"/>
 </message>
 <message name="addressResponse">
 <part name="address" type="xsd1:Address"/>
 </message>
 <portType name="theFourOneOne">
 <operation name="lookUp">
 <input message="tns:addressRequest" name="request"/>
 <output message="tns:addressResponse" name="response"/>
 </operation>
 </portType>
 101

CHAPTER 8 | TibrvMsg Binding
tibrv:msg

Synopsis <tibrv:msg name="..." alias="..." element="..." id="..."

 minOccurs="..." maxOccurs="...">

 ...

</tibrv:msg>

Description The tibrv:msg element instructs Artix to create an instance of a TibrvMsg.

Attributes The tibrv:msg element has the following attributes:

 <binding name="lookUpBinding" type="tns:theFourOneOne">
 <tibrv:binding>
 <tibrv:array elementName="concat(xml:attr('name'), counter(0, 1))"
 integralsAsSingleField="false"
 loadSize="true"/>
 <\tibrv:binding>
 <operation name="lookUp">
 <tibrv:operation/>
 <input name="addressRequest">
 <tibrv:input/>
 </input>
 <output name="addressResponse">
 <tibrv:output/>
 </output>
 </operation>
 </binding>
 <service name="orderWidgetsService">
 <port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
 ...
 </port>
 </service>
</definitions>

Example 41: TibrvMsg Binding with Array Policies Set (Continued)

name Specifies the name of the contract element which this
TibrvMsg instance gets its value. If this attribute is not
present, then the TibrvMsg is considered a binding-only
element.

alias Specifies the value of the name member of the TibrvMsg
instance. If this attribute is not specified, then the binding
will use the value of the name attribute.
102

tibrv:field

Synopsis <tibrv:field name="..." alias="..." element="..." id="..."

 type="..." value="..." minOccurs="..." maxOccurs="..." />

Description The tibrv:field element instructs Artix to create an instance of a
TibrvMsgField.

Parameters The tibrv:field element has the following attributes:

element Used only when tibrv:msg is an immediate child of
tibrv:context. Specifies the QName of the element defining
the context data to use when populating the TibrvMsg.

id Specifies the value of the id member of the TibrvMsg
instance. The default value is 0.

minOccurs/
maxOccurs

Used only with elements that correspond to logical message
parts. The values must be identical to the values specified in
the schema definition.

name Specifies the name of the contract element which this
TibrvMsgField instance gets its value. If this attribute is not
present, then the TibrvMsgField is considered a binding-only
element.

alias Specifies the value of the name member of the TibrvMsgField
instance. If this attribute is not specified, then the binding
will use the value of the name attribute.

element Used only when tibrv:field is an immediate child of
tibrv:context. Specifies the QName of the element defining
the context data to use when populating the TibrvMsgField.

id Specifies the value of the id member of the TibrvMsgField
instance. The default value is 0.

type Specifies the XML Schema type of the data being used to
populate the data member of the TibrvMsgField instance.

value Specifies the value inserted into the data member of the
TibrvMsgField instance when the field is a binding-only
element.

minOccurs/
maxOccurs

Used only with elements that correspond to logical message
parts. The values must be identical to the values specified in
the schema definition.
 103

CHAPTER 8 | TibrvMsg Binding
tibrv:context

Synopsis <tibrv:context>

 ...

</tibrv:context>

Description The tibrv:context element specifies that the following message parts are
populated from an Artix context. The child of a tibrv:context element can
be either:

� a tibrv:msg element if the context data is a complex type.

� a tibrv:msg element if you wanted to wrap the context data with a
TibrvMsg on the wire.

� a tibrv:field element if the context data is a native XMLSchema type.

When a tibrv:msg element or a tibrv:field element are used to insert context
information into a TibrvMsg they use the element attribute in place of the
name attribute. The element attribute specifies the QName used to register
the context data with Artix bus. It must correspond to a globally defined
XML Schema element. Also, when inserting context information you cannot
specify values for any other attributes except the alias attribute.

Examples If you were integrating with a Tibco server that used a header to correlate
messages using an ASCII correlation ID, you could use the TibrvMsg binding�s
context support to implement the correlation ID on the Artix side of the
solution. The first step would be to define an XML Schema element called
corrID for the context that would hold the correlation ID. Then in your
TibrvMsg binding definition you would include a tibrv:context element in
the tibrv:binding element to specify that all messages passing through the
binding will have the header. Example 42 shows a contract fragment
containing the appropriate entries for this scenario.

Example 42: Using Context Data in a TibrvMsg Binding

<definitions
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 ...>
104

The context for corrID will be registered with the Artix bus using the QName
"http://widgetVendor.com/types/widgetTypes", "corrID".

See also For information on using contexts in Artix applications, see
Developing Artix Applications with C++ or Developing Artix Applications
with Java.

 <types>
 <schema
 targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 ...
 <element name="corrID" type="xsd:string"/>
 ...
 </schema>
 </types>
 ...
 <portType name="correalatedService">
 ...
 </portType>
 <binding name="tibrvCorrBinding" type="correlatedService">
 <tibrv:binding>
 <tibrv:context>
 <tibrv:field element="xsd1:corrID"/>
 </tibrv:context>
 </tibrv:binding>
 ...
 </binding>
 ...
</definitions>

Example 42: Using Context Data in a TibrvMsg Binding
 105

../prog_guide/index.htm
../java_pguide/index.htm
../java_pguide/index.htm

CHAPTER 8 | TibrvMsg Binding
106

CHAPTER 9

XML Binding
Artix includes a binding that supports the exchange of XML
documents without the overhead of a SOAP envelope.

Namespace

The IONA extensions used to describe XML format bindings are defined in
the namespace http://celtix.objectweb.org/bindings/xmlformat. Artix
tools use the prefix xformat to represent the XML binding extensions. Add
the following line to your contracts:

xformat:binding

Synopsis <xformat:binding rootNode="..." />

Description The xformat:binding element is the child of the WSDL binding element. It
signifies that the messages passing through this binding will be sent as XML
documents without a SOAP envelope.

Attributes The xformat:binding element has a single optional attribute called rootNode.
The rootNode attribute specifies the QName for the element that serves as
the root node for the XML document generated by Artix. When the rootNode
attribute is not set, Artix uses the root element of the message part as the root
element when using doc style messages or an element using the message
part name as the root element when using RCP style messages.

xmlns:xformat="http://celtix.objectweb.org/bindings/xmlformat"
 107

CHAPTER 9 | XML Binding
xformat:body

Synopsis <xformat:body rootNode="..." />

Description The xformat:body element is an optional child of the WSDL input element,
the WSDL output element, and the WSDL fault element. It is used to override
the value of the rootNode attribute specified in the binding�s xformat:binding
element.

Attributes The xformat:body element has a single attribute called rootNode. The
rootNode attribute specifies the QName for the element that serves as the
root node for the XML document generated by Artix. When the rootNode
attribute is not set, Artix uses the root element of the message part as the root
element when using doc style messages or an element using the message
part name as the root element when using RCP style messages.
108

CHAPTER 10

RMI Binding
RMI provides a way for Artix Java applications to communicate
with other RMI services. This is particularly useful for
conecting to EJBs.

Namespace

The elements Artix uses for defining RMI information is defined in the
http://schemas.iona.com/bindings/rmi namespace. When defining RMI
information in an Artix contract your contract�s definition element must
have the following entry:

rmi:class

Synopsis <rmi:class name="..."s />

Description The rmi:class element is a child of a WSDL binding element. It specifies
the Java interface the service implements.

Attributes The rmi:class element has the following required attribute:

xmlns:rmi="http://schemas.iona.com/bindings/rmi"

name Specifies the full name of the Java interface that the
service implements. This interface must extend
java.rmi.Remote.
 109

CHAPTER 10 | RMI Binding
rmi:address

Synopsis <rmi:address url="..." />

Description The rmi:address element is a child of a WSDL port element. It specifies the
JNDI URL the application will to connect to remote objects.

Attributes The rmi:address element has the following required attribute:

url Specifies the JNDI URL the application will use to
connect to remote objects.
110

Part II
Ports

In this part This part contains the following chapters:

HTTP Port page 113

CORBA Port page 131

IIOP Tunnel Port page 133

WebSphere MQ Port page 137

JMS Port page 155

Tuxedo Port page 159

Tibco/Rendezvous Port page 161

File Transfer Protocol Port page 169
 111

112

CHAPTER 12

HTTP Port
Along with the standard WSDL elements used to specify the
location of an HTTP port, Artix uses a number of extensions
for fine tuning the configuration of an HTTP port.

In this chapter This chapter discusses the following topics:

Standard WSDL Elements page 114

Artix Extension Elements page 115

Attribute Details page 121
 113

CHAPTER 12 | HTTP Port
Standard WSDL Elements

http:address

Synopsis <http:address location="..." />

Description The http:address element is a child of the WSDL port element. It specifies
the address of the HTTP port of a service that is not using SOAP messages
to communicate.

Attributes The http:address element has a single required attribute called location.
The location attribute specifies the service�s address as a URL.

soap:address

Synopsis <soap:address location="..." />

Description The soap:address element is a child of the WSDL port element. It specifies
the address of the HTTP port of a service that uses SOAP 1.1 messages to
communicate.

Attributes The soap:address element has a single required attribute called location.
The location attribute specifies the service�s address as a URL.

wsoap12:address

Synopsis <wsoap12:address location="..." />

Description The wsoap12:address element is a child of the WSDL port element. It
specifies the address of the HTTP port of a service that uses SOAP 1.2
messages to communicate.

Attributes The wsoap12:address element has a single required attribute called location.
The location attribute specifies the service�s address as a URL.
114

Artix Extension Elements
Artix Extension Elements

Namespace

Example 43 shows the namespace entries you need to add to the
definitions element of your contract to use the Artix HTTP extensions.

http-conf:client

Synopsis <http-conf:client SendTimeout="..." RecieveTimeout="..."

 AutoRedirect="..." UserName="..."

 Password="..." AuthorizationType="..."

 Authorization="..." Accept="..."

 AcceptLanguage="..." AcceptEncoding="..."

 ContentType="..." Connection="..."

 Host="..." ConnectionAttepmts="..."

 CacheControl="..." Cookie="..."

 BrowserType="..." Refferer="..."

 ProxyServer="..." ProxyUsername="..."

 ProxyPassword="..." ProxyAuthorizationType="..."

 ProxyAuthorization="..." UseSecureSockets="..."

 ClientCertificates="..." ClientCertificateChain="..."

 ClientPrivateKey="..." ClientPrivateKeyPassword="..."

 TrustedRootCertificate="..." />

Description The http-conf:client element is a child of the WSDL port element. It is
used to specify client-side configuration details.

Example 43: Artix HTTP Extension Namespaces

<definitions
 ...
 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 ... >
 115

CHAPTER 12 | HTTP Port
Attributes The http-conf:client element has the following attributes:

SendTimeout Specifies the length of time, in
milliseconds, the client tries to send a
request to the server before the connection
is timed out. Default is 30000.

ReceiveTimeout Specifies the length of time, in
milliseconds, the client tries to receive a
response from the server before the
connection is timed out. The default is
30000.

AutoRedirect Specifies if a request should be
automatically redirected when the server
issues a redirection reply via RedirectURL.
The default is false, to let the client
redirect the request itself.

UserName Specifies the user name that the client will
use for authentication with a service. This
value is passed as an attribute in each
request�s transport header.

Password Specifies the password that the client will
use for authentication with a service. This
value is passed as an attribute in each
request�s transport header.

AuthorizationType Specifies the name of the authorization
scheme the client wishes to use.

Authorization Specifies the authorization credentials used
to perform the authorization.

Accept Specifies what media types the client is
prepared to handle.

AcceptLanguage Specifies the client�s preferred language for
receiving responses.

AcceptEncoding Specifies what content codings the client is
prepared to handle.

ContentType Specifies the media type of the data being
sent in the body of the client request.

Host Specifies the Internet host and port number
of the resource on which the client request
is being invoked.
116

Artix Extension Elements
Connection Specifies if the client wants a particular
connection to be kept open after each
request/response dialog.

ConnectionAttempts Specifies the number of times a client will
transparently attempt to connect to server.

CacheControl Specifies directives about the behavior that
must be adhered to by caches involved in
the chain comprising a request from a
client to a server.

Cookie Specifies a static cookie to be sent to the
server along with all requests.

BrowserType Specifies information about the browser
from which the client request originates.

Referer Specifies the URL of the resource that
directed the client to make requests on a
particular service.

ProxyServer Specifies the URL of the proxy server, if one
exists along the message path.

ProxyUserName Specifies the username to use for
authentication on the proxy server if it
requires separate authorization.

ProxyPassword Specifies the password to use for
authentication on the proxy server if it
requires separate authorization.

ProxyAuthorizationType Specifies the name of the authorization
scheme used with the proxy server.

ProxyAuthorization Specifies the authorization credentials used
to perform the authorization with the proxy
server.

UseSecureSockets Indicates if the client wants to open a
secure connection.

ClientCertificate Specifies the full path to the
PKCS12-encoded X509 certificate issued
by the certificate authority for the client.

ClientCertificateChain Specifies the full path to the file that
contains all the certificates in the chain.
 117

CHAPTER 12 | HTTP Port
http-conf:server

Synopsis <http_conf:server SendTimeout="..." RecieveTimeout="..."

 SurpressClientSendErrors="..."

 SurpressClientRecieveErrors="..."

 HonnorKeepAlive="..." RedirectURL="..."

 CacheControl="..." ContentLocation="..."

 ContentType="..." ContentEncoding="..."

 ServerType="..." UseSecureSockets="..."

 ServerCertificate="..." ServerCertificateChain="..."

 ServerPrivateKey="..." ServerPrivateKeyPassword="..."

 TrustedRootCertificate="..." />

Description The http-conf:server element is a child of the WSDL port element. It is used
to specify server-side configuration details.

Attributes The http-conf:server element has the following attributes:

ClientPrivateKey Specifies the full path to the
PKCS12-encoded private key that
corresponds to the X509 certificate
specified by ClientCertificate.

ClientPrivateKeyPassword Specifies a password that is used to decrypt
the PKCS12-encoded private key.

TrustedRootCertificate Specifies the full path to the
PKCS12-encoded X509 certificate for the
certificate authority.

SendTimeout Sets the length of time, in milliseconds,
the server tries to send a response to
the client before the connection times
out. The default is 30000.

ReceiveTimeout Sets the length of time, in milliseconds,
the server tries to receive a client
request before the connection times out.
The default is 30000.
118

Artix Extension Elements
SuppressClientSendErrors Specifies whether exceptions are to be
thrown when an error is encountered on
receiving a client request. The default is
false; exceptions are thrown on
encountering errors.

SuppressClientReceiveErrors Specifies whether exceptions are to be
thrown when an error is encountered on
sending a response to a client. The
default is false; exceptions are thrown
on encountering errors.

HonorKeepAlive Specifies whether the server honors
client requests for a connection to
remain open after a response has been
sent. The default is Keep-Alive;
Keep-alive requests are honored. false
specifies that keep-alive requests are
ignored.

RedirectURL Sets the URL to which the client
request should be redirected if the URL
specified in the client request is no
longer appropriate for the requested
resource.

CacheControl Specifies directives about the behavior
that must be adhered to by caches
involved in the chain comprising a
response from a server to a client.

ContentLocation Sets the URL where the resource being
sent in a server response is located.

ContentType Sets the media type of the information
being sent in a server response, for
example, text/html or image/gif.

ContentEncoding Specifies what additional content
codings have been applied to the
information being sent by the server.

ServerType Specifies what type of server is sending
the response to the client. Values take
the form program-name/version. For
example, Apache/1.2.5.
 119

CHAPTER 12 | HTTP Port
UseSecureSockets Indicates whether the server wants a
secure HTTP connection running over
SSL or TLS.

ServerCertificate Sets the full path to the
PKCS12-encoded X509 certificate
issued by the certificate authority for the
server.

ServerCertificateChain Sets the full path to the file that
contains all the certificates in the
server�s certificate chain.

ServerPrivateKey Sets the full path to the
PKCS12-encoded private key that
corresponds to the X509 certificate
specified by ServerCertificate.

ServerPrivateKeyPassword Sets a password that is used to decrypt
the PKCS12-encoded private key, if it
has been encrypted with a password.

TrustedRootCertificate Sets the full path to the
PKCS12-encoded X509 certificate for
the certificate authority. This is used to
validate the certificate presented by the
client.
120

Attribute Details
Attribute Details

AuthorizationType

Description The AuthorizationType attribute corresponds to the HTTP AuthorizationType
property. It specifies the name of the authorization scheme the client wishes
to use. This information is specified and handled at the application level. Artix
does not perform any validation on this value. It is the user�s responsibility to
ensure that the correct scheme name is specified, as appropriate.

Authorization

Description The Authorization attribute corresponds to the HTTP Authorization property.
It specifies the authorization credentials the client wants the server to use
when performing the authorization. The credentials are encoded and handled
at the application-level. Artix does not perform any validation on the specified
value. It is the user�s responsibility to ensure that the correct authorization
credentials are specified, as appropriate.

Accept

Description The Accept attribute corresponds to the HTTP Accept property. It specifies
what media types the client is prepared to handle. The value of the attribute
is specified using as multipurpose internet mail extensions (MIME) types.

Note: If the client wants to use basic username and password-based
authentication this does not need to be set.

Note: If the client wants to use basic username and password-based
authentication this does not need to be set.
 121

CHAPTER 12 | HTTP Port
MIME type values MIME types are regulated by the Internet Assigned Numbers Authority
(IANA). They consist of a main type and sub-type, separated by a forward
slash. For example, a main type of text might be qualified as follows:
text/html or text/xml. Similarly, a main type of image might be qualified
as follows: image/gif or image/jpeg.

An asterisk (*) can be used as a wildcard to specify a group of related types.
For example, if you specify image/*, this means that the client can accept
any image, regardless of whether it is a GIF or a JPEG, and so on. A value of
/ indicates that the client is prepared to handle any type.

Examples of typical types that might be set are:

� text/xml
� text/html
� text/text
� image/gif
� image/jpeg
� application/jpeg
� application/msword
� application/xbitmap
� audio/au
� audio/wav
� video/avi

� video/mpeg

See also See http://www.iana.org/assignments/media-types/ for more details.

AcceptLanguage

Description The AcceptLanguage attribute corresponds to the HTTP AcceptLanguage
property. It specifies what language (for example, American English) the client
prefers for the purposes of receiving a response.

Specifying the language Language tags are regulated by the International Organization for Standards
(ISO) and are typically formed by combining a language code, determined
by the ISO-639 standard, and country code, determined by the ISO-3166
standard, separated by a hyphen. For example, en-US represents American
English.

See also A full list of language codes is available at
http://www.w3.org/WAI/ER/IG/ert/iso639.htm.
122

http://www.iana.org/assignments/media-types/
http://www.w3.org/WAI/ER/IG/ert/iso639.htm

Attribute Details
A full list of country codes is available at
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/l
ist-en1.html.

AcceptEncoding

Description The AcceptEncoding attribute corresponds to the HTTP AcceptEncoding
Property. It specifies what content encodings the client is prepared to handle.
Content encoding labels are regulated by the Internet Assigned Numbers
Authority (IANA). Possible content encoding values include zip, gzip,
compress, deflate, and identity.

The primary use of content encodings is to allow documents to be
compressed using some encoding mechanism, such as zip or gzip. Artix
performs no validation on content codings. It is the user�s responsibility to
ensure that a specified content coding is supported at application level.

See also See http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html for more
details on content encodings.

ContentType

Description The ContentType attribute corresponds to the HTTP ContentType property. It
specifies the media type of the data being sent in the body of a message.
Media types are specified using multipurpose internet mail extensions (MIME)
types.

MIME type values MIME types are regulated by the Internet Assigned Numbers Authority
(IANA). MIME types consist of a main type and sub-type, separated by a
forward slash. For example, a main type of text might be qualified as
follows: text/html or text/xml. Similarly, a main type of image might be
qualified as follows: image/gif or image/jpeg.

The default type is text/xml. Other specifically supported types include:

� application/jpeg
� application/msword
� application/xbitmap
� audio/au
� audio/wav
� text/html
� text/text
 123

http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html

CHAPTER 12 | HTTP Port
� image/gif
� image/jpeg
� video/avi

� video/mpeg.

Any content that does not fit into any type in the preceding list should be
specified as application/octet-stream.

Client settings For clients this attribute is only relevant if the client request specifies the
POST method to send data to the server for processing.

For web services, this should be set to text/xml. If the client is sending
HTML form data to a CGI script, this should be set to
application/x-www-form-urlencoded. If the HTTP POST request is bound to
a fixed payload format (as opposed to SOAP), the content type is typically
set to application/octet-stream.

See also See http://www.iana.org/assignments/media-types/ for more details.

ContentEncoding

Description The ContentEncoding attribute corresponds to the HTTP ContentEncoding
property. This property specifies any additional content encodings that have
been applied to the information being sent by the server. Content encoding
labels are regulated by the Internet Assigned Numbers Authority (IANA).
Possible content encoding values include zip, gzip, compress, deflate, and
identity.

The primary use of content encodings is to allow documents to be
compressed using some encoding mechanism, such as zip or gzip. Artix
performs no validation on content codings. It is the user�s responsibility to
ensure that a specified content coding is supported at application level.

See also See http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html for more
details on content encodings.

Host

Description The Host attribute corresponds to the HTTP Host property. It specifies the
internet host and port number of the resource on which the client request is
being invoked. This attribute is typically not required. Typically, this attribute
does not need to be set. It is only required by certain DNS scenarios or
124

http://www.iana.org/assignments/media-types/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html

Attribute Details
application designs. For example, it indicates what host the client prefers for
clusters (that is, for virtual servers mapping to the same internet protocol (IP)
address).

Connection

Description The Connection attribute specifies whether a particular connection is to be
kept open or closed after each request/response dialog. Valid values are close
and Keep-Alive. The default, Keep-Alive, specifies that the client want to
keep its conneciton open after the initial request/response sequence. If the
server honors it, the connection is kept open until the client closes it. close
specifies that the connection to the server is closed after each
request/response sequence.

CacheControl

Description The CacheControl attribute specifies directives about the behavior of caches
involved in the message chain between clients and servers. The attribute is
used for both client and server. However, clients and servers have different
settings for specifying cache behavior.

Client-side Table 7 shows the valid settings for CacheControl in http-conf:client.

Table 7: Settings for http-conf:client CacheControl

Directive Behavior

no-cache Caches cannot use a particular response to satisfy
subsequent client requests without first revalidating
that response with the server. If specific response
header fields are specified with this value, the
restriction applies only to those header fields within
the response. If no response header fields are
specified, the restriction applies to the entire
response.

no-store Caches must not store any part of a response or
any part of the request that invoked it.

max-age The client can accept a response whose age is no
greater than the specified time in seconds.
 125

CHAPTER 12 | HTTP Port
max-stale The client can accept a response that has exceeded
its expiration time. If a value is assigned to
max-stale, it represents the number of seconds
beyond the expiration time of a response up to
which the client can still accept that response. If
no value is assigned, it means the client can accept
a stale response of any age.

min-fresh The client wants a response that will be still be
fresh for at least the specified number of seconds
indicated.

no-transform Caches must not modify media type or location of
the content in a response between a server and a
client.

only-if-cached Caches should return only responses that are
currently stored in the cache, and not responses
that need to be reloaded or revalidated.

cache-extension Specifies additional extensions to the other cache
directives. Extensions might be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications
not understanding the extended directive can at
least adhere to the behavior mandated by the
standard directive.

Table 7: Settings for http-conf:client CacheControl

Directive Behavior
126

Attribute Details
Server-side Table 8 shows the valid values for CacheControl in http-conf:server.

Table 8: Settings for http-conf:server CacheControl

Directive Behavior

no-cache Caches cannot use a particular response to
satisfy subsequent client requests without first
revalidating that response with the server. If
specific response header fields are specified with
this value, the restriction applies only to those
header fields within the response. If no response
header fields are specified, the restriction applies
to the entire response.

public Any cache can store the response.

private Public (shared) caches cannot store the response
because the response is intended for a single
user. If specific response header fields are
specified with this value, the restriction applies
only to those header fields within the response. If
no response header fields are specified, the
restriction applies to the entire response.

no-store Caches must not store any part of response or
any part of the request that invoked it.

no-transform Caches must not modify the media type or
location of the content in a response between a
server and a client.

must-revalidate Caches must revaildate expired entries that relate
to a response before that entry can be used in a
subsequent response.

proxy-revelidate Means the same as must-revalidate, except
that it can only be enforced on shared caches
and is ignored by private unshared caches. If
using this directive, the public cache directive
must also be used.

max-age Clients can accept a response whose age is no
greater that the specified number of seconds.
 127

CHAPTER 12 | HTTP Port
BrowserType

Description The BrowserType attribute specifies information about the browser from which
the client request originates. In the HTTP specification from the World Wide
Web consortium (W3C) this is also known as the user-agent. Some servers
optimize based upon the client that is sending the request.

Referer

The Referer attribute corresponds to the HTTP Referer property. It specifies
the URL of the resource that directed the client to make requests on a
particular service. Typically this HTTP property is used when a request is
the result of a browser user clicking on a hyperlink rather than typing a URL.
This can allow the server to optimize processing based upon previous task
flow, and to generate lists of back-links to resources for the purposes of
logging, optimized caching, tracing of obsolete or mistyped links, and so on.
However, it is typically not used in web services applications.

s-maxage Means the same as max-age, except that it can
only be enforced on shared caches and is ignored
by private unshared caches. The age specified by
s-maxage overrides the age specified by max-age.
If using this directive, the proxy-revalidate
directive must also be used.

cache-extension Specifies additional extensions to the other cache
directives. Extensions might be informational or
behavioral. An extended directive is specified in
the context of a standard directive, so that
applications not understanding the extended
directive can at least adhere to the behavior
mandated by the standard directive.

Table 8: Settings for http-conf:server CacheControl (Continued)

Directive Behavior
128

Attribute Details
If the AutoRedirect attribute is set to true and the client request is
redirected, any value specified in the Referer attribute is overridden. The
value of the HTTP Referer property will be set to the URL of the service who
redirected the client�s original request.

ProxyServer

Description The ProxyServer attribute specifies the URL of the proxy server, if one exists
along the message path. A proxy can receive client requests, possibly modify
the request in some way, and then forward the request along the chain
possibly to the target server. A proxy can act as a special kind of security
firewall.

ProxyAuthorizationType

Description The ProxyAuthorizationType attribute specifies the name of the
authorization scheme the client wants to use with the proxy server. This name
is specified and handled at application level. Artix does not perform any
validation on this value. It is the user�s responsibility to ensure that the correct
scheme name is specified, as appropriate.

ProxyAuthorization

Description The ProxyAuthorization attribute specifies the authorization credentials the
client will use to perform authorization with the proxy server. These are
encoded and handled at application-level. Artix does not perform any
validation on the specified value. It is the user�s responsibility to ensure that

Note: Artix does not support the existence of more than one proxy server
along the message path.

Note: If basic username and password-based authentication is being
used by the proxy server, this does not need to be set.
 129

CHAPTER 12 | HTTP Port
the correct authorization credentials are specified, as appropriate.

UseSecureSockets

Description The UseSecureSockets attribute indicates if the application wants to open a
secure connection using SSL or TLS. A secure HTTP connection is commonly
referred to as HTTPS. Valid values are true and false. The default is false;
the endpoint does not want to open a secure connection.

RedirectURL

Description The RedirectURL attribute corresponds to the HTTP RedirectURL property.
It specifies the URL to which the client request should be redirected if the
URL specified in the client request is no longer appropriate for the requested
resource. In this case, if a status code is not automatically set in the first line
of the server response, the status code is set to 302 and the status description
is set to Object Moved.

ServerCertificateChain

Description PKCS12-encoded X509 certificates can be issued by intermediate certificate
authorities that are not trusted by the client, but which have had their
certificates issued in turn by a trusted certificate authority. If this is the case,
you can use the ServerCertificateChain attribute to allow the certificate
chain of PKCS12-encoded X509 certificates to be presented to the client for
verification. It specifies the full path to the file that contains all the certificates
in the chain.

Note: If basic username and password-based authentication is being
used by the proxy server, this does not need to be set.

Note: If the http:address element�s location attribute, or the
soap:address element�s location attribute, has a value with a prefix of
https://, a secure HTTP connection is automatically enabled, even if
UseSecureSockets is not set to true.
130

CHAPTER 13

CORBA Port
Artix supports a robust mechanism for configuring a CORBA
endpoint.

Namespace

The namespace under which the CORBA extensions are defined is
http://schemas.iona.com/bindings/corba. If you are going to add a
CORBA port by hand you will need to add this to your contract�s definition
element as shown below.

corba:address

Synopsis <corba:address location="..."/>

Description The corba:address element is a child of a WSDL port element. It specifies
the IOR for the service�s CORBA object.

Attributes The corba:address element has one required attribute named location. The
location attribute contains a string specifying the IOR. You have four options
for specifying IORs in Artix contracts:

� Entering the object�s IOR directly into the contract using the stringified
IOR format:

xmlns:corba="http://schemas.iona.com/bindings/corba"

IOR:22342...
 131

CHAPTER 13 | CORBA Port
� Entering a file location for the IOR using the following syntax:

� Entering the object�s name using the corbaname format:

When you use the corbaname format for specifying the IOR, Artix will
look-up the object�s IOR in the CORBA name service.

� Entering the port at which the service exposes itself, using the
corbaloc syntax.

corba:policy

Synopsis <corba:policy poaname="..."|persistent="..."|serviceid="..." />

Description The corba:policy element is a child of a WSDL port element. It specifies
the POA polices the Artix service will use when creating the POA for connecting
to a CORBA object. Each corba:policy element can only specify one policy.
Therefore to define multiple policies you must use multiple corba:policy
elements.

Attributes The corba:policy element uses attributes to specify the policy it is describing.
The following attributes are used:

See also For more information about CORBA POA policies see the Orbix
documentation.

file:///file_name

Note: The file specification requires three backslashes (///).

corbaname:rir/NameService#object_name

corbaloc:iiop:host:port/service_name

poaname Specifies the POA name to use when connecting to the
CORBA object. The default POA name is WS_ORB.

persistent Specifies the value of the POA�s persistence policy. The
default is false; the POA is not persistent.

serviceid Specifies the value of the POA�s ID. By default, Artix
POAs are assigned their IDs by the ORB.
132

CHAPTER 14

IIOP Tunnel Port
The IIOP tunnel transport allows you to send non-CORBA data
over IIOP. This allows you to use a number of the CORBA
services.

Namespace

The namespace under which the CORBA extensions are defined is
http://schemas.iona.com/bindings/iiop_tunnel. If you are going to add
a CORBA port by hand you will need to add this to your contract�s
definition element as shown below.

iiop:address

Synopsis <iiop:address location="..."/>

Description The iiop:address element is a child of a WSDL port element. It specifies
the IOR for the CORBA object created for the service.

Attributes The iiop:address element has one required attribute named location. The
location attribute contains a string specifying the IOR. You have four options
for specifying IORs in Artix contracts:

� Entering the object�s IOR directly into the contract using the stringified
IOR format:

xmlns:iiop="http://schemas.iona.com/bindings/iiop_tunnel"

IOR:22342...
 133

CHAPTER 14 | IIOP Tunnel Port
� Entering a file location for the IOR using the following syntax:

� Entering the object�s name using the corbaname format:

When you use the corbaname format for specifying the IOR, Artix will
look-up the object�s IOR in the CORBA name service.

� Entering the port at which the service exposes itself, using the
corbaloc syntax.

iiop:payload

Synopsis <iiop:payload type="..." />

Description The iiop:payload element is a child of the WSDL port element. It specifies
the type of payload being passed through the IIOP tunnel. If the iiop:payload
element is set, Artix will use the information to attempt codeset negotiation
on the contents of the payload being sent through the tunnel. If you do not
want codeset negotiation attempted, do not use this element in your IIOP
Tunnel port definition.

Attributes The iiop:payload element has a single required element named type. The
type attribute specifies the type of data contained in the payload.

Examples If your payload contains string data and you want Artix to attempt codeset
negotiation you would use the following:

iiop:policy

Synopsis <iiop:policy poaname="..."|persistent="..."|serviceid="..." />

file:///file_name

Note: The file specification requires three backslashes (///).

corbaname:rir/NameService#object_name

corbaloc:iiop:host:port/service_name

<iiop:payload type="string"/>
134

Description The iiop:policy element is a child of a WSDL port element. It specifies the
POA polices the Artix service will use when creating the POA for the IIOP port.
Each iiop:policy element can only specify one policy. Therefore to define
multiple policies you must use multiple iiop:policy elements.

Attributes The iiop:policy element uses attributes to specify the policy it is describing.
The following attributes are used:

See also For more information about CORBA POA policies see the Orbix
documentation.

poaname Specifies the POA name to use when creating the IIOP
port. The default POA name is WS_ORB.

persistent Specifies the value of the POA�s persistence policy. The
default is false; the POA is not persistent.

serviceid Specifies the value of the POA�s ID. By default, Artix
POAs are assigned their IDs by the ORB.
 135

CHAPTER 14 | IIOP Tunnel Port
136

CHAPTER 15

WebSphere MQ
Port
Artix provides a number of WSDL extensions to configure a
WebSphere MQ service.

In this chapter This chapter discusses the following topics:

Artix Extension Elements page 138

Attribute Details page 143
 137

CHAPTER 15 | WebSphere MQ Port
Artix Extension Elements

Namespace

The WSDL extensions used to describe WebSphere MQ transport details are
defined in the WSDL namespace
http://schemas.iona.com/transports/mq. If you are going to use a
WebSphere MQ port you need to include the following in the definitions
tag of your contract:

mq:client

Synopsis <mq:client QueueManager="..." QueueName="..."

 ReplyQueueManager="..." ReplyQueueName="..."

 Server_Client="..." ModelQueueName="..."

 AliasQueueName="..." ConnectionName="..."

 ConnectionReusable="..." ConnectionFastPath="..."

 UsageStyle="..." CorrelationStyle="..." AccessMode="..."

 Timeout="..." MessageExpiry="..." MessagePriority="..."

 Delivery="..." Transactional="..." ReportOption="..."

 Format="..." MessageID="..." CorrelationID="..."

 ApplicationData="..." AccountingToken="..."

 ApplicationIdData="..." ApplicationOriginData="..."

 UserIdentification="..." />

Description The mq:client element is used to configure a client endpoint for connecting
to WebSphere MQ. For an MQ client endpoint that receives replies you must
provide values for the QueueManager, QueueName, ReplyQueueManager, and
ReplyQueueName attributes. If the endpoint is not going to receive replies, you
do not need to supply settings for the reply queue.

Attributes The mq:client element has the following attributes:

xmlns:mq="http://schemas.iona.com/transports/mq"

QueueManager Specifies the name of the queue manager used
for making requests.
138

Artix Extension Elements
QueueName Specifies the name of the queue used for
making requests.

ReplyQueueName Specifies the name of the queue used for
receiving responses.

ReplyQueueManager Specifies the name of the queue manager used
for receiving responses.

Server_Client Specifies which MQ libraries are to be used.

ModelQueueName Specifies the name of the queue to use as a
model for creating dynamic queues.

AliasQueueName Specifies the local name of the reply queue
when the reply queue manager is not on the
same host as the client�s local queue manager.

ConnectionName Specifies the name of the connection Artix uses
to connect to its queue.

ConnectionReusable Specifies if the connection can be used by more
than one application. The default is false; the
connection is not reusable.

ConnectionFastPath Specifies if the queue manager will be loaded in
process. The default is false; the queue
manager runs as a separate process.

UsageStyle Specifies if messages can be queued without
expecting a response.

CorrelationStyle Specifies what identifier is used to correlate
request and response messages.

AccessMode Specifies the level of access applications have to
the queue.

Timeout Specifies the amount of time, in milliseconds,
between a request and the corresponding reply
before an error message is generated.

MessageExpiry Specifies the value of the MQ message
descriptor�s Expiry field. It specifies the lifetime
of a message in tenths of a second. The default
value is INFINITE; messages never expire.

MessagePriority Specifies the value of the MQ message
descriptor�s Priority field.
 139

CHAPTER 15 | WebSphere MQ Port
mq:server

Synopsis <mq:server QueueManager="..." QueueName="..."

 ReplyQueueManager="..." ReplyQueueName="..."

 Server_Client="..." ModelQueueName="..."

 ConnectionName="..." ConnectionReusable="..."

 ConnectionFastPath="..." UsageStyle="..."

 CorrelationStyle="..." AccessMode="..." Timeout="..."

 MessageExpiry="..." MessagePriority="..." Delivery="..."

 Transactional="..." ReportOption="..." Format="..."

Delivery Specifies the value of the MQ message
descriptor�s Persistence field.

Transactional Specifies if transaction operations must be
performed on the messages.

ReportOption Specifies the value of the MQ message
descriptor�s Report field.

Format Specifies the value of the MQ message
descriptor�s Format field.

MessageID Specifies the value of the MQ message
descriptor�s MsgId field. A value must be
specified if CorrelationStyle is set to none.

CorrelationID Specifies the value for the MQ message
descriptor�s CorrelId field. A value must be
specified if CorrelationStyle is set to none.

ApplicationData Specifies any application-specific information
that needs to be set in the message header.

AccountingToken Specifies the value for the MQ message
decscriptor�s AccountingToken field.

ApplicationIdData Specifies the value for the MQ message
descriptor�s ApplIdentityData field.

ApplicationOriginData Specifies the value for the MQ message
descriptor�s ApplOriginData field.

UserIdentification Specifies the value for the MQ message
descriptor�s UserIdentifier field.
140

Artix Extension Elements
 MessageID="..." CorrelationID="..." ApplicationData="..."

 AccountingToken="..." ApplicationOriginData="..."

 PropogateTransactions="..." />

Description The mq:server element is used to configure a server endpoint for connecting
to WebSphere MQ. For an MQ server endpoint you must provide values for
the QueueManager and QueueName attributes.

Attributes The mq:server element has the following attributes:

QueueManager Specifies the name of the queue manager used
for receiving requests.

QueueName Specifies the name of the queue used to receive
requests.

ReplyQueueName Specifies the name of the queue where
responses are placed. This setting is ignored if
the client specifies a ReplyToQ in a request�s
message descriptor.

ReplyQueueManager Specifies the name of the reply queue manager.
This setting is ignored if the client specifies a
ReplyToQMgr in a request�s message descriptor.

Server_Client Specifies which MQ libraries are to be used.

ModelQueueName Specifies the name of the queue to use as a
model for creating dynamic queues.

ConnectionName Specifies the name of the connection Artix uses
to connect to its queue.

ConnectionReusable Specifies if the connection can be used by more
than one application. The default is false; the
connection is not reusable.

ConnectionFastPath Specifies if the queue manager will be loaded in
process. The default is false; the queue
manager runs as a separate process.

UsageStyle Specifies if messages can be queued without
expecting a response.

CorrelationStyle Specifies what identifier is used to correlate
request and response messages.

AccessMode Specifies the level of access applications have to
the queue.
 141

CHAPTER 15 | WebSphere MQ Port
Timeout Specifies the amount of time, in milliseconds,
between a request and the corresponding reply
before an error message is generated.

MessageExpiry Specifies the value of the MQ message
descriptor�s Expiry field. It specifies the lifetime
of a message in tenths of a second. The default
value is INFINITE; messages never expire.

MessagePriority Specifies the value of the MQ message
descriptor�s Priority field.

Delivery Specifies the value of the MQ message
descriptor�s Persistence field.

Transactional Specifies if transaction operations must be
performed on the messages.

ReportOption Specifies the value of the MQ message
descriptor�s Report field.

Format Specifies the value of the MQ message
descriptor�s Format field.

MessageID Specifies the value of the MQ message
descriptor�s MsgId field. A value must be
specified if CorrelationStyle is set to none.

CorrelationID Specifies the value for the MQ message
descriptor�s CorrelId field. A value must be
specified if CorrelationStyle is set to none.

ApplicationData Specifies any application-specific information
that needs to be set in the message header.

AccountingToken Specifies the value for the MQ message
decscriptor�s AccountingToken field.

ApplicationOriginData Specifies the value for the MQ message
descriptor�s ApplOriginData field.

PropogateTransactions Specifies if local MQ transactions should be
included in flowed transactions. Default is true.
142

Attribute Details
Attribute Details

Server_Client

Description The Server_Client attribute specifies which shared libraries to load on
systems with a full WebSphere MQ installation.

Parameters Table 9 describes the settings for this attribute for each type of WebSphere
MQ installation.

Table 9: Server_Client Settings for the MQ Transport

MQ
Installation

Server_Client
Setting

Behavior

Full The server shared library (libmqm) is
loaded and the application will use
queues hosted on the local machine.

Full server The server shared library (libmqm) is
loaded and the application will use
queues hosted on the local machine.

Full client The client shared library (libmqic) is
loaded and the application will use
queues hosted on a remote machine.

Client The application will attempt to load the
server shared library (libmqm) before
loading the client shared
library(libmqic). The application
accesses queues hosted on a remote
machine.

Client server The application will fail because it cannot
load the server shared libraries.

Client client The client shared library (libmqic) is
loaded and the application accesses
queues hosted on a remote machine.
 143

CHAPTER 15 | WebSphere MQ Port
AliasQueueName

Description The AliasQueueName attribute specifies the local name of the reply queue
when the service�s queue manager is running a different host from the client.
Using this attribute ensures that the server will put the replies on the proper
queue. Otherwise, the server will receive a request message with the ReplyToQ
field set to a queue that is managed by a queue manager on a remote host
and will be unable to send the reply.

Effect of AliasQueueName When you specify a value for the AliasQueueName attribute in an mq:client
element, you alter how Artix populates the request�s ReplyToQ field and
ReplyToQMgr field. Typically, Artix populates the reply queue information in
the request�s message descriptor with the values specified in
ReplyQueueManager and ReplyQueueName. Setting AliasQueueName causes
Artix to leave ReplytoQMgr empty and to set ReplyToQ to the value of
AliasQueueName. When the ReplyToQMgr field of the message descriptor is
left empty, the sending queue manager inspects the queue named in the
ReplyToQ field to determine who its queue manager is and uses that value
for ReplyToQMgr. The server puts the message on the remote queue that is
configured as a proxy for the client�s local reply queue.

Examples If you had a system defined similar to that shown in Figure 1, you would need
to use the AliasQueueName attribute setting when configuring your WebSphere
MQ client. In this set up the client is running on a host with a local queue
manager QMgrA. QMgrA has two queues configured. RqA is a remote queue that
is a proxy for RqB and RplyA is a local queue. The server is running on a
different machine whose local queue manager is QMgrB. QMgrB also has two
queues. RqB is a local queue and RplyB is a remote queue that is a proxy for
144

Attribute Details
RplyA. The client places its request on RqA and expects replies to arrive on
RplyA.

The Artix WebSphere MQ port definitions for the client and server for this
deployment are shown in Example 44. AliasQueueName is set to RplyB
because that is the remote queue proxying for the reply queue in server�s
local queue manager. ReplyQueueManager and ReplyQueueName are set to
the client�s local queue manager so that it knows where to listen for
responses. In this example, the server�s ReplyQueueManager and
ReplyQueueName do not need to be set because you are assured that the
client is populating the request�s message descriptor with the needed
information for the server to determine where replies are sent.

Figure 1: MQ Remote Queues

Example 44: Setting Up WebSphere MQ Ports for Intercommunication

<mq:client QueueManager="QMgrA" QueueName="RqA"
 ReplyQueueManager="QMgrA" ReplyQueueName="RplyA"
 AliasQueueName="RplyB"
 Format="string" Convert="true"/>
<mq:server QueueManager="QMgrB" QueueName="RqB"
 Format="String" Convert="true"/>
 145

CHAPTER 15 | WebSphere MQ Port
UsageStyle

Description The UsageStyle specifies if a message can be queued without expecting a
response. The default value is peer.

Options The valid settings for UsageStyle are described in Table 10.

Examples In Example 45, the WebSphere MQ client wants a response from the server
and needs to be able to associate the response with the request that generated
it. Setting the UsageStyle to responder ensures that the server�s response will
properly populate the response message descriptor�s CorrelID field according
to the defined correlation style. In this case, the correlation style is set to
correlationId.

CorrelationStyle

Description The CorrelationStyle attribute specifies how WebSphere MQ matches both
the message identifier and the correlation identifier to select a particular
message to be retrieved from the queue (this is accomplished by setting the
corresponding MQMO_MATCH_MSG_ID and MQMO_MATCH_CORREL_ID in the

Table 10: UsageStyle Settings

Attribute Setting Description

peer Specifies that messages can be queued without
expecting any response. This is the default.

requester Specifies that the message sender expects a
response message.

responder Specifies that the response message must contain
enough information to facilitate correlation of the
response with the original message.

Example 45: MQ Client with UsageStyle Set

<mq:client QueueManager="postmaster" QueueName="eddie"
 ReplyQueueManager="postmaster" ReplyQueueName="fred"
 UsageStyle="responder"
 CorrelationStyle="correlationId"/>
146

Attribute Details
MatchOptions field in MQGMO to indicate that those fields should be used as
selection criteria).

Options The valid correlation styles for an Artix WebSphere MQ port are messageId,
correlationId, and messageId copy.

Table 11 shows the actions of MQGET and MQPUT when receiving a message
using a WSDL specified message ID and a WSDL specified correlation ID.

AccessMode

Description The AccessMode attribute controls the action of MQOPEN in the Artix WebSphere
MQ transport.

Note: When a value is specified for ConnectionName, you cannot use
messageId copy as the correlation style.

Table 11: MQGET and MQPUT Actions

Artix Port
Setting

Action for MQGET Action for MQPUT

messageId Set the CorrelId of the
message descriptor to
value of the MessageID.

Copy the value of the
MessageID onto the
message descriptor�s
CorrelId.

correlationId Set CorrelId of the
message descriptor to
that value of the
CorrelationID.

Copy value of the
CorrelationID onto
message descriptor�s
CorrelId.

messageId copy Set MsgId of the
message descriptor to
value of the messageID.

Copy the value of the
MessageID onto message
descriptor�s MsgId.
 147

CHAPTER 15 | WebSphere MQ Port
Options Table 12 describes the correlation between the Artix attribute settings and
the MQOPEN settings.

MessagePriority

Description The MessagePriority attribute specifies the value for the MQ message
descriptor�s Priority field. Its value must be greater than or equal to zero;
zero is the lowest priority. Special values for MessagePriority include highest
(9), high (7), medium (5), low (3) and lowest (0). The default is normal.

Table 12: Artix WebSphere MQ Access Modes

Attribute Setting Description

peek Equivalent to MQOO_BROWSE. peek opens a queue
to browse messages. This setting is not valid for
remote queues.

send Equivalent to MQOO_OUTPUT. send opens a queue
to put messages into. The queue is opened for
use with subsequent MQPUT calls.

receive (default) Equivalent to MQOO_INPUT_AS_Q_DEF. receive
opens a queue to get messages using a
queue-defined default. The default value depends
on the DefInputOpenOption queue attribute
(MQOO_INPUT_EXCLUSIVE or MQOO_INPUT_SHARED).

receive exclusive Equivalent to MQOO_INPUT_EXCLUSIVE. receive
exclusive opens a queue to get messages with
exclusive access. The queue is opened for use
with subsequent MQGET calls. The call fails with
reason code MQRC_OBJECT_IN_USE if the queue is
currently open (by this or another application) for
input of any type.

receive shared Equivalent to MQOO_INPUT_SHARED. receive
shared opens queue to get messages with shared
access. The queue is opened for use with
subsequent MQGET calls. The call can succeed if
the queue is currently open by this or another
application with MQOO_INPUT_SHARED.
148

Attribute Details
Delivery

Description The Delivery attribute specifies the value of the MQ message descriptor�s
Persistence field.

Options Table 13 describes the settings for Delviery.

To support transactional messaging, you must make the messages
persistent.

Transactional

Description The Transactional controls how messages participate in transactions and
what role WebSphere MQ plays in the transactions.

Options The values of the Transactional attribute are explained in Table 14.

Table 13: Delivery Attribute Settings

Artix WebSphere MQ

persistent MQPER_PERSISTENT

not persistent (Default) MQPER_NOT_PERSISTENT

Table 14: Transactional Attribute Settings

Attribute Setting Description

none (Default) The messages are not part of a transaction. No
rollback actions will be taken if errors occur.

internal The messages are part of a transaction with
WebSphere MQ serving as the transaction manager.

xa The messages are part of a flowed transaction with
WebSphere MQ serving as an enlisted resource
manager.
 149

CHAPTER 15 | WebSphere MQ Port
Reliable MQ messages When the transactional attribute to internal for an Artix service, the
following happens during request processing:

1. When a request is placed on the service�s request queue, MQ begins a
transaction.

2. The service processes the request.

3. Control is returned to the server transport layer.

4. If no reply is required, the local transaction is committed and the
request is permanently discarded.

5. If a reply message is required, the local transaction is committed and
the request is permanently discarded only after the reply is successfully
placed on the reply queue.

6. If an error is encountered while the request is being processed, the
local transaction is rolled back and the request is placed back onto the
service�s request queue.

Examples Example 46 shows the settings for a WebSphere MQ server port whose
requests will be part of transactions managed by WebSphere MQ. Note that
the Delivery attribute must be set to persistent when using transactions.

ReportOption

Description The ReportOption attribute is mapped to the MQ message descriptor�s Report
field. It enables the application sending the original message to specify which
report messages are required, whether the application message data is to be
included in them, and how the message and correlation identifiers in the report
or reply message are to be set. Artix only allows you to specify one
ReportOption per Artix port. Setting more than one will result in unpredictable
behavior.

Example 46: MQ Client Setup to use Transactions

<mq:server QueueManager="herman" QueueName="eddie"
 ReplyQueueManager="gomez" ReplyQueueName="lurch"
 UsageStyle="responder" Delivery="persistent"
 CorrelationStyle="correlationId"
 Transactional="internal"/>
150

Attribute Details
Options The values of this attribute are explained in Table 15.

Table 15: ReportOption Attribute Settings

Attribute Setting Description

none (Default) Corresponds to MQRO_NONE. none specifies that no
reports are required. You should never specifically
set ReportOption to none; it will create validation
errors in the contract.

coa Corresponds to MQRO_COA. coa specifies that
confirm-on-arrival reports are required. This type of
report is generated by the queue manager that owns
the destination queue, when the message is placed
on the destination queue.

cod Corresponds to MQRO_COD. cod specifies that
confirm-on-delivery reports are required. This type
of report is generated by the queue manager when
an application retrieves the message from the
destination queue in a way that causes the message
to be deleted from the queue.

exception Corresponds to MQRO_EXCEPTION. exception
specifies that exception reports are required. This
type of report can be generated by a message
channel agent when a message is sent to another
queue manager and the message cannot be
delivered to the specified destination queue. For
example, the destination queue or an intermediate
transmission queue might be full, or the message
might be too big for the queue.

expiration Corresponds to MQRO_EXPIRATION. expiration
specifies that expiration reports are required. This
type of report is generated by the queue manager if
the message is discarded prior to delivery to an
application because its expiration time has passed.
 151

CHAPTER 15 | WebSphere MQ Port
Format

Description The Format attribute is mapped to the MQ message descriptor�s Format field.
It specifies an optional format name to indicate to the receiver the nature of
the data in the message.

Options The value may contain any character in the queue manager's character set,
but it is recommended that the name be restricted to the following:

� Uppercase A through Z

� Numeric digits 0 through 9

In addition, the FormatType attribute can take the special values none,
string, event, programmable command, and unicode. These settings are
described in Table 16.

discard Corresponds to MQRO_DISCARD_MSG. discard
indicates that the message should be discarded if it
cannot be delivered to the destination queue. An
exception report message is generated if one was
requested by the sender

Table 15: ReportOption Attribute Settings (Continued)

Attribute Setting Description

Table 16: FormatType Attribute Settings

Attribute Setting Description

none (Default) Corresponds to MQFMT_NONE. No format name
is specified.

string Corresponds to MQFMT_STRING. string
specifies that the message consists entirely of
character data. The message data may be
either single-byte characters or double-byte
characters.

unicode Corresponds to MQFMT_STRING. unicode
specifies that the message consists entirely of
Unicode characters. (Unicode is not
supported in Artix at this time.)
152

Attribute Details
When you are interoperating with WebSphere MQ applications hosted on a
mainframe and the data needs to be converted into the systems native data
format, you should set Format to string. Not doing so will result in the
mainframe receiving corrupted data.

event Corresponds to MQFMT_EVENT. event specifies
that the message reports the occurrence of an
WebSphere MQ event. Event messages have
the same structure as programmable
commands.

programmable command Corresponds to MQFMT_PCF. programmable
command specifies that the messages are
user-defined messages that conform to the
structure of a programmable command format
(PCF) message.

For more information, consult the IBM
Programmable Command Formats and
Administration Interfaces documentation at
http://publibfp.boulder.ibm.com/epubs/html/c
sqzac03/csqzac030d.htm#Header_12.

Table 16: FormatType Attribute Settings (Continued)

Attribute Setting Description
 153

http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12
http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12

CHAPTER 15 | WebSphere MQ Port
154

CHAPTER 16

JMS Port
JMS is a powerful messaging system used by Java
applications.

Namespace

The WSDL extensions used to describe JMS transport details are defined in
the namespace http://celtix.objectweb.org/transports/jms. If you are
going to use a JMS port you need to include the following in the
definitions tag of your contract:

jms:address

Synopsis <jms:address destinationStyle="..."

 jndiConnectionFactoryName="..."

 jndiDestinationName="..."

 jndiReplyDestinationName="..."

 connectionUserName="..." connectionPassword="...">

 <jms:JMSNamingProperty ... />

 ...

</jms:address>

Description The jms:address element specifies the information needed to connect to a
JMS system.

xmlns:jms="http://celtix.objectweb.org/transports/jms"
 155

CHAPTER 16 | JMS Port
Attributes The jms:address element has the following attributes:

jms:JMSNamingProperty

Synopsis <jms:JMSNamingProperty name="..." value="..." />

Description The jms:JMSNamingProperty element is a child of the jms:address element.
It is used to provide the values used to populate the properties object used
when connecting to a JNDI provider.

Attributes The jms:JMSNamingProperty element has the following attributes:

JNDI property names The following is a list of common JNDI properties that can be set:

� java.naming.factory.initial
� java.naming.provider.url
� java.naming.factory.object
� java.naming.factory.state
� java.naming.factory.url.pkgs
� java.naming.dns.url
� java.naming.authoritative
� java.naming.batchsize

destinationStyle Specifies if the JMS destination is a JMS
queue or a JMS topic.

jndiConnectionFactoryName Specifies the JNDI name bound to the
JMS connection factory to use when
connecting to the JMS destination.

jndiDestinationName Specifies the JNDI name bound to the
JMS destination to which Artix connects.

jndiReplyDestinationName Specifies the JNDI name bound to the
JMS destinations where replies are sent.
This attribute allows you to use a user
defined destination for replies.

connectionUserName Specifies the username to use when
connecting to a JMS broker.

connectionPassword Specifies the password to use when
connecting to a JMS broker.

name Specifies the name of the JNDI property to set.

value Specifies the value for the specified property.
156

� java.naming.referral
� java.naming.security.protocol
� java.naming.security.authentication
� java.naming.security.principal
� java.naming.security.credentials
� java.naming.language
� java.naming.applet

For more details on what information to use in these attributes, check your
JNDI provider�s documentation and consult the Java API reference material.

jms:client

Synopsis <jms:client messageType="..." />

Description The jms:client element is a child of the WSDL port element. It is used to
specify the types of messages being used by a JMS client endpoint and the
timeout value for a JMS client endpoint.

Attributes The jms:client element has the following attributes:

jms:server

Synopsis <jms:server useMessageIDAsCorrelationID="..."

 durableSubscriberName="..."

 messageSelector="..." transactional="..." />

Description The jms:server element is a child of the WSDL port element. It specifies
settings used to configure the behavior of a JMS service endpoint.

Attributes The jms:server element has the following attributes:

messageType Specifies how the message data will be packaged as a
JMS message. text specifies that the data will be
packaged as a TextMessage. binary specifies that the
data will be packaged as an ObjectMessage.

useMessageIDAsCorrealationID Specifies whether JMS will use the
message ID to correlate messages. The
default is false.

durableSubscriberName Specifies the name used to register a
durable subscription.
 157

CHAPTER 16 | JMS Port
messageSelector Specifies the string value of a message
selector to use.

transactional Specifies whether the local JMS broker
will create transactions around message
processing. The default is false.
158

CHAPTER 17

Tuxedo Port
Artix can connect to applications that use BEA�s Tuxedo as
their messaging backbone.

Namespace

The extensions used to describe a Tuxedo port are defined in the namespace
http://schemas.iona.com/transports/tuxedo. When a Tuxedo endpoint is
defined in a contract, the contract will need the following namespace
declaration in the contract�s definition element:

tuxedo:server

Synopsis <tuxedo:server>

 <tuxedo:service ...>

 ...

 </tuxedo:service>

</tuxedo:server>

Description The tuxedo:server element is a child of a WSDL port element. It contains
the definition of a Tuxedo endpoint.

tuxedo:service

Synopsis <tuxedo:service name="...">

xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"
 159

CHAPTER 17 | Tuxedo Port
 <tuxedo:input .../>

 ...

</tuxedo:service>

Description The tuxedo:service element is the child of a tuxedo:server element. It
specifies the bulletin board name used to post and receive messages. It has
a number of tuxedo:input child elements that provide a map to the operations
from which messages are routed.

Attributes The tuxedo:service element has a single required attribute called name. The
name attribute specifies the bulletin board name for the service.

tuxedo:input

Synopsis <tuxedo:input operation="..." />

Description The tuxedo:input element specify which of the operations bound to the port
being defined are handled by the Tuxedo service.

Attributes The tuxedo:input element has a single required attribute called operation.
The operation attribute specifies the WSDL operation that is handled by the
Tuxedo service. The value must correspond the value of the name attribute of
the appropriate WSDL operation element.
160

CHAPTER 18

Tibco/Rendezvous
Port
Artix provides a number of attributes to define a TIB/RV
service.

In this chapter This chapter discusses the following topics:

Artix Extension Elements page 162

Attribute Details page 166
 161

CHAPTER 18 | Tibco/Rendezvous Port
Artix Extension Elements

Namespace

The extensions used to describe a Tibco/Rendezvous endpoint are defined in
the namespace http://schemas.iona.com/transports/tibrv. When a
Tibco endpoint is defined in a contract, the contract will need the following
namespace declaration in the contract�s definition element:

tibrv:port

Synopsis <tibrv:port serverSubject="..." clientSubject="..."

 bindingType="..." callbackLevel="..."

 responseDispatchTimeout="..." transportService="..."

 transportNetwork="..." transportDeamon="..."

 transportBatchMode="..." cmSupport="..."

 cmTransportServerName="..." cmTransportClientName="..."

 cmTransportRequestOld="..." cmTransportLedgerName="..."

 cmTransportSyncLedger="..."cmTransportRelayAgent="..."

 cmTransportDefaultTimeLimit="..."

 cmListenerCancelAgreement="..."

 cmQueueTransportServerName="..."

 cmQueueTransportWorkerWeight="..."

 cmQueueTransportWorkerTasks="..."

 cmQueueTransportSchedulerWeight="..."

 cmQueueTransportSchedulerHeartbeat="..."

 cmQueueTransportSchedulerActivation="..."

 cmQueueTransportCompleteTime="..." />

Description The tibrv:port element is the child of a WSDL port element. It specifies the
properties used to configure an endpoint that use Tibco/Rendezvous as its
messaging backbone. The element�s attributes specify the information needed
to configure the transport layer. The serverSubject attribute is required to

xmlns:tibrv="http://schemas.iona.com/transports/tibrv"
162

Artix Extension Elements
be set and its value must match on both the server side and the client side.

Attributes The tibrv:port element has the following attributes:

serverSubject Specifies the subject to which the
server listens. This parameter must
be the same between client and
server.

clientSubject Specifies the prefix to the subject
that the client listens to. The
default is to use a uniquely
generated name.

bindingType Specifies the message binding
type.

callbackLevel Specifies the server-side callback
level when TIB/RV system advisory
messages are received.

responseDispatchTimeout Specifies the client-side response
timeout.

transportService Specifies the UDP service name or
port for TibrvNetTransport.

transportNetwork Specifies the binding network
addresses for TibrvNetTransport.

transportDaemon Specifies the TCP daemon port for
TibrvNetTransport. The default is
to use 7500 for the TRDP daemon,
or 7550 for the PGM daemon.

transportBatchMode Specifies if the TIB/RV transport
uses batch mode to send
messages. The default is false;
The endpoint will send messages
as soon as they are ready.

cmSupport Specifies if Certified Message
Delivery support is enabled. The
default is false; CM support is
disabled.

cmTransportServerName Specifies the server�s
TibrvCmTransport correspondent
name.
 163

CHAPTER 18 | Tibco/Rendezvous Port
cmTransportClientName Specifies the client
TibrvCmTransport correspondent
name. The default is to use a
transient correspondent name.

cmTransportRequestOld Specifies if the endpoint can
request old messages on start-up.
The default is false; the endpoint
cannot request old messages on
start-up.

cmTransportLedgerName Specifies the TibrvCmTransport
ledger file. The default is to use an
in-process ledger that is stored in
memory.

cmTransportSyncLedger Specifies if the endpoint uses a
synchronous ledger. The default is
false; the endpoint does not use a
synchronous ledger.

cmTransportRelayAgent Specifies the endpoint�s
TibrvCmTransport relay agent. If
this attribute is not set, the
endpoint does not use a relay
agent.

cmTransportDefaultTimeLimit Specifies the default time limit for
a Certified Message to be
delivered. The default is no time
limit.

cmListenerCancelAgreements Specifies if Certified Message
agreements are canceled when the
endpoint disconnects. The default
is false; agreements remain in
place after disconnecting.

cmQueueTransportServerName Specifies the server�s
TibrvCmQueueTransport
correspondent name.

cmQueueTransportWorkerWeight Specifies the endpoint�s
TibrvCmQueueTransport worker
weight. The default is
TIBRVCM_DEFAULT_WORKER_WEIGHT.
164

Artix Extension Elements
cmQueueTransportWorkerTasks Specifies the value of the
endpoint�s
TibrvCmQueueTransport worker
tasks parameter. The default is
TIBRVCM_DEFAULT_WORKER_TASKS.

cmQueueTransportSchedulerWeight Specifies the value of the
TibrvCmQueueTransport
scheduler weight parameter. The
default is
TIBRVCM_DEFAULT_SCHEDULER_WEIGHT.

cmQueueTransportSchedulerHeartbeat Specifies the value of the
TibrvCmQueueTransport
scheduler heartbeat parameter.
The default is
TIBRVCM_DEFAULT_SCHEDULER_HB.

cmQueueTransportSchedulerActivation Specifies the value of the
TibrvCmQueueTransport
scheduler activation parameter.
The default is
TIBRVCM_DEFAULT_SCHEDULER_ACTIVE.

cmQueueTransportCompleteTime Specifies the value of the
TibrvCmQueueTransport complete
time parameter. The default is 0.
 165

CHAPTER 18 | Tibco/Rendezvous Port
Attribute Details

bindingType

Description The bindingType attribute specifies the message binding type.

Options Artix TIB/RV ports support three types of payload formats as described in
Table 17.

callbackLevel

Description The callbackLevel attribute specifies the server-side callback level when
TIB/RV system advisory messages are received.

Options It has three settings:

� INFO
� WARN

� ERROR (default)

Table 17: TIB/RV Supported Payload formats

Value Payload Formats TIB/RV Message Implications

msg TibrvMsg The message data is encapsulated in
a TibrvMsg described by the binding
section of the service�s contract.

xml SOAP, tagged data The message data is encapsulated in
a field of TIBRVMSG_XML with a null
name and an ID of 0.

opaque fixed record length
data, variable
record length data

The message data is encapsulated in
a field of TIBRVMSG_OPAQUE with a null
name and an ID of 0.
166

Attribute Details
responseDispatchTimeout

Description The responseDispatchTimeout attribute specifies the client-side response
receive dispatch timeout. The default is TIBRV_WAIT_FOREVER.

transportService

Description The transportService attribute specifies the UDP service name or port for
TibrvNetTransport. The default is rendezvous. If no corresponding entry exists
in /etc/services, 7500 for the TRDP daemon, or 7550 for the PGM daemon will
be used. This parameter must be the same for both client and server.

transportNetwork

Description The transportNetwork attribute specifies the binding network addresses for
TibrvNetTransport. The default is to use the interface IP address of the host
for the TRDP daemon, 224.0.1.78 for the PGM daemon. This parameter must
be interoperable between the client and the server.

cmTransportServerName

Description The cmTransportServerName attribute specifies the server�s
TibrvCmTransport correspondent name. The default is to use a transient
correspondent name. This parameter must be the same for both client and
server if the client also uses Certified Message Delivery.

cmQueueTransportServerName

Description The cmQueueTransportServerName attribute specifies the server�s
TibrvCmQueueTransport correspondent name. If this property is set, the server

Note: If only the TibrvNetTransport is used and there is no server return
response for a request, then not setting a timeout value causes the client
to block forever.
 167

CHAPTER 18 | Tibco/Rendezvous Port
listener joins to the distributed queue of the specified name. This parameter
must be the same among the server queue members.
168

CHAPTER 19

File Transfer
Protocol Port
Artix can use an FTP server as a middle-tier message broker.

Namespace

The extensions used to describe a File Transfer Protocol (FTP) port are
defined in the namespace http://schemas.iona.com/transports/ftp.
When an FTP endpoint is defined in a contract, the contract will need the
following namespace declaration in the contract�s definition element:

ftp:port

Synopsis <ftp:port host="..." port="..." requestLocation="..."

 replyLocation="..." connectMode="..." scanInterval="...">

 <ftp:properties>

 ...

 </ftp:properties>

</ftp:port>

Description The ftp:port element is a child of a WSDL port element. It defines the
connection details for an FTP endpoint. It may contain an ftp:properties
element.

xmlns:ftp="http://schemas.iona.com/transports/ftp"
 169

CHAPTER 19 | File Transfer Protocol Port
Attributes The ftp:port element has the following attributes:

ftp:properties

Synopsis <ftp:properties>

 <ftp:property ... />

 ...

</ftp:property>

Description The ftp:properties element defines a number of file naming properties used
by the endpoint for storing requests and replies. It contains one or more
ftp:property elements.

ftp:property

Synopsis <ftp:property name="..." value="..." />

Description The ftp:property element defines specific file naming properties to use when
reading and writing messages on the FTPD host. The properties are defined
by the implementation used for the naming scheme classes. Artix provides a
default implementation. However, a custom naming scheme implementation
may have different properties.

host Specifies the domain name or IP address of the
machine hosting the FTPD used by the endpoint.

port Specifies the port number on which the endpoint will
contact the FTPD.

requestLocation Specifies the path on the FTPD host the endpoint will
use for requests. The default is /.

replyLocation Specifies the path on the FTPD host the endpoint will
use for replies. The default is /.

connectMode Specifies the connection mode used to connect to the
FTPD. Valid values are passive and active. The default
is passive.

scanInterval Specifies the interval, in seconds, at which the request
and reply directories are scanned for updates. The
default is 5.
170

Attributes The ftp:property element has the following attributes:

Default Naming Properties The default naming implementation provided with Artix supports the
following properties:

name Specifies the name of the property to set.

value Specifies the value of the property.

staticFilenames Determines if the endpoint uses a static,
non-unique, naming scheme for its files. Valid
values are true and false. The default is true.

requestFilenamePrefix Specifies the prefix to use for file names when
staticFilenames is set to false.
 171

CHAPTER 19 | File Transfer Protocol Port
172

Part III
Other Extensions

In this part This part contains the following chapters:

Routing page 175

Security page 185

Codeset Conversion page 189
 173

174

CHAPTER 21

Routing
Artix provides a number of WSDL extensions for defining how
messages are routed between services.

Namespace

The Artix routing elements are defined in the
http://schemas.iona.com/routing namespace. When describing routes in
an Artix contract your contract�s definition element must have the
following entry:

routing:expression

Synopsis <routing:expression name="..." evaluator="..."

 ...

</routing:expression>

Description The routing:expression element is a child of the WSDL definitions
element. It specifies an XPATH expression that evaluates messages for
content-based routing.

Attributes The routing:expression requires the following two attributes:

xmlns:routing="http://schemas.iona.com/routing"

name Specifies a string that is used to refer to the expression
when defining routes.
 175

CHAPTER 21 | Routing
routing:route

Synopsis <routing:route name="..." mulitRoute="...">

 ...

</routing:route>

Description The routing:route element is the root element of each route described in a
contract.

Attributes The routing:route element takes the following attributes:

Options Standard routes define a single source/destination pair. When the mulitRoute
attribute is specified, your route description will contain more than one
destination.

Setting the multiRoute attribute has the following effects:

� fanout instructs Artix to send messages from the source to all the
listed destinations.

� failover instructs Artix to move through the list of destinations until it
can successfully send the message.

� loadBalance instructs Artix to use a round-robin algorithm to spread
messages across all of the listed destinations.

routing:source

Synopsis <routing:source service="..." port="..." />

Description The routing:source element is a child of a routing:route element. It specifies
the port from which the route will redirect messages. A route can have several

evaluator Specifies the name of the grammar used in the
expression. Currently the only valid value is xpath.

name Specifies a unique identifier for the route. This attribute is
required.

multiRoute An optional attribute that specifies how messages are
sent to the listed destinations. Values are fanout,
failover, or loadBalance. Default is to route messages
to a single destination.
176

source elements as long as they all meet the compatibility rules for port-based
routing.

Attributes The routing:source element requires two attributes:

routing:query

Synopsis <routing:query expression="...">

 <routing:desitination id="..." ... />

 ...

</routing:query>

Description The routing:query element is a child of a routing:route element. It specifies
the destinations for a content-based route. The child routing:destination
elements must use the id attribute to specify the value used to select the
destination.

Attributes The routing:query element has one attribute:

routing:destination

Synopsis <routing:destination value="..." service="..."

 port="..." route="..." />

Description The routing:destination element is a child of a routing:route element. It
specifies the port to which the source messages are directed. The destination
must be compatible with all of the source elements.

service Specifies the WSDL service element in which the source
port is defined.

port Specifies the name of the WSDL port element from
which messages are being received. The router will create
a proxy to listen for messages on this port.

expression Specifies the value of the name attribute from the
routing:expression element defining the XPATH
expression used to select the destination of the message.
The query selects the destination with the id value that
matches the result of applying the expression to the
message content.
 177

CHAPTER 21 | Routing
Attributes The routing:destination element has the following attributes:

routing:transportAttribute

Synopsis <routing:transportAttribute>

 ...

</routing:transportAttribute>

Description The routing:transportAttribute element is a child of a routing:route
element. It defines routing rules based on the transport attributes set in a
message�s header when using HTTP, CORBA, or WebSphere MQ. The criteria
for determining if a message meets the transport attribute rule are specified
using the following child elements:

� routing:equals

� routing:greater

� routing:less

� routing:startswith

� routing:endswith

� routing:contains

� routing:empty

� routing:nonempty

A message passes the rule if it meets each criterion specified by the child
elements.

Transport attribute rules are defined after all of the operation-based routing
rules and before any destinations are listed.

value Specifies the value of the content-based routing query
that triggers the destination. This attribute is required
when the element is the child of a routing:query element
and ignored otherwise.

service Specifies the WSDL service element in which the
destination port is defined.

port Specifies the name of the port WSDL element to which
messages are routed.

route Specifies a linked route to use for selecting the ultimate
destination. When this attribute is used, you should not
use the service attribute or the port attribute.
178

Examples Example 47 shows a route using transport attribute rules based on HTTP
header attributes. Only messages sent to the server whose UserName is equal
to JohnQ will be passed through to the destination port.

routing:equals

Synopsis <routing:equals contextName="..."

 contextAttributeName="..."

 value="..."

 ingnorecase="..." />

Description The routing:equals element is a child of a routing:transportAttribute
element. It defines a rule that is triggered when the specified attribute equals
the value given. It applies to string or numeric attributes.

Attributes The routing:equals element has the following attributes:

Example 47: Transport Attribute Rules

<routing:route name="httpTransportRoute">
 <routing:source service="tns:httpService"
 port="tns:httpPort"/>
 <routing:trasnportAttributes>
 <rotuing:equals
 contextName="http-conf:HTTPServerIncomingContexts"
 contextAttributeName="UserName"
 value="JohnQ"/>
 </routing:transportAttributes>
 <routing:destination service="tns:httpDest"
 port="tns:httpDestPort"/>
</routing:route>

contextName Specifies the QName of the context in which the
desired transport attributes are stored.

contextAttributeName Specifies the QName of the transport attribute the
rule evaluates.

value Specifies the value against which the specified
attribute is evaluated.

ignorecase Specifies whether the case of characters in a string
are ignored. The default is no; case is considered
when evaluating string data.
 179

CHAPTER 21 | Routing
routing:greater

Synopsis <routing:greater contextName="..."

 contextAttributeName="..."

 value="..." />

Description The routing:greater element is a child of a routing:transportAttribute
element. It defines a rule that is triggered when the value of the specified
attribute is greater than the value given. It applies to numeric attributes.

Attributes The routing:greater element has the following attributes:

routing:less

Synopsis <routing:less contextName="..."

 contextAttributeName="..."

 value="..." />

Description The routing:less element is a child of a routing:transportAttribute element.
It defines a rule that is triggered when the value of the specified attribute is
less than the value given. It applies to numeric attributes.

Attributes The routing:less element has the following attributes:

contextName Specifies the QName of the context in which the
desired transport attributes are stored.

contextAttributeName Specifies the QName of the transport attribute the
rule evaluates.

value Specifies the value against which the specified
attribute is evaluated.

contextName Specifies the QName of the context in which the
desired transport attributes are stored.

contextAttributeName Specifies the QName of the transport attribute the
rule evaluates.

value Specifies the value against which the specified
attribute is evaluated.
180

routing:startswith

Synopsis <routing:startswith contextName="..."

 contextAttributeName="..."

 value="..."

 ingnorecase="..." />

Description The routing:startswith element is a child of a routing:transportAttribute
element. It applies to string attributes and tests whether the attribute starts
with the specified value.

Attributes The routing:startswith element has the following attributes:

routing:endswith

Synopsis <routing:endswith contextName="..."

 contextAttributeName="..."

 value="..."

 ingnorecase="..." />

Description The routing:endswith element is a child of a routing:transportAttribute
element. It applies to string attributes and tests whether the attribute ends
with the specified value.

Attributes The routing:endswith element has the following attributes:

contextName Specifies the QName of the context in which the
desired transport attributes are stored.

contextAttributeName Specifies the QName of the transport attribute the
rule evaluates.

value Specifies the value against which the specified
attribute is evaluated.

ignorecase Specifies whether the case of characters in a string
are ignored. The default is no; case is considered
when evaluating string data.

contextName Specifies the QName of the context in which the
desired transport attributes are stored.
 181

CHAPTER 21 | Routing
routing:contains

Synopsis <routing:contains contextName="..."

 contextAttributeName="..."

 value="..."

 ingnorecase="..." />

Description The routing:contains element is a child of a routing:transportAttribute
element. It applies to string or list attributes. For strings, it tests whether the
attribute contains the value. For lists, it tests whether the value is a member
of the list.

Attributes The routing:contains element has the following attributes:

routing:empty

Synopsis <routing:empty contextName="..."

 contextAttributeName="..." />

contextAttributeName Specifies the QName of the transport attribute the
rule evaluates.

value Specifies the value against which the specified
attribute is evaluated.

ignorecase Specifies whether the case of characters in a string
are ignored. The default is no; case is considered
when evaluating string data.

contextName Specifies the QName of the context in which the
desired transport attributes are stored.

contextAttributeName Specifies the QName of the transport attribute the
rule evaluates.

value Specifies the value against which the specified
attribute is evaluated.

ignorecase Specifies whether the case of characters in a string
are ignored. The default is no; case is considered
when evaluating string data.
182

Description The routing:empty element is a child of a routing:transportAttribute element.
It applies to string or list attributes. For lists, it tests whether the list is empty.
For strings, it tests for an empty string.

Attributes The routing:empty element has the following attributes:

routing:nonempty

Synopsis <routing:nonempty contextName="..."

 contextAttributeName="..." />

Description The routing:nonempty element is a child of a routing:transportAttribute
element. It applies to string or list attributes. For lists, it passes if the list is
not empty. For strings, it passes if the string is not empty.

Attributes The routing:nonempty element has the following attributes:

Transport Attribute Context Names

The contextName attribute is specified using the QName of the context in
which the attribute is defined. The contexts shipped with Artix are described
in Table 18.

contextName Specifies the QName of the context in which the
desired transport attributes are stored.

contextAttributeName Specifies the QName of the transport attribute the
rule evaluates.

contextName Specifies the QName of the context in which the
desired transport attributes are stored.

contextAttributeName Specifies the QName of the transport attribute the
rule evaluates.

Table 18: Context QNames

Context QName Details

http-conf:HTTPServerIncomingContexts Contains the attributes for
HTTP messages being
received by a server.
 183

CHAPTER 21 | Routing
corba:corba_input_attributes Contains the data stored in
the CORBA principle

mq:MQConnectionAttributes Contains the attributes
used to connect to an MQ
queue.

mq:MQIncomingMessageAttributes Contains the attributes in
the message header of an
MQ message.

bus-security Contains the attributes
used by the IONA security
service to secure your
services.

Table 18: Context QNames

Context QName Details
184

CHAPTER 22

Security
Artix uses a special WSDL extension element to specify
security policies for endpoints.

Namespace

The elements Artix uses for specifying security policies are defined in the
http://schemas.iona.com/bus/security namespace. When defining
security policies in an Artix contract your contract�s definition element
must have the following entry:

bus-security:security

Synopsis <bus-security:security enableSecurity="..."

 is2AuthorizationActionRoleMapping="..."

 enableAuthorization="..."

 authenticationCacheSize="..."

 authenticationCacheTimeout ="..."

 securityType="..."

 securityLevel="..."

 authorizationRealm="..."

 defaultPassword="..." />

Description The bus-security:security element is a child of a WSDL port element. It�s
attributes specify security policies for the endpoint.

xmlns:bus-security="http://schemas.iona.com/bus/security"
 185

CHAPTER 22 | Security
Attributes The bus-security:security element has the following attributes:

enableSecurity Specifies if the service should loud
the ASP plug-in. Default is false.

is2AuthorizationActionRoleMapping Specifies the URL of the action role
mapping file the Artix security
framework uses to authenticate
requests for this endpoint.

enableAuthorization Specifies if the endpoint should use
the Artix security framework for
authentication. Default is false.

enableSSO Specifies if the service can use
single-sign on (SSO). Default is
false.

authenticationCacheSize Specifies the maximum number of
credentials stored in the
authentication cache. A value of -1
(the default) means unlimited size. A
value of 0 disables the cache.

authenticationCacheTimeout Specifies the time (in seconds) after
which a credential is considered
stale. A value of -1 (the default)
means an infinite time-out. A value
of 0 disables the cache.

securityLevel Specifies the level from which
security credentials are picked up.

The following options are supported
by the Artix security framework:

� MESSAGE_LEVEL�Get security
information from the transport
header. This is the default.

� REQUEST_LEVEL�Get the
security information from the
message header.
186

See also For more information about Artix security policies see The Artix
Security Guide.

authorizationRealm Specifies the Artix authorization
realm to which an Artix server
belongs. The value of this variable
determines which of a user's roles
are considered when making an
access control decision.The default is
IONAGlobalRealm.

defaultPassword Specifies the password to use on the
server side when the client
credentials originate either from a
CORBA Principal (embedded in a
SOAP header) or from a certificate
subject. The default is
default_password.
 187

../security_guide/index.htm
../security_guide/index.htm

CHAPTER 22 | Security
188

CHAPTER 23

Codeset
Conversion
For transports that do not natively support codeset conversion
Artix has the ability to perform codeset conversion.

Namespace

The elements Artix uses for defining codeset conversion rules are defined in
the http://schemas.iona.com/bus/i18n/context namespace. When
defining codeset conversion rules in an Artix contract your contract�s
definition element must have the following entry:

i18n-context:client

Synopsis <i18n-context:client LocalCodeSet="..." OutboundCodeSet="..."

 InboundCodeSet="..." />

Description The i18n-context:client element is a child of a WSDL port element. It
specifies codeset conversion rules for Artix endpoints that are acting as
servers.

xmlns:i18n-context="http://schemas.iona.com/bus/i18n/context"
 189

CHAPTER 23 | Codeset Conversion
Attributes The i18n-context:client element has the following attributes for defining
how message codesets are converted:

i18n-context:server

Synopsis <i18n-context:server LocalCodeSet="..." OutboundCodeSet="..."

 InboundCodeSet="..." />

Description The i18n-context:server element is a child of a WSDL port element. It
specifies codeset conversion rules for Artix endpoints that are acting as
servers.

Attributes The i18n-context:server element has the following attributes for defining
how message codesets are converted:

LocalCodeSet Specifies the client�s native codeset. Default is the
codeset specified by the local system�s locale setting.

OutboundCodeSet Specifies the codeset into which requests are converted.
Default is the codeset specified in LocalCodeSet.

InboundCodeSet Specifies the codeset into which replies are converted.
Default is the codeset specified in OutboundCodeSet.

LocalCodeSet Specifies the server�s native codeset. Default is the
codeset specified by the local system�s locale setting.

OutboundCodeSet Specifies the codeset into which replies are converted.
Default is the codeset specified in InboundCodeSet.

InboundCodeSet Specifies the codeset into which requests are converted.
Default is the codeset specified in LocalCodeSet.
190

Index

A
adding a SOAP header 25, 33
arrays

mapping to a fixed binding 80
mapping to a tagged binding 87
mapping to a TibrvMsg 99
mapping to CORBA 55

Artix contexts
using in a TibrvMsg 104

Artix reference
mapping to CORBA 61

attribute based routing 178

B
bus-security:security 185

authenticationCacheSize attribute 186
authenticationCacheTimeout attribute 186
authorizationRealm attribute 187
defaultPassword attribute 187
enableAuthorization attribute 186
enableSecurity attribute 186
enableSSO attribute 186
is2AuthorizationActionRoleMapping attribute 186
securityLevel attribute 186

C
choice complexType

mapping to a fixed binding 77
mapping to a tagged binding 89

complex types
mapping to a TibrvMsg 102
mapping to CORBA 48

corba:address 131
location attribute 131

corba:alias 54
name attribute 54
repositoryID attribute 54
type attribute 54

corba:anonsequence 58
bound attribute 58
elemtype attribute 58
name attribute 58

type attribute 58
corba:array 55

bound attribute 55
elemtype attribute 55
name attribute 55
repositoryID attribute 55
type attribute 55

corba:binding 44
bases attribute 44
repositoryID attribute 44

corba:case 53
label attribute 53

corba:enumerator 50
corba:exception 57

name attribute 57
repositoryID attribute 57
type attribute 57

corba:fixed 50
digits attribute 51
name attribute 51
repositoryID attribute 51
scale attribute 51
type attribute 51

corba:member 48
idltype attribute 48
name attribute 48

corba:object
binding attribute 61
name attribute 62
repositoryID attribute 62
type attribute 62

corba:operation 44
name attribute 45

corba:param 45
idltype attribute 45
mode attribute 45
name attribute 45

corba:policy 132
persistent attribute 132
poaname attribute 132
serviceid attribute 132

corba:raises 46
exception attribute 46
 191

INDEX
corba:return 45
idltype attribute 46
name attribute 46

corba:sequence 56
bound attribute 56
elemtype attribute 56
name attribute 56
repositoryID attribute 56

corba:typeMapping 47
targetNamespace attribute 47

corba:union 52
discriminator attribute 52
name attribute 52
repositoryID attribute 52
type attribute 52

corba:unionbranch 52
default attribute 53
idltype attribute 52
name attribute 52

D
defining a fixed message body 72
defining a tagged message body 85
defining a TibrvMsg 102
durable subscriptions 157

E
enumerations

mapping to a fixed binding 76
mapping to a tagged binding 86
mapping to CORBA 49

exceptions
mapping to CORBA 46, 57
mapping to SOAP 26, 34

F
failover routing 176
fanout routing 176
fixed:binding 71

encoding attribute 72
justification attribute 71
padHexCode attribute 72

fixed:body 72
encoding attribute 73
justification attribute 73
padHexCode attribute 73

fixed:case 78
fixedValue attribute 79

name attribute 79
fixed:choice 78

discriminatorName attribute 78
name attribute 78

fixed:enumeration 76
fixedValue attribute 77
value attribute 77

fixed:field 73
bindingOnly attribute 74
fixedValue attribute 74
format attribute 74
justification attribute 74
name attribute 73
size attribute 74

fixed:operation 72
discriminator attribute 72

fixed:sequence 80
counterName attribute 81
name attribute 81
occurs attribute 81

ftp:port 169
connectMode 170
host 170
port 170
replyLocation 170
requestLocation 170
scanInsterval 170

ftp:properties 170
ftp:property 170

name 171
value 171

H
http:address 114

location attribute 114
http-conf:client 115

Accept attribute 121
AcceptEncoding attribute 123
AcceptLanguage attribute 122
Authorization attribute 121
AuthorizationType attribute 121
AutoRedirect attribute 116
BrowserType attribute 128
CacheControl attribute 125

cache-extension directive 126
max-age directive 125
max-stale directive 126
min-fresh directive 126
no-cache directive 125
192

INDEX
no-store directive 125
no-transform directive 126
only-if-cached directive 126

ClientCertificate attribute 117
ClientCertificateChain attribute 117
ClientPrivateKey attribute 118
ClientPrivateKeyPassword attribute 118
ConnectionAttempts attribute 117
Connection attribute 125
ContentType attribute 116
Cookie attribute 117
Host attribute 124
Password attribute 116
ProxyAuthorization attribute 129
ProxyAuthorizationType attribute 129
ProxyPassword attribute 117
ProxyServer attribute 129
ProxyUserName attribute 117
ReceiveTimeout attribute 116
Referer attribute 128
SendTimeout attribute 116
TrustedRootCertificate attribute 118
UserName attribute 116
UseSecureSockets attribute 130

http-conf:server 118
CacheControl attribute 125

cache-extension directive 128
max-age directive 127
must-revalidate directive 127
no-cache directive 127
no-store directive 127
no-transform directive 127
private directive 127
proxy-revelidate directive 127
public directive 127
s-maxage directive 128

ContentEncoding attribute 124
ContentLocation attribute 119
ContentType attribute 119
HonorKeepAlive attribute 119
ReceiveTimeout attribute 118
RedirectURL attribute 130
SendTimeout attrubute 118
ServerCertificate 120
ServerCertificateChain 130
ServerPrivateKey attribute 120
ServerPrivateKeyPassword attribute 120
ServerType attribute 119
SuppressClientReceiveErrors attribute 119

SuppressClientSendErrors attribute 119
TrustedRootCertificate attribute 120
UseSecureSockets attribute 130

I
i18n-context:client 189

InboundCodeSet 190
LocalCodeSet 190
OutboundCodeSet 190

i18n-context:server 190
InboundCodeSet 190
LocalCodeSet 190
OutboundCodeSet 190

IDL types
fixed 50
Object 61
sequence 56
typedef 54

iiop:address 133
location attribute 133

iiop:payload 134
type attribute 134

iiop:policy 135
persistent attribute 135
poaname attribute 135
serviceid attribute 135

IOR 131, 133

J
jms:address 155

connectionPassword attribute 156
connectionUserName attribute 156
destinationStyle attribute 156
jndiConnectionFactoryName attribute 156
jndiDestinationName attribute 156
jndiReplyDestinationName 156

jms:client 157
messageType attribute 157

jms:JMSNamingProperty 156
name attribute 156
value attribute 156

jms:server 157
durableSubscriberName attribute 157
messageSelector attribute 158
transactional attribute 158
useMessageIDAsCorrealationID attribute 157

JNDI
connection factory 156
 193

INDEX
L
load balancing 176

M
message broadcasting 176
mime:content 38

part attribute 38
type attribute 39

mime:multipartRelated 38
mime:part 38

name attribute 38
mq:client 138

AccessMode attribute 147
AccountingToken attribute 140
AliasQueueName attribute 144
ApplicationData attribute 140
ApplicationIdData attribute 140
ApplicationOriginData attribute 140
ConnectionFastPath attribute 139
ConnectionName attribute 139
ConnectionReusable attribute 139
CorrelationId attribute 140
CorrelationStyle attribute 146
Delivery attribute 149
Format attribute 152
MessageExpiry attribute 139
MessageId attribute 140
MessagePriority attribute 148
ModelQueueName attribute 139
QueueManager attribute 138
QueueName attribute 139
ReplyQueueManager attribute 139
ReplyQueueName attribute 139
ReportOption attribute 150
Server_Client attribute 143
Timeout attribute 139
Transactional attribute 149
UsageStyle attribute 146
UserIdentification attribute 140

mq:server 141
AccessMode attribute 147
AccountingToken attribute 142
ApplicationData attribute 142
ApplicationOriginData attribute 142
ConnectionFastPath attribute 141
ConnectionName attribute 141
ConnectionReusable attribute 141
CorrelationId attribute 142

CorrelationStyle attribute 146
Delivery attribute 149
Format attribute 152
MessageExpiry attribute 142
MessageId attribute 142
MessagePriority attribute 148
ModelQueueName attribute 141
PropogateTransactions attributes 142
QueueManager attribute 141
QueueName attribute 141
ReplyQueueManager attribute 141
ReplyQueueName attribute 141
ReportOption attribute 150
Server_Client attribute 143
Timeout attribute 142
Transactional attribute 149
UsageStyle attribute 146

P
POA policies 132, 135
port address

HTTP 114
primitive types

mapping to a fixed binding 73
mapping to a tagged binding 86
mapping to a TibrvMsg 93, 103
mapping to CORBA 42
mapping to FML 67

R
reply queue

queue manager 139, 141
queue name 139, 141

request queue
queue manager 138, 141
queue name 139, 141

rmi:address 110
url 110

rmi:class 109
name 109

routing:contains 182
contextAttributeName attribute 182
contextName attribute 182
ignorecase attribute 182
value attribute 182

routing:destination 177
port attribute 178
route attribute 178
194

INDEX
service attribute 178
value attribute 178

routing:empty 182
contextAttributeName attribute 183
contextName attribute 183

routing:endswith 181
contextAttributeName attribute 182
contextName attribute 181
ignorecase attribute 182
value attribute 182

routing:equals 179
contextAttributeName attribute 179
contextName attribute 179
ignorecase attribute 179
value attribute 179

routing:expression 175
evaluator attribute 176
name attribute 175

routing:greater 180
contextAttributeName attribute 180
contextName attribute 180
value attribute 180

routing:less 180
contextAttributeName attribute 180
contextName attribute 180
value attribute 180

routing:nonempty 183
contextAttributeName attribute 183
contextName attribute 183

routing:query 177
routing:route 176

multiRoute attribute 176
failover 176
fanout 176
loadBalance 176

name attribute 176
routing:source 176

port attribute 177
service attribute 177

routing:startswith 181
contextAttributeName attribute 181
contextName attribute 181
ignorecase attribute 181
value attribute 181

routing:transportAttribute 178

S
sequence complexType

mapping to a fixed binding 80

mapping to a tagged binding 87
service failover 176
soap:address 114

location attribute 114
soap:binding 21

style attribute 21
transport attribute 22

soap:body 23
encodingStyle attribute 24
namespace attribute 25
parts attribute 25
use attribute 23

encoded 24
literal 24

soap:fault 26
name attribute 26
use attribute 26

encoded 24
literal 24

soap:header 25
encodingStyle attribute 26
message attribute 25
namespace attribute 26
part attribute 25
use attribute 26, 34

encoded 24
literal 24

soap:operation 22
soapAction attribute 23
style attribute 23

specifying a password
HTTP 116

specifying a user name
HTTP 116

T
tagged:binding 83

fieldNameValueSeparator attribute 84
fieldSeparator attribute 84
flattened attribute 84
ignoreCase attribute 85
ignoreUnknownElements attribute 84
messageEnd attribute 84
messageStart attribute 84
scopeType attribute 84
selfDescribing attribute 84
unscopedArrayElement attribute 84

tagged:body 85
tagged:case 90
 195

INDEX
name attribute 90
tagged:choice 89

alias attribute 89
discriminatorName attribute 89
name attribute 89

tagged:enumeration 86
value attribute 86

tagged:field 86
alias attribute 86
name attribute 86

tagged:operation 85
discriminator attribute 85
discriminatorStyle attribute 85

tagged:sequence 87
alias attribute 88
name attribute 88
occurs attribute 88

tibrv:array 99
elementName attribute 99
integralAsSingleField attribute 99
loadSize attribute 100
sizeName attribute 100

tibrv:binding 95
stringAsOpaque attribute 96
stringEncoding attribute 96

tibrv:context 104
tibrv:field 103

alias attribute 103
element attribute 103
id attribute 103
maxOccurs attribute 103
minOccurs attribute 103
name attribute 103
type attribute 103
value attribute 103

tibrv:input 97
messageNameFieldPath attribute 97
messageNameFieldValue attribute 97
stringAsOpaque attribute 97
stringEncoding attribute 97

tibrv:msg 102
alias attribute 102
element attribute 103
id attribute 103
maxOccurs attribute 103
minOccurs attribute 103
name attribute 102

tibrv:operation 96
tibrv:output 98

messageNameFieldPath attribute 98
messageNameFieldValue attribute 98
stringAsOpaque attribute 99
stringEncoding attribute 98

tibrv:port 162
bindingType attribute 166
callbackLevel attribute 166
clientSubject attribute 163
cmListenerCancelAgreements attribute 164
cmQueueTransportCompleteTime attribute 165
cmQueueTransportSchedulerActivation

attribute 165
cmQueueTransportSchedulerHeartbeat

attribute 165
cmQueueTransportSchedulerWeight attribute 165
cmQueueTransportServerName attribute 167
cmQueueTransportWorkerTasks attribute 165
cmQueueTransportWorkerWeight attribute 164
cmSupport attribute 163
cmTransportClientName attribute 164
cmTransportDefaultTimeLimit attribute 164
cmTransportLedgerName attribute 164
cmTransportRelayAgent attribute 164
cmTransportRequestOld attribute 164
cmTransportServerName attribute 167
cmTransportSyncLedger attribute 164
responseDispatchTimeout attribute 167
serverSubject attribute 163
transportBatchMode attribute 163
transportDaemon attribute 163
transportNetwork attribute 167
transportService attribute 167

timeouts
HTTP 116
MQ 139, 142

transactions
MQ 149

tuxedo:binding 68
tuxedo:field 69

id attribute 69
name attribute 69

tuxedo:fieldTable 68
type attribute 69

tuxedo:input 160
operation attribute 160

tuxedo:operation 69
tuxedo:server 159
tuxedo:service 160

name attribute 160
196

INDEX
U
unions

mapping to a fixed binding 78
mapping to a tagged binding 89
mapping to CORBA 52

W
wsoap12/

fault
encodingStyle attribute 35

wsoap12:address 114
location attribute 114

wsoap12:binding 29
style attribute 29
transport attribute 30

wsoap12:body 31
encodingStyle attribute 33
namespace attribute 33
parts attribute 33
use attribute 32

literal 32
wsoap12:fault 34

name attribute 34
namespace attribute 34
use attribute 34

literal 32
wsoap12:header 33

encodingStyle attribute 34
message attribute 33
namespace attribute 34
part attribute 33
use attribute

literal 32
wsoap12:operation 30

soapAction attribute 31
soapActionRequired attribute 31
style attribute 31

X
xformat:binding 107

rootNode attribute 107
xformat:body 108

rootNode attribute 108
 197

INDEX
198

	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	The Artix Library
	Getting the Latest Version
	Searching the Artix Library
	Artix Online Help
	Artix Glossary
	Additional Resources
	Document Conventions

	Bindings
	SOAP 1.1 Binding
	soap:binding
	soap:operation
	soap:body
	soap:header
	soap:fault

	SOAP 1.2 Binding
	wsoap12:binding
	wsoap12:operation
	wsoap12:body
	wsoap12:header
	wsoap12:fault

	MIME Multipart/Related Binding
	Namespace
	mime:multipartRelated
	mime:part
	mime:content

	CORBA Binding and Type Map
	CORBA Binding Extension Elements
	Namespace
	Primitive Type Mapping
	corba:binding
	corba:operation
	corba:param
	corba:return
	corba:raises

	CORBA Type Map Extension Elements
	corba:typeMapping
	corba:struct
	corba:member
	corba:enum
	corba:enumerator
	corba:fixed
	corba:union
	corba:unionbranch
	corba:case
	corba:alias
	corba:array
	corba:sequence
	corba:exception
	corba:anonsequence
	corba:anonstring
	corba:object

	Tuxedo FML Binding
	Namespace
	FML\XMLSchema Support
	tuxedo:binding
	tuxedo:fieldTable
	tuxedo:field
	tuxedo:operation

	Fixed Binding
	Namespace
	fixed:binding
	fixed:operation
	fixed:body
	fixed:field
	fixed:enumeration
	fixed:choice
	fixed:case
	fixed:sequence

	Tagged Binding
	Namespace
	tagged:binding
	tagged:operation
	tagged:body
	tagged:field
	tagged:enumeration
	tagged:sequence
	tagged:choice
	tagged:case

	TibrvMsg Binding
	Namespace
	TIBRVMSG to XMLSchema Type Mapping
	tibrv:binding
	tibrv:operation
	tibrv:input
	tibrv:output
	tibrv:array
	tibrv:msg
	tibrv:field
	tibrv:context

	XML Binding
	Namespace
	xformat:binding
	xformat:body

	RMI Binding
	Namespace
	rmi:class
	rmi:address

	Ports
	HTTP Port
	Standard WSDL Elements
	http:address
	soap:address
	wsoap12:address

	Artix Extension Elements
	Namespace
	http-conf:client
	http-conf:server

	Attribute Details
	AuthorizationType
	Authorization
	Accept
	AcceptLanguage
	AcceptEncoding
	ContentType
	ContentEncoding
	Host
	Connection
	CacheControl
	BrowserType
	Referer
	ProxyServer
	ProxyAuthorizationType
	ProxyAuthorization
	UseSecureSockets
	RedirectURL
	ServerCertificateChain

	CORBA Port
	Namespace
	corba:address
	corba:policy

	IIOP Tunnel Port
	Namespace
	iiop:address
	iiop:payload
	iiop:policy

	WebSphere MQ Port
	Artix Extension Elements
	Namespace
	mq:client
	mq:server

	Attribute Details
	Server_Client
	AliasQueueName
	UsageStyle
	CorrelationStyle
	AccessMode
	MessagePriority
	Delivery
	Transactional
	ReportOption
	Format

	JMS Port
	Namespace
	jms:address
	jms:JMSNamingProperty
	jms:client
	jms:server

	Tuxedo Port
	Namespace
	tuxedo:server
	tuxedo:service
	tuxedo:input

	Tibco/Rendezvous Port
	Artix Extension Elements
	Namespace
	tibrv:port

	Attribute Details
	bindingType
	callbackLevel
	responseDispatchTimeout
	transportService
	transportNetwork
	cmTransportServerName
	cmQueueTransportServerName

	File Transfer Protocol Port
	Namespace
	ftp:port
	ftp:properties
	ftp:property

	Other Extensions
	Routing
	Namespace
	routing:expression
	routing:route
	routing:source
	routing:query
	routing:destination
	routing:transportAttribute
	routing:equals
	routing:greater
	routing:less
	routing:startswith
	routing:endswith
	routing:contains
	routing:empty
	routing:nonempty
	Transport Attribute Context Names

	Security
	Namespace
	bus-security:security

	Codeset Conversion
	Namespace
	i18n-context:client
	i18n-context:server

	Index

