IONA

Artix:

Contiguring and Deploying
Artix Solutions
Version 4.2, March 2007

Making Software Work Together™

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work
Together, Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2007 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: April 5, 2007

Contents

List of Tables
List of Figures

Preface
What is Covered in this Book
Who Should Read this Book
How to Use this Book
The Artix Documentation Library

Part | Configuring Artix

Chapter 1 Getting Started
Setting your Artix Environment
Artix Environment Variables
Customizing your Environment Script

Chapter 2 Artix Configuration
Artix Configuration Concepts
Configuration Data Types
Artix Configuration Files
Command-Line Configuration

Chapter 3 Artix Logging
Configuring Artix Logging
Logging for Subsystems and Services
Dynamic Artix Logging
Configuring Message Snoop
Configuring Log4J Logging
Configuring SNMP Logging

11
11
11
12
13

17
18
20
24

27
28
32
33
37

39
40
47
56
60
62
65

CONTENTS

Chapter 4 Enterprise Performance Logging 71
Enterprise Management Integration 72
Remote Performance Logging 74
Configuring Performance Logging 77
Configuring Remote Performance Logging 81

Configuring the Remote Logger Daemon 82
Configuring a Deployed Application on the Source Host 84
Performance Logging Message Formats 87

Chapter 5 Using Artix with International Codesets 91
Introduction to International Codesets 92
Working with Codesets using SOAP 95
Working with Codesets using CORBA 96
Working with Codesets using Fixed Length Records 99
Working with Codesets using Message Interceptors 102
Routing with International Codesets 111

Part [I Deploying Artix Services

Chapter 6 Deploying Services in an Artix Container 117
Introduction to the Artix Container 118
Generating a Plug-in and Deployment Descriptor 123
Running an Artix Container Server 128
Running an Artix Container Administration Client 131
Deploying Services on Restart 136
Running an Artix Container as a Windows Service 140
Debugging Plug-ins Deployed in a Container 145

Chapter 7 Deploying an Artix Transformer 149
The Artix Transformer 150
Standalone Deployment 153
Deployment as Part of a Chain 156
Optional Configuration 159

Chapter 8 Deploying a Service Chain 161
The Artix Chain Builder 162

Configuring the Artix Chain Builder

Chapter 9 Deploying High Availability

Introduction

Setting up a Persistent Database

Configuring Persistent Services for High Availability
Configuring Locator High Availability

Configuring Client-Side High Availability

Chapter 10 Deploying Reliable Messaging

Introduction

Configuring a WS-A Message Exchange Pattern
Enabling WS-RM

Configuring WS-RM Attributes

Configuring WS-RM Threading

Configuring WS-RM Persistence

Part Il Accessing Artix Services

Chapter 11 Publishing WSDL Contracts

Artix WSDL Publishing Service
Configuring the WSDL Publishing Service
Querying the WSDL Publishing Service

Chapter 12 Accessing Contracts and References

Introduction

Enabling Server and Client Applications
Accessing WSDL Contracts

Accessing Endpoint References
Accessing Artix Services

Chapter 13 Accessing Services with UDDI

Introduction to UDDI
Configuring UDDI Proxy
Configuring a jUDDI Repository

CONTENTS

164

169
170
173
174
178
181

189
190
193
196
197
205
207

211
212
214
218

223
224
227
231
237
243

245
246
249
250

CONTENTS

Chapter 14 Embedding Artix in a BEA Tuxedo Container 251
Embedding an Artix Process in a Tuxedo Container 252
Index 255

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:

Options to artix_env Script

Artix Environment Variables

Artix Logging Severity Levels

Artix Logging Subsystems

ART Core Logging Subsystems

Performance Logging Plug-in

Artix log message arguments

Orbix log message arguments

Simple life cycle message formats arguments

IANA Charset Names

Configuration Variables for CORBA Native Codeset
Configuration Variables for CORBA Conversion Codesets
Required Arguments to wsdd

Optional Arguments to wsdd

Artix Endpoint Configuration

Artix Service Configuration

Configuration for Hosting the Artix Chain Builder

18
20
42
47
51
77
87
88
89
93
96
97

126

126

153

165

167

LIST OF TABLES

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:

Overview of an Artix and IBM Tivoli Integration
Remote Logging Framework

Routing Internationalized Requests

Artix Container Architecture

Installed Windows Service

Service Properties

Project Settings in Visual C++

Visual C++ Debug Exception

Eclipse Debug Screen

Artix Transformer Deployed as a Servant

Artix Transformer Loaded by a Client

Artix Transformer Deployed with the Chain Builder
Chaining Four Servers to Form a Single Service
Artix Master Slave Replication

Web Services Reliable Messaging

Creating References with the WSDL Publishing Service

73

75
112
119
143
144
145
146
148
151
151
152
162
170
190
213

LIST OF FIGURES

10

Preface

What is Covered in this Book

Configuring and Deploying Artix Solutions explains how to configure and
deploy and Artix services in a runtime environment. It provides detailed
descriptions of the specific tasks involved in configuring and launching Artix
applications and services.

This book does not discuss the specifics of the different middleware and
messaging products that Artix interacts with. Any discussion about the
features of specific middleware products or transports relates to how Artix
interacts with these features. It is assumed that you have a working
knowledge of the specific middleware products and transports you are
using.

Who Should Read this Book

The main audience of Configuring and Deploying Artix Solutions is Artix
system administrators. However, anyone involved in designing a large scale
Artix solution will find this book useful.

Knowledge of specific middleware or messaging transports is not required to
understand the general topics discussed in this book. However, if you are
using this book as a guide to deploying runtime systems, you should have a
working knowledge of the middleware transports that you intend to use in
your Artix solutions.

Note: When deploying Artix in a distributed architecture with other
middleware, please see the documentation for that middleware product.
You may require access to an administrator. For example, a Tuxedo
administrator is required to complete a Tuxedo distributed architecture.

11

PREFACE

12

How to Use this Book
Part I, Configuring Artix

This part includes the following:

Chapter 1 describes how to set an Artix system environment using the
artix_env Script.

Chapter 2 describes Artix configuration concepts such as configuration
scopes, hamespaces, and variables. It also explains how to use
configuration files and commands to deploy your applications.
Chapter 3 explains how to configure Artix logging. It also explains Artix
support for Java log4j and SNMP (Simple Network Management
Protocol).

Chapter 4 explains how to configure integration with third-party
Enterprise Management Systems (EMS), such as IBM Tivoli and BMC
Patrol.

Chapter 5 explains how to configure Artix support for
internationalization.

Part I, Deploying Artix Services

If you are deploying Artix services, you may want to read one or more of the
following:

Chapter 6 explains how to use the Artix container to deploy and
manage Artix Web services.

Chapter 7 explains how to deploy the Artix transformer service.
Chapter 8 explains how to deploy an Artix service chain.

Chapter 9 explains how to deploy Artix high availability (for example,
server-side replication and client-side failover).

Chapter 10 explains how to deploy reliable messaging in Artix.

PREFACE

Part 111, Accessing Artix Services

This part describes several different ways to access Artix services:

® Chapter 11 explains how to use the Artix WSDL Publishing service to
to publish WSDL contracts.

® Chapter 12 explains how to use Artix configuration to access Artix
WSDL contracts and endpoint references.

® Chapter 13 explains how to use Universal Description, Discovery and
Integration (UDDI) with Artix.

® Chapter 14 describes how to deploy Artix into a BEA Tuxedo
environment.

The Artix Documentation Library

For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the
Artix Library

13

../library_intro/index.htm
../library_intro/index.htm

PREFACE

14

Part |

Configuring Artix

In this part This part contains the following chapters:
Getting Started page 17
Artix Configuration page 27
Artix Logging page 39
Enterprise Performance Logging page 71
Using Artix with International Codesets page 91

15

16

In this chapter

CHAPTER 1

Getting Started

This chapter explains how to set your Artix system
environment.

This chapter discusses the following topics:

Setting your Artix Environment page 18
Artix Environment Variables page 20
Customizing your Environment Script page 24

17

CHAPTER 1 | Getting Started

Setting your Artix Environment

Overview

Running the artix_env script

18

To use the Artix design tools and runtime environment, the host computer
must have several IONA-specific environment variables set. These variables
can be configured during installation, or later using the artix env script, or
configured manually.

The Artix installation process creates a script named artix_env, which
captures the information required to set your host's environment variables.
Running this script configures your system to use Artix. The script is located
in the Artix bin directory:

IT PRODUCT DIR\artix\Version\bin\artix env

Command-line arguments
The artix_env script takes the following optional command-line arguments:

Table 1: Options to artix_env Script

Option Description

-compiler vc71l On Windows, enables support for Microsoft
Visual C++ version 7.1 (Visual Studio .NET
2003). By default, Artix is enabled with
support for Microsoft Visual C+ + version
6.0.

Table 1:

Setting your Artix Environment

Options to artix_env Script

Option

Description

—“preserve

e

Preserves the settings of any environment
variables that have already been set. When
this argument is specified, artix_env does
not overwrite the values of variables that are
already set. This option applies to the
following environment variables:

IT PRODUCT DIR
IT LICENSE FILE

IT CONFIG DIR

IT CONFIG DOMAINS DIR

IT DOMAIN NAME

IT ART ADMIN PATH

IT IDL CONFIG FILE

CLASSPATH

PATH

LIBPATH (AIX)

LD LIBRARY PATH (Solaris, Linux)
LD PRELOAD (Linux)

SHLIB_PATH (HP-UX)

For more detailed information, see “Artix
Environment Variables” on page 20.
Note: Before using the -preserve option,

always ensure that the existing environment
variable values are set correctly.

-verbose

artix_env outputs an audit trail of all its
actions to stdout.

19

CHAPTER 1 | Getting Started

Artix Environment Variables

Overview This section describes the following environment variables in more detail:
® JAVA HOME
® IT PRODUCT DIR
® IT LICENSE FILE
® IT CONFIG DIR
® IT CONFIG DOMAINS DIR
® IT DOMAIN NAME
® IT IDL CONFIG FILE
® IT ART ADMIN PATH

b PATH

Note: You do not have to manually set your environment variables. You
can configure them during installation, or set them later by running the
provided artix env Script.

The environment variables are explained in Table 2:

Table 2: Artix Environment Variables

Variable Description

JAVA HOME The directory path to your system’s JDK is
specified with the system environment
variable gava HoMe. This must be set to use
the Artix Designer GUI.

This defaults to the JVM installed with Artix
(zT_proODUCT DIR\jre). The Artix installer also

enables you to specify a previously installed
JVM.

20

Artix Environment Variables

Table 2: Artix Environment Variables

Variable

Description

IT PRODUCT DIR

IT PRODUCT DIR points to the top level of your
IONA product installation. For example, on
Windows, if you install Artix into the
C:\Program Files\IONA directory,

IT PRODUCT DIR should be set to that
directory.

Note: If you have other IONA products
installed and you choose not to install them
into the same directory tree, you must reset
IT _PRODUCT DIR each time you switch IONA
products.

You can override this variable using the
-BUSproduct_dir command-line parameter
when running Artix applications.

IT LICENSE FILE

IT LICENSE FILE Specifies the location of your
Artix license file. The default value is

IT PRODUCT DIR\etc\licenses.txt.

You can override this variable using the
-BUSlicense file command-line parameter
when running Artix applications.

IT CONFIG DIR

IT CONFIG_DIR specifies the root configuration
directory. The default root configuration
directory on UNIX is /etc/opt/iona, and

IT PRODUCT DIR\artix\Version\etc On
Windows.

You can override this variable using the
-BUSconfig dir command-line parameter
when running Artix applications.

21

CHAPTER 1 | Getting Started

22

Table 2: Artix Environment Variables

Variable

Description

IT CONFIG DOMAINS DIR

IT CONFIG DOMAINS DIR Specifies the directory
where Artix searches for its configuration files.
The configuration domain’s directory defaults

to IT CONFIG DIR\domains.

You can override it using the
-BUSconfig domains dir command-line
parameter when running Artix applications.

IT DOMAIN NAME

IT DOMAIN NAME specifies the name of the
configuration domain used by Artix to locate
its configuration. This variable also specifies
the name of the file in which the configuration
is stored. For example, the artix domain is
stored in IT CONFIG DIR\domains\artix.cfg.

You can override this variable with the

-BUSdomain_name command-line parameter
when running Artix applications.

IT IDL CONFIG FILE

IT IDL CONFIG FILE specifies the
configuration used by the Artix IDL compiler. If
this variable is not set, you will be unable to
run the IDL to WSDL tools provided with Artix.
This variable is required for an Artix
Devopment installation.The default location is:

IT PRODUCT DIR\artix\Version\etc\idl.cfg

Note: Do not modify the default IDL
configuration file.

IT ART ADMIN PATH

IT ART ADMIN PATH specifies the location of
an internal configuration script used by
administration tools. Defaults to

IT CONFIG DIR\admin.

Table 2:

Artix Environment Variables

Artix Environment Variables

Variable

Description

PATH

The Artix bin directories are prepended on the
paTH to ensure that the proper libraries,
configuration files, and utility programs (for
example, the IDL compiler) are used. These
settings avoid problems that might otherwise
occur if Orbix and/or Tuxedo (both include IDL
compilers and CORBA class libraries) are
installed on the same host computer.

The default Artix bin directory is:
UNIX

$IT PRODUCT DIR/artix/Version/bin
Windows

$IT PRODUCT DIR%\artix\Version\bin
$IT PRODUCT DIR%\bin

23

CHAPTER 1 | Getting Started

Customizing your Environment Script

Overview The artix_env script sets the Artix environment variables using values
obtained from the Artix installer and from the script's command-line options.
The script checks each one of these settings in sequence, and updates
them, where appropriate.

The artix_env script is designed to suit most needs. However, if you want
to customize it for your own purposes, please note the following points in
this section.

Before you begin You can only run the artix_env script once in any console session. If you
run this script a second time, it exits without completing. This prevents your
environment from becoming bloated with duplicate information (for
example, on your PATH and CLASSPATH).

In addition, if you introduce any errors when customizing the artix env
script, it also exits without completing. This feature is controlled by the

IT ARTIXENV variable, which is local to the artix_env script. IT ARTIXENV is
set to true the first time you run the script in a console; this causes the
script to exit when run again.

Environment variables The following applies to the environment variables set by the artix env
script:
¢ The gava nOME environment variable defaults to the value obtained
from the Artix installer. If you do not manually set this variable before
running artix_env, it takes its value from the installer. The default
location for the JRE supplied with Artix is IT PRODUCT DIR\jre.
® The following environment variables are all set with default values
relative to IT PRODUCT DIR:
¢ JAVA HOME
¢ IT CONFIG FILE
¢ IT IDL CONFIG FILE
¢ IT CONFIG DIR
¢ IT CONFIG DOMAINS DIR
¢ IT LICENSE FILE
¢ IT ART ADMIN PATH

24

Customizing your Environment Script

If you do not set these variables manually, artix_env sets them with
default values based on 1T_prODUCT DIR. For example, the default for
IT CONFIG DIR On Windows is IT PRODUCT DIR\etc.

The 1T _IDL CONFIG FILE environment variable is a required only for an
Artix Development installation. All other environment variables are
required for both Development and Runtime installations.

Before artix env sets each environment variable, it checks if the
-preserve command-line option was supplied when the script was
run. This ensures that your preset values are not overwritten. Before
using the -preserve option, always check the existing values for these
variables are set correctly.

25

CHAPTER 1 | Getting Started

26

In this chapter

CHAPTER 2

Artix Configuration

This chapter introduces the main concepts and components
in the Artix runtime configuration (for example, configuration
domains, scopes, variables, and data types). It also explains
how to use Artix configuration files and the command line to
manage your applications.

This chapter includes the following sections:

Artix Configuration Concepts page 28
Configuration Data Types page 32
Artix Configuration Files page 33
Command-Line Configuration page 37

27

CHAPTER 2 | Artix Configuration

Artix Configuration Concepts

Overview

Configuration domains

Configuration scopes

28

Artix is built upon IONA's Adaptive Runtime architecture (ART). Runtime
behaviors are established through common and application-specific
configuration settings that are applied during application startup. As a
result, the same application code can be run, and can exhibit different
capabilities, in different configuration environments. This section includes
the following:

® Configuration domains.

® Configuration scopes.

® Specifying configuration scopes.

® Configuration namespaces.

® Configuration variables.

An Artix configuration domain is a collection of configuration information in
an Artix runtime environment. This information consists of configuration
variables and their values. A default Artix configuration is provided when
Artix is installed. The default Artix configuration domain file has the
following location:

Windows $IT PRODUCT DIR%\artix\Version\etc\domains\artix.cfg

UNIX $IT PRODUCT DIR/artix/Version/etc/domains/artix.cfg

The contents of this file can be modified to affect aspects of Artix behavior
(for example, logging or routing).

An Artix configuration domain is subdivided into configuration scopes.
These are typically organized into a hierarchy of scopes, whose
fully-qualified names map directly to bus names. By organizing
configuration variables into various scopes, you can provide different
settings for individual services, or common settings for groups of services.

Artix Configuration Concepts

Local configuration scopes

Configuration scopes apply to a subset of services or to a specific service in
an environment. For example, the Artix demo configuration scope includes
example local configuration scopes for demo applications.

Application-specific configuration variables either override default values
assigned to common configuration variables, or establish new configuration
variables. Configuration scopes are localized through a name tag and
delimited by a set of curly braces terminated with a semicolon, for example,
scopeNameTag {..};

A configuration scope may include nested configuration scopes.
Configuration variables set within nested configuration scopes take
precedence over values set in enclosing configuration scopes.

In the artix.cfq file, there are several predefined configuration scopes. For
example, the demo configuration scope includes nested configuration scopes
for some of the demo programs included with the product.

Example 1: Demo Configuration Scope

demo
{
fml plugin
{
orb plugins = ["local log stream", "iiop profile",
"giop", "iiop", "soap", "http", "G2", "tunnel",
"mq", "ws_ orb", "fml"];
}i
telco
{
orb plugins = ["local log stream", "iiop profile",

"giop”, "iiop”, "G2", "tunnel"];
plugins:tunnel:iiop:port = "55002";

poa:MyTunnel:direct persistent = "true";
poa:MyTunnel:well known address = "plugins:tunnel";
server
{
orb plugins = ["local log stream", "iiop profile",
"giop", "iiop”, "ots", "soap", "http", "G2:,
"tunnel”];
plugins:tunnel:poa name = "MyTunnel";

}i
bi

29

CHAPTER 2 | Artix Configuration

Specifying configuration scopes

30

Example 1: Demo Configuration Scope

tibrv
{
orb plugins = ["local log stream", "iiop profile",
"giOp", lliiOpH, "soap", llhttpll, "tibrv"];
event log:filters = ["*=FATAL+ERROR"];

}i
};

Note: The orb plugins list is redefined within each configuration scope.

To make an Artix process run under a particular configuration scope, you
specify that scope using the -Busname parameter. Configuration scope
names are specified using the following format

scope. subscope

For example, the scope for the telco server demo shown in Example 1 is
specified as demo.telco.server. During process initialization, Artix
searches for a configuration scope with the same name as the -Busname
parameter.

There are two ways of supplying the -Busname parameter to an Artix
process:

® Pass the argument on the command line.
® Specify the -BUSname as the third parameter to 1T Bus::init ().

For example, to start an Artix process using the configuration specified in the
demo. tibrv SCOPE, you can start the process using the following syntax:

processName [application parameters] -BUSname demo.tibrv
Alternately, you can use the following code to initialize the Artix bus:

IT Bus::init (argc, argv, “demo.tibrv”);

Configuration namespaces

Configuration variables

Further information

Artix Configuration Concepts

If a corresponding scope is not located, the process starts under the highest
level scope that matches the specified scope name. If there are no scopes
that correspond to the -Busname parameter, the Artix process runs under the
default global scope. For example, if the nested tibrv scope does not exist,
the Artix process uses the configuration specified in the demo scope; if the
demo scope does not exist, the process runs under the default global scope.

Most configuration variables are organized within namespaces, which group
related variables. Namespaces can be nested, and are delimited by colons
(:). For example, configuration variables that control the behavior of a
plug-in begin with plugins: followed by the name of the plug-in for which
the variable is being set. For example, to specify the port on which the Artix
standalone service starts, set the following variable:

plugins:artix service:iiop:port

To set the location of the routing plug-in’s contract, set the following
variable:

plugins:routing:wsdl url

Configuration data is stored in variables that are defined within each
namespace. In some instances, variables in different namespaces share the
same variable names.

Variables can also be reset several times within successive layers of a
configuration scope. Configuration variables set in narrower configuration
scopes override variable settings in wider scopes. For example, a
company.operations.orb plugins variable would override a
company.orb plugins variable. Plug-ins specified at the company scope
would apply to all processes in that scope, except those processes that
belong specifically to the company.operations scope and its child scopes.

For detailed information on Artix configuration namespaces and variables,
see the Artix Configuration Reference.

31

../config_ref/index.htm

CHAPTER 2 | Artix Configuration

Configuration Data Types

Overview

Primitive types

Constructed types

32

Each Artix configuration variable has an associated data type that
determines the variable’s value.

Data types can be categorized as follows:
® Primitive types
® Constructed types

Artix supports the following three primitive types:

® boolean

® double

hd long

Artix supports two constructed types: string and configList (a sequence
of strings).

® |n an Artix configuration file, the string character set is ASCII.

The configList type is simply a sequence of string types. For
example:

orb plugins = ["local log stream", "iiop profile",
"giOp" , "iiop"] ;

Artix Configuration Files

Artix Configuration Files

Overview

Default configuration file

Importing configuration settings

This section explains how to use Artix configuration files to manage
applications in your environment. It includes the following:

® “Default configuration file".

® “Importing configuration settings”.

® “Working with multiple installations”.

® “Using symbols as configuration file parameters”.

The Artix configuration domain file contains all the configuration settings for
the domain. The default configuration domain file is found in the following
location:

Windows $IT PRODUCT DIR%$\artix\Version\etc\domains\artix.cfg

UNIX $IT PRODUCT DIR/artix/Version/etc/domains/artix.cfg

You can edit the settings in an Artix configuration file to modify different
aspects of Artix behavior (for example, routing, or levels of logging).

You can manually create new Artix configuration domain files to
compartmentalize your applications. These new configuration domain files
can import information from other configuration domains using an include
statement in your configuration file.

This provides a convenient way of compartmentalizing your
application-specific configuration from the global ART configuration
information that is contained in the default configuration domain file. It also
means that you can easily revert to the default settings in the default Artix
configuration file. Using separate application-specific configuration files is
the recommended way of working with Artix configuration.

33

CHAPTER 2 | Artix Configuration

Working with multiple
installations

34

Example 2 shows an include statement that imports the default
configuration file. The include statement is typically the first line the
configuration file.

Example 2: Configuration file include statement
include "../../../../../etc/domains/artix.cfg";
my app config {

}

For complete working examples of Artix applications that use this import
mechanism, see the configuration files provided with Artix demos. These
demo applications are available from the following directory:

InstallDir\artix\Version\demos

If you are using multiple installations or versions of Artix, you can use your

configuration files to help manage your applications as follows:

1. Install each version of Artix into a different directory.

2. Install your applications into their own directory.

3. Copy the artix.cfq file from whichever Artix release you want to use
into another directory (for example, an application directory).

4. In your application’s local configuration file, include the artix.cfg file
from your copy location.

This enables you to switch between Artix versions by copying the

corresponding artix.cfg file into a common location. This avoids having to

update the directory information in your configuration file whenever you
want to switch between Artix versions.

Using symbols as configuration
file parameters

Artix Configuration Files

You can define arbitrary symbols for use in Artix configuration files, for
example:

SERVER LOG = "my server log";

These symbols can then be reused as parameters in configuration settings,
for example:

plugins:local log stream:filename = SERVER LOG;

You can use configuration symbols to customize your file depending on the
environment. This enables you to use the same basic configuration file in
different environments (for example, development, test, and production).

Using configuration symbols in a string

You can use symbols within a string using a syntax of % {symBoL name}. For
example, if you define the following symbol:

LOG_LEVEL = "FATAL+ERROR+WARNING+INFO MED+INFO HI";
This can be used within a string as follows:

event log:filters = ["*=%{LOG_LEVEL}"];

You can also combine multiple symbols within a string as follows:
plugins:local log stream:filename = "${APP NAME}-%{CLIENT LOG}";

Configuration example
The configuration file in Example 3 contains some user-defined symbols:

Example 3: Defining Configuration Symbols
#mydomain.cfg

INSTALL CFG = "../../artix.cfg";

CLIENT LOG = "my client.log";

SERVER LOG = "my server.log";

APP NAME = "myapp";

LOG_LEVEL = "FATAL+ERROR+WARNING+INFO MED+INFO HI";

include "template.cfg";

35

CHAPTER 2 | Artix Configuration

The configuration file in Example 4 uses the predefined symbols in
configuration variable settings:

Example 4: Using Configuration Symbols
#template.cfg
include INSTALL CFG

myapps {
orb plugins = ["local log stream", "soap", "http"];

server {
#Simple user-defined symbol.
plugins:local log stream:filename = SERVER LOG;

#Using a symbol within a string.
event log:filters = ["*=%{LOG LEVEL}"];

client {
#Combining symbols within a string.
plugins:local log stream:filename = "%{APP NAME}-%{CLIENT LOG}";
bi
}i

This example shows a user-defined symbol in an include statement. It
shows a simple example of using a symbol in an configuration setting, and
more complex examples of using symbols in strings.

For details of using configuration symbols on the command line, see
“Command-Line Configuration” on page 37.

36

Command-Line Configuration

Command-Line Configuration

Overview

Setting configuration variables

Setting configuration scopes

This section explains how to configure the following on the command line:
® Configuration variables

® Configuration scopes

® User-defined configuration symbols

® Environment variables

® Location of WSDL and references

Artix enables you to override configuration variables at runtime by using
arguments on the command line. These arguments are then passed to the
Artix IT Bus::init () call. Setting configuration variables on the command
line takes precedence over variables in a configuration file.

Command-line arguments for configuration variables take the following
format:

-BUSCONFIG VariableName Value
For example:

client -BUSCONFIG plugins:local log stream:filename client.log
-BUSCONFIG orb plugins ["local log stream", "soap","http"]
-BUSCONFIG event log:filters ["*=*"]

For detailed information on Artix configuration variable settings, see the Artix
Configuration Reference.

You can specify configuration scopes when starting an application on the
command line using the -Busname argument.

For example, to start a process using the configuration specified in the
demo .myapp Scope, you would start the process with the following syntax:

ProcessName [application parameters] -BUSname demo.myapp

For more details, see “Specifying configuration scopes” on page 30.

37

../config_ref/index.htm
../config_ref/index.htm

CHAPTER 2 | Artix Configuration

Setting configuration symbols

Setting environment variables

Setting locations of WSDL and
references

38

You can also override user-defined configuration symbols on the command
line. Setting configuration symbols on the command line takes precedence
over symbols in a configuration file.

For example, you can override the log file name in Example 3 using
command-line arguments as follows:

client -BUSCONFIG CLIENT LOG test2.log

This successfully creates a log file named test2.1logdate. For more details,
see “Using symbols as configuration file parameters” on page 35.

You can use command-line arguments to pass the value of environment
variables to configuration files.

For example, you can specify the directory where Artix searches for its
configuration files using the -BUSconfig domains dir argument. For more
details on Artix environment variables, see Chapter 1.

You can specify the location of WSDL contracts and Artix references using
the following command-line arguments:

-BUSservice contract URL
-BUSservice contract dir Directory
-BUSinitial reference url

For example:

./server -BUSservice contract ../../etc/hello.wsdl

For more details, see Chapter 12.

In this chapter

CHAPTER 3

Artix Logging

This chapter describes how to configure Artix logging. It shows
how to configure logging for specific Artix subsystems and
services, how to control dynamic logging on the command line
and Artix message snoop. It also explains the Artix support for
Java log4j and the Simple Network Management Protocol.

This chapter includes the following sections:

Configuring Artix Logging page 40
Logging for Subsystems and Services page 47
Dynamic Artix Logging page 56
Configuring Message Snoop page 60
Configuring Log4J Logging page 62
Configuring SNMP Logging page 65

39

CHAPTER 3 | Artix Logging

Configuring Artix Logging

Overview

Configuring logging levels

40

Logging in Artix is controlled by the event log:filters configuration
variable, and by the log stream plug-ins (for example, local log stream
and xmlfile log stream). This section explains the following:

® “Configuring logging levels”.

® “Logging severity levels”.

® “Configuring logging output”.

® “Using a rolling log file".

® “Buffering the output stream”.

® “Configuring HTTP trace logging”

You can set the event log:filters configuration variable to provide a wide
range of logging levels. The event log:filters variable can be set in your
Artix configuration file:

InstallDir\artix\Version\etc\domains\artix.cfg.

Displaying errors
The default event log:filters setting displays errors only:

event log:filters = ["*=FATAL+ERROR"];

Displaying warnings
The following setting displays errors and warnings only:

event log:filters = ["*=FATAL+ERROR+WARNING"];

Displaying request/reply messages
Adding 1nrFo MED causes all request/reply messages to be logged (for all
transport buffers):

event log:filters = ["*=FATAL+ERROR+WARNING+INFO MED"];

Logging severity levels

Configuring Artix Logging

Displaying trace output
The following setting displays typical trace statement output (without the
raw transport buffers):

event log:filters = ["*=FATAL+ERROR+WARNING+INFO HI"];

Displaying all logging
The following setting displays all logging:

event log:filters = ["*=x"];

The default configuration settings enable logging of only serious errors and
warnings. For more exhaustive information, select a different filter list at the
default scope, or include a more expansive event log:filters Setting in
your configuration scope.

Artix supports the following levels of log message severity:
® |nformation

® Warning

® Error

® Fatal error

Information

Information messages report significant non-error events. These include
server startup or shutdown, object creation or deletion, and details of
administrative actions.

Information messages provide a history of events that can be valuable in
diagnosing problems. Information messages can be set to low, medium, or
high verbosity.

Warning

Warning messages are generated when Artix encounters an anomalous
condition, but can ignore it and continue functioning. For example,
encountering an invalid parameter, and ignoring it in favor of a default value.

41

CHAPTER 3 | Artix Logging

42

Error

Error messages are generated when Artix encounters an error. Artix might be
able to recover from the error, but might be forced to abandon the current
task. For example, an error message might be generated if there is
insufficient memory to carry out a request.

Fatal error

Fatal error messages are generated when Artix encounters an error from
which it cannot recover. For example, a fatal error message is generated if
Artix cannot find its configuration file.

Table 3 shows the syntax used by the event_log:filters variable to specify
Artix logging severity levels.

Table 3: Artix Logging Severity Levels

Severity Level Description
INFO_LO[W] Low verbosity informational messages.
INFO MED[IUM] Medium verbosity informational messages.
INFO_HI [GH] High verbosity informational messages.
INFO[ALL] All informational messages.

WARN [ING] Warning messages.
ERR[OR] Error messages.
FATAL[ERROR] Fatal error messages.
* All messages.

Configuring logging output

Configuring Artix Logging

In addition to setting the event log filter, you must ensure that a log stream
plug-in is set in your artix.cfg file. These include the local log stream,
which sends logging to a text file, and the xm1file log stream, which
directs logging to an XML file. The xmlfile log stream is set by default.

Using text log files

To configure the 1ocal log stream, set the following variables in your
configuration file:

//Ensure these plug-ins exist in your orb plugins list
orb plugins = ["local log stream", ...];

//Optional text filename
plugins:local log stream:filename = "/var/mylocal.log";

If you do not specify a text log file name, logging is sent to stdout.

Using XML log files
To configure the xmlfile_log_stream, set the following variables in your
configuration file:

//Ensure this plug-in is in your orb plugins list
orb plugins = ["xmlfile log stream", ...];

// Optional filename; can be qualified.
plugins:xmlfile log stream:filename = "artix logfile.xml";

// Optional process ID added to filename (default is false).
plugins:xmlfile log stream:use pid = "false";

You must ensure that your application can detect the configuration settings
for the log stream plug-ins. You can either set them at the global scope, or
configure a unique scope for use by your application, for example:

IT Bus::init(argc, argv, "demo.myscope");
This enables you to place the necessary configuration in the demo.myscope
scope.

Note: The xmlfile log stream plug-in is included in the default

orb plugins list, but not in the orb plugins lists in some demo
configuration scopes. To enable logging to an XML file for the applications
that you develop, include this plug-in your orb plugins list.

43

CHAPTER 3 | Artix Logging

Using a rolling log file

44

By default, a logging plug-in creates a new log file each day to prevent the
log file from growing indefinitely. In this model, the log stream adds the
current date to the configured filename. This produces a complete filename,
for example:

/var/adm/my artix 1og.01312006

A new log file begins with the first event of the day, and ends each day at
23:59:59.

Specifying the date format

You can configure the format of the date in the rolling log file, using the
following configuration variables:

® plugins:local log stream:filename date format

d plugins:xmlfile log stream:filename date format

The specified date must conform to the format rules of the ANSI C
strftime () function. For example, for a text log file, use the following

settings:

plugins:local log stream:rolling file="true";
plugins:local log stream:filename="my log";
plugins:local log stream:filename date format=" %Y %m %d";

On the 31st January 2006, this results in a log file named
my log 2006 01 31.

The equivalent settings for an XML log file are:
plugins:xmlfile log stream:rolling file="true";

plugins:xmlfile log stream:filename="my log";
plugins:xmlfile log stream:filename date format=" %Y %m %d";

Buffering the output stream

Configuring Artix Logging

Disabling rolling log files

To disable rolling file behavior for a text log file, set the following variable to
false:

plugins:local log stream:rolling file = "false";

To disable rolling file behavior for an XML log file, set the following variable
to false:

plugins:xmlfile log stream:rolling file = "false";

You can also set the output stream to a buffer before it writes to a local log
file. To specify this behavior, use either of the following variables:
plugins:local log stream:buffer file
plugins:xmlfile log stream:buffer file

When set to true, by default, the buffer is output to a file every 1000
milliseconds when there are more than 100 messages logged. This log
interval and number of log elements can also be configured.

Note: To ensure that the log buffer is sent to the log file, you must always
shutdown your applications correctly.

For example, the following configuration writes the log output to a log file
every 400 milliseconds if there are more than 20 log messages in the buffer.

Using text log files

plugins:local log stream:filename = "/var/adm/artix.log";
plugins:local log stream:buffer file = "true";
plugins:local log stream:milliseconds to log = "400";
plugins:local log stream:log elements = "20";

Using XML log files

plugins:xml log stream:filename = "/var/adm/artix.xml";
plugins:xml log stream:buffer file = "true";
plugins:xml log stream:milliseconds to log = "400";
plugins:xml log stream:log elements = "20";

45

CHAPTER 3 | Artix Logging

Configuring HTTP trace logging HTTP trace logging shows the full HTTP buffers (headers and body) as they
go to and from the wire. This feature is disabled by default. You can enable
HTTP-specific trace logging using the following setting:

policies:http:trace requests:enabled="true";

You must also have log filtering set as follows to pick up the HTTP
additional messages, and then resend the logs:

event log:filters = ["*=*"];

For example, you could enable HTTP trace logging to verify that basic
authentication headers are written to the wire correctly.

Similarly, to enable HTTPS-specific trace logging, use the following setting:

policies:https:trace requests:enabled="true";

46

Logging for Subsystems and Services

Logging for Subsystems and Services

Overview

Artix logging subsystems

You can use the event log:filters configuration variable to set
fine-grained logging for specified Artix logging subsystems. For example, you
can set logging for the Artix core, specific transports, bindings, or services.
This section shows the Artix-specific logging subsystems and those for the
underlying Adaptive Runtime (ART) core. It also explains the syntax, and
gives examples setting logging subsystems.

Artix logging subsystems are organized into a hierarchical tree, with the
IT BUS subsystem at the root. Example logging subsystems include:

IT BUS.CORE
IT BUS.TRANSPORT.HTTP
IT BUS.BINDING.SOAP

Table 4 shows a list of available Artix logging subsystems.

Table 4: Artix Logging Subsystems

Subsystem Description
IT_BUS Artix bus
IT_BUS.BINDING All bindings
IT BUS.BINDING.COLOC Collocated binding
IT BUS.BINDING.CORBA CORBA binding
IT BUS.BINDING.CORBA.CONTEXT CORBA context
IT BUS.BINDING.FIXED Fixed binding
IT_BUS.BINDING.HTTP HTTP binding
IT BUS.BINDING.SOAP SOAP binding
IT BUS.BINDING.SOAP12 SOAP 1.2 binding
IT_BUS.BINDING.SOAP COMMON Common SOAP binding

47

CHAPTER 3 | Artix Logging

Table 4: Artix Logging Subsystems
Subsystem Description
IT BUS.BINDING.TAGGED Tagged binding
IT BUS.CORE Artix core
IT BUS.CORE.CONFIG Artix core configuration
IT BUS.CORE.CONTEXT Artix core contexts
IT_BUS.CORE.INITIAL REFERENCE Artix initial references
IT BUS.CORE.PLUGIN Artix plug-ins
IT BUS.CORE.RESOURCE RESOLVER Artix resource resolver
IT BUS.FOUNDATION.AFC Artix Foundation Classes (Artix-specific data
- type extensions)
IT BUS.FOUNDATION.CONTEXT LIBRARY Artix Foundation context library
IT BUS.I18N.INTERCEPTOR Internationalization
IT BUS.INTEGRATION.AP NANO AGENT AmberPoint SOA management agent
IT BUS.INTEGRATION.CA WSDM OBSERVER CA Web Services Distributed Management
N - observer
IT_BUS.JNI.GENERIC PLUGIN Java generic service
IT BUS.JNI.JBUS Java Message Service
IT BUS.JNI.JBUS.TRANSACTION JMS transactions
IT BUS.JNI.JNI UTIL Java utilities
IT BUS.JNI.TRANSACTION Java transactions
IT BUS.JVM MANAGER JVM manager
IT BUS.LOGGING Artix logging
IT BUS.LOGGING.LOG4J Log4J logging
IT BUS.LOGGING.RESPONSE TIME Response time logging

48

Logging for Subsystems and Services

Table 4: Artix Logging Subsystems

Subsystem Description

IT_BUS.LOGGING.SNMP Simple Network Management Protocol
logging
IT BUS.MANAGEMENT Artix management
IT BUS.MESSAGING PORT Artix messaging port
IT BUS.SERVICE All Artix services.
IT BUS.SERVICE.ACTIVATOR.REGISTRY Artix service activator registry
IT_BUS.SERVICE.CHAIN Artix chain service
IT_BUS.SERVICE.CONTAINER Artix container service
IT BUS.SERVICE.DB Artix database wrapper (server-side high
availability based on Berkeley DB)

IT BUS.SERVICE.DB.ENV Artix database environment
IT BUS.SERVICE.DB.REPLICA.IMPL Artix database replication messages
IT BUS.SERVICE.DB.REPLICA.MGR Artix database replication manager
IT BUS.SERVICE.DB.REPLICA.MONITOR Artix database replication monitor
IT BUS.SERVICE.DB.REPLICA.SYNC Artix database synchronization manager
IT_BUS.SERVICE.LOCATOR Artix locator service
IT BUS.SERVICE.PEER MANAGER Artix peer manager service
IT_BUS.SERVICE.ROUTING Artix router
IT BUS.SERVICE.ROUTING.XPATH XPath routing expressions
IT BUS.SERVICE.SECURITY Artix security service
IT_BUS.SERVICE.SECURITY.CERT VALIDATOR Security certificate validator
IT BUS.SERVICE.SECURITY.LOGIN SERVICE.CLIENT Security login client
IT_BUS.SERVICE.SECURITY.LOGIN SERVICE.SERVICE | Security login service
IT BUS.SERVICE.SECURITY.SECURITY INTERCEPTOR Security interceptor

49

CHAPTER 3 | Artix Logging

50

Table 4:

Artix Logging Subsystems

Subsystem

Description

IT BUS.SERVICE.SECURITY.WSS

SOAP Partial Message Protection

IT BUS.SERVICE.SESSION MANAGER

Artix session manager service

IT BUS.SERVICE.WSDL PUBLISH

Artix WSDL publishing service

IT BUS.SERVICE.XSLT

Artix transformer service

IT_BUS.TRANSACTIONS

Transactions

IT BUS.TRANSACTIONS.OTS

CORBA Object Transaction Service
transactions

IT BUS.TRANSACTIONS.WSAT

Web Services Atomic Transactions

IT BUS.TRANSACTIONS.XA

XA transactions

IT BUS.TRANSPORT.HTTP

HTTP transport

IT BUS.TRANSPORT.MQ

MQ transport

IT BUS.TRANSPORT.STUB TRANSPORT

Artix simple stub transport

IT_BUS.TRANSPORT.TIBRV

Tibco Rendezvous transport

IT BUS.TRANSPORT.TUNNELL

Tunnel transport

IT_BUS.TRANSPORT.TUXEDO

Tuxedo transport

IT BUS.VERSION

Artix version

IT BUS.WSRM

Web Services Reliable Messaging

IT BUS.WSRM DB

Web Services Reliable Messaging
persistence

IT BUS.XA SWITCH

XA transactions switch

IT WSRM

Web Services Reliable Messaging

Note: This list may change in future releases.

Logging for Subsystems and Services

ART core logging subsystems Table 4 shows a list of available logging subsystems for the underlying ART

core.

Table 5: ART Core Logging Subsystems

Subsystem

Description

IT ATLI2 IOP

Abstract Transport Layer Interface,
version 2 with Inter-ORB Protocol

IT ATLI2 IP

Abstract Transport Layer Interface 2.0
with Internet Protocol

IT ATLI2 IP TUNNEL

Abstract Transport Layer Interface,
with Internet Tunnel Protocol

IT ATLI TLS

Abstract Transport Layer Interface
with Transport Security Layer

IT COBOL PLI

Artix Mainframe only

IT CODESET

Internationalization

IT _CONNECTION FILTER

Connection filter

IT CORE

ART core

IT CSI

Common Secure Interoperability

IT GSP

CORBA binding security

IT GenericSecurityToolkit

Baltimore and z/OS SystemSLL toolkit

IT GIOP

General Inter-ORB Protocol

IT HTTP

Hypertext Transfer Protocol

IT HTTPS

HTTP with Secure Socket Layer

IT IIOP

Internet Inter-ORB Protocol

IT ITOP TLS

Internet Inter-ORB Protocol with
Transport Layer Security

IT LICENSING

Licensing

IT MESSAGING

Messaging

51

CHAPTER 3 | Artix Logging

Table 5: ART Core Logging Subsystems

Subsystem Description
IT_MGMT LOGGING Management service
IT OBJECT KEY REPLACER Object key replacer
IT OTS Object Transaction Layer
IT OTS _LITE Object Transaction Layer Lite
IT POA Portable Object Adaptor
IT_POA LOCATOR Portable Object Adaptor with locator
IT_REQUEST LOGGER Request logger
IT SCHANNEL Schannel security
IT SECURITY Security
IT TLS Transport Layer Security
IT_WORKQUEUE Multi-threading
IT XA XA transactions
MESSAGE_SNOOP Message snooping.

Note: This list may change in future releases.

Subsystem filter syntax The event log:filters variable takes a list of filters, where each filter sets
logging for a specified subsystem using the following format:

Subsystem=SeverityLevel [+SeverityLevel]...

Subsystem is the name of the Artix subsystem that reports the messages;

while severityLevel represents the severity levels that are logged by that
subsystem. For example, the following filter specifies that only errors and

fatal errors for the HTTP transport should be reported:

IT BUS.TRANSPORT.HTTP=ERR+FATAL

52

Setting the Artix bus pre-filter

Setting logging for specific
subsystems

Logging for Subsystems and Services

In a configuration file, event _log:filters is set as follows:
event log:filters=["LogFilter"[,"LogFilter"]...]

The following entry in a configuration file explicitly sets severity levels for a
list of subsystem filters:

event log:filters=["IT BUS=FATAL+ERROR",
"IT BUS.BINDING.CORBA=WARN+FATAL+ERROR"];

The Artix bus pre-filter provides filtering of log messages that are sent to the
EventLog before they are output to the Logstream. This enables you to
minimize the time spent generating log messages that will be ignored. For
example:

event log:filters:bus:pre filter = "WARN+ERROR+FATAL";

event log:filters = ["IT BUS=FATAL+ERROR", "IT BUS.BINDING=*"];

In this example, only WARNING, ERROR and FATAL priority log messages are
sent to the EventLog. This means that no processing time is wasted
generating strings for InFo log messages. The EventLog then only sends
FATAL and ERROR log messages to the LogStream for the 1T BUs subsystem.

Note: event log:filters:bus:pre filter defaults to » (all messages).
Setting this variable to WwARN+ERROR+FATAL improves performance
significantly.

You can set logging filters for specific Artix subsystems. A subsystem with
no configured filter value implicitly inherits the value of its parent. The
default value at the root of the tree ensures that each node has an implicit
filter value. For example:

event log:filters = ["IT BUS=FATAL+ERROR",
"IT_BUS.BINDING.CORBA=WARN+FATAL+ERROR"];

This means that all subsystems under 1T BUS have a filter of FATAL+ERROR,
except for IT BUS.BINDING.CORBA Which has WARN+FATAL+ERROR.

53

CHAPTER 3 | Artix Logging

Setting multiple subsystems with
a single filter

Configuring service-based logging

54

Using the 1T _BUS subsystem means you can adjust the logging for Artix
subsytems with a single filter. For example, you can turn off logging for the
tunnel transport (IT BUS.TRANSPORT.TUNNEL=FATAL) and/or turn up logging
for the HTTP transport (IT_BUS.TRANSPORT.HTTP=INFO LOW+...), as Show in
the following example:

event log:filters= ["IT BUS=FATAL+ERROR",
"IT BUS.TRANSPORT.TUNNEL=FATAL",
"IT BUS.TRANSPORT.HTTP=INFO LOW+INFO HI+WARN"];

You can use Artix service subsystems to log for Artix services, such as the
locator, and also for services that you have developed. This can be useful
when you are running many services, and need to filter services that are
particularly noisy. Using service-based logging involves some performance
overheads and extra configuration. This feature is disabled by default.

To enable logging for specific services, perform the following steps:

1. Set the following configuration variables:

event log:log service names:active = "true";
event log:log_service names:services = ["ServiceNamel",
"ServiceName2"] ;

2. Set the event log filters as appropriate, for example:

event log:filters = ["IT_BUS=FATAL+ERROR",
"ServiceNamel=WARN+ERROR+FATAL", "ServiceNameZ=ERROR+FATAL",
"ServiceNémeZ.ITﬁBUS.BINDING.CORBA=INFO+WARN+ERROR+FATAL"
1;

In these examples, the service name must be specified in the following
format:

" {NamespaceURI}LocalPart"

For example:

"{http://www.my—-company.com/bus/tests}SOAPHTTPService"

Logging for Subsystems and Services

Setting parameterized configuration

The following example shows setting service-based logging in your
application using the -BUSCONFIG event log:filters parameter:

const char* bus argv[] = {"-BUSname", "my spp logging",

Logging per bus

Programmatic logging
configuration

"-BUSCONFIG event log:filters", "{IT BUS=ERR},

{{http://www.my-company/my app}SOAPHTTPService.IT BUS.BINDING.SOAP=INFO}"

For C++ applications, you can configure logging per bus by specifying your
logging configuration in an application-specific scope. However, you must
also specify logging per bus in your server code, for example:
® Include the
InstallDir/artix/Version/include/it bus/bus_logger.h file.
® Pass a valid bus to the BusLogger (for example, using BusLogger
macros, such as IT INIT BUS LOGGER MEM).

For full details on how to specify that logging statements are sent to a
particular Artix bus, see Developing Advanced Artix Plug-ins in C++.

C++ and Java applications can use a logging API to query, add, or cancel
logging filters for subsystems, as well as adding and removing services from
per-service logging. For example, you can access a C++

IT Bus::Logging::LoggingConfig class by calling

bus->get pdk bus () ->get logging config().

For full details, see Developing Artix Applications in C++ or Developing
Artix Applications in Java

55

http://www.iona.com/support/docs/artix/4.0/plugin_guide/wwhelp/wwhimpl/js/html/wwhelp.htm
../prog_guide/index.htm
../java_pguide/index.htm
../java_pguide/index.htm

CHAPTER 3 | Artix Logging

Dynamic Artix Logging

Overview

Getting logging levels

56

At runtime, you can use it container admin commands to dynamically get
and set logging levels for specific subsystems and services. This section
explains how to use the it container admin -getlogginglevel and
-setlogginglevel options.

The -getlogginglevel option gets the logging level for specified a subsystem
or service. This command has the following syntax:

-getlogginglevel [-subsystem SubSystem] [-service
{Namespace} LocalPart]

Get logging for a specific subsystem
The following example gets the logging level for the CORBA binding only:

it container admin -getlogginglevel -subsystem
IT BUS.BINDING.CORBA

Get logging for multiple subsystems

The following example uses a wildcard to get the logging levels for all
subsystems:

it container admin -getlogginglevel -subsystem *

This outputs a list of subsystems that have been explicitly set in a
configuration file or by -setlogginglevel.

For example, if IT BUS.BINDING=LOG INFO is output, this means that

IT BUS.BINDING is set to LoG_InFo, and that no child subsystems of

IT BUS.BINDING are explicitly set. In this case, all child subsystems inherit
LoG_INrFO from their parent.

Dynamic Artix Logging

Get logging for a specific service

The following example gets the logging level for a locator service that is
running in a container:

it container admin -getlogginglevel -subsystem
IT BUS.BINDING.SOAP -service
{http://ws.iona.com/locator}LocatorService

Setting logging levels The -setlogginglevel option sets the logging level for a specified
subsystem. This command has the following syntax:

-setlogginglevel -subsystem SubSystem -level Level [-propagate]
[-service {Namespace}Localpart]

The possible logging levels are:

LOG FATAL
LOG ERROR
LOG_WARN

LOG INFO HIGH
LOG INFO MED
LOG_INFO LOW
LOG SILENT
LOG INHERIT

Set logging for a specific subsystem
The following example sets the logging level for the HTTP transport only:

it container admin -getlogginglevel -subsystem
IT BUS.TRANSPORT.HTTP -level LOG WARN

Set logging for multiple subsystems

You can set logging for multiple subsystems by using the -propagate
option. The following example sets the logging level for all transports (IIOP,
HTTP, and so on):

it container admin -setlogginglevel -subsystem IT BUS.TRANSPORT
-level LOG WARN -propagate true

57

CHAPTER 3 | Artix Logging

58

Override child subsystem levels

You can use the -propagate option to override child subsystem levels that
have been set previously. For example, take the simple case where 1T BUs
is set to Loc_1NFO, and no other subsystems are set. If the 1T BUs level is
changed, it is automatically propagated to all 1T _Bus children.

However, take the case where IT BUS.CORE is set to LoG_warN, and

IT BUS.TRANSPORT is Set to Loc_INFO Low. Setting IT BUS to LOG_ERROR
affects 1T _Bus and all its children, except for 1T_BUS.CORE and

IT BUS.TRANSPORT. In this case, you can use -propagate true to override
the child subsystem levels set previously. For example:

it container admin -setlogginglevel -subsystem IT BUS -level
LOG_ERROR -propagate true

Set logging for services

The following example sets the logging level for the SOAP binding when
used with the locator service:

it container admin -setlogginglevel -subsystem
IT BUS.BINDING.SOAP -level LOG INFO HIGH -service
{http://ws.iona.com/locator}LocatorService

The -propagate option can also be used when setting logging for service.
For example, if you have service-specific logging enabled for

IT BUS.BINDING and IT BUS.BINDING.SOAP, setting a service-specific log

level for IT BUS.BINDING With -propagate true also sets the service level
for IT BUS.BINDING.SOAP.

it container admin -setlogginglevel -subsystem IT BUS.BINDING
-level LOG INFO LOW -propagate true -service
{http://ws.iona.com/locator}LocatorService

Inheriting a logging level

Silent logging

Further information

Dynamic Artix Logging

You can use the Loc_INHERIT level to cancel the current logging level and
inherit from the parent subsystem instead.

For example, if the IT Bus.coRrE subsystem is set to Loc_INFO Low, and its
parent (IT BUS) is set t0 LOG_ERROR, Setting IT BUS.CORE t0 LOG INHERIT
results in IT BUs.CORE logging at LoG_ERROR. This is shown in the following
example:

it container admin -setlogginglevel -subsystem IT BUS.CORE
-level LOG INHERIT

By default, all subsystems are effectively in Loc_1NHERIT mode because they
inherit a level from their parent subsystem.

You can use the LoG_SILENT level to specify that a given subsystem does not
perform any logging, for example:

it container admin -setlogginglevel -subsystem
IT BUS.TRANSPORT.TUNNEL -level LOG SILENT

For more details on using the it container admin command, see
“Deploying Services in an Artix Container” on page 117.

For more details on subsystems, see “Logging for Subsystems and Services”
on page 47.

59

CHAPTER 3 | Artix Logging

Configuring Message Snoop

Overview

Disabling message snoop

Setting a message snoop log level

60

Message snoop is an ART-based message interceptor that sends
input/output messages to the Artix log to enable viewing of the message
content. This is a useful debugging tool when developing and testing an
Artix system.

Message snoop is enabled by default. It is automatically added as the last
interceptor before the binding to detect any changes that other interceptors
might make to the message. By default, message snoop logs at INFO MED in
the MESSAGE_snoop subsystem. You can change these settings in
configuration.

Message snoop is invoked on every message call, twice in the client and

twice in the server (assuming Artix is on both sides). This means that it can
impact on performance. More importantly, message snoop involves risks to
confidentiality. You can disable message snoop using the following setting:

artix:interceptors:message snoop:enabled = "false";

WARNING: For security reasons, it is strongly recommended that
message snoop is disabled in production deployments.

You can set a message snoop log level globally or for a service port. The
following example sets the level globally:

artix:interceptors:message snoop:log level = "WARNING";
event log:filters = ["*=WARNING", "IT BUS=INFO HI+WARN+ERROR",
"MESSAGE SNOOP=WARNING"];

The following example sets the level for a service port:

artix:interceptors:message snoop:http://www.acme.com/tests:mySer
vice:myPort:log level = "INFO MED";

event log:filters = ["*=INFO MED", "IT BUS=",
"MESSAGE SNOOP=INFO MED"];

Setting a message snoop
subsystem

Configuring Message Snoop

You can set message snoop to a specific subsystem globally or for a service
port. The following example sets the subsystem globally:

artix:interceptors:message snoop:log subsystem = "MY SUBSYSTEM";
event log:filters = ["*=INFO MED", "IT BUS=",
"MY SUBSYSTEM=INFO MED"];

The following example sets the subsystem for a service port:

artix:interceptors:message snoop:http://www.acme.com/tests:mySer
vice:myPort:log subsystem = "MESSAGE SNOOP";

event log:filters = ["*=INFO MED", "IT BUS=",
"MESSAGE_SNOOP=INFO MED"];

If message snoop is disabled globally, but configured for a service/port, it is
enabled for that service/port with the specified configuration only. For
example:

artix:interceptors:message snoop:enabled = "false";

artix:interceptors:message snoop:http://www.acme.com/tests:mySer
vice:myPort:log level = "WARNING";

artix:interceptors:message snoop:http://www.acme.com/tests:mySer
vice:myPort:log subsystem = "MY SUBSYSTEM";

event log:filters = ["*=WARNING", "IT BUS=INFO HI+WARN+ERROR",
"MY SUBSYSTEM=WARNING"];

Setting message snoop in conjunction with log filters is useful when you
wish to trace only messages that are relevant to a particular service, and you
do not wish to see logging for others (for example, the container, locator,
and so on).

61

CHAPTER 3 | Artix Logging

Configuring Log4J Logging

Overview

Specifying the log4j plug-in

Setting the log4j properties file

62

For Artix Java applications, you have the option of using log4J, which is a
standard Java logging tool. This enables you to control Artix logging with the
same logging tool used by many Java applications. This section includes the
following:

® “Specifying the log4j plug-in”.
® “Setting the log4] properties file”.

Note: log4j logging overrides Artix logging. Settings in the
LogConfig.properties file completely override settings in the artix.cfg
file.

You must first add the 10943 log stream plug-in to your Artix orb plugins
list. For example:

orb plugins = ["log4j log stream", "iiop profile", "giop",
"iiop", javal;

The log4j log_stream plug-in reroutes all Artix logging to the log4j tool.

When using log4j with Artix, the LogConfig.properties file controls your
Artix logging settings. This file is located in the following directory:

InstallDir/artix/Version/etc
Enabling log4j logging for Artix

To enable log4j logging, add the following line to the start of your
LogConfig.properties file

log4j.logger.com. iona=DEBUG

In this file, all Artix logging is set to a root logger named com. iona. Unlike

Artix logging, specifying a logging level does not mean to log only that level
(for example, peEBUG). Instead, specifying a level means to log all messages
with that level or higher. For example, setting the log level to pERuG means
to log all DERUG, WARNING, ERROR, and FATAIL messages.

Configuring Log4J Logging

Enabling log4j logging for Artix subsystems

The following setting outputs all Artix logs to log4;:

log4j.logger.com.iona=DEBUG

However, Artix also supports a more fine grained approach whereby you can
specify a particular Artix subsystem that you want logged. For example, the
LogConfig.properties file could be as follows:

log4j.logger.
log4j.logger.
log4j.logger.
log4j.logger.

com.
com.
com.
com.

iona
iona
iona
iona

.ARTIX=FATAL

.ARTIX.IT BUS=INFO
.ARTIX.IT CODESET=DEBUG
.Jbus.util.Log4JUtils=DEBUG

Configuring XML log4j messages

If you wish to output XML format log messages (for example, to run scripts,
style sheets, or reports on the logs), you can also configure this in your
LogConfig.properties file. For example:

log4j.logger.com.iona=DEBUG
log4j.rootCategory= DEBUG, xml

XML File appender properties.

log4j.appender.
log4j.appender.
log4j.appender.
log4j.appender.
log4j.appender.

xml=org.apache.log4j.RollingFileAppender
xml.File=c:/Tomcat4/logs/log4j .xml
xml.MaxFileSize=1024KB
xml.MaxBackupIndex=12
xml.layout=org.apache.log4]j.xml.XMLLayout

For details on using Artix XML log messages, see “Configuring logging

output” on page 43.

63

CHAPTER 3 | Artix Logging

Using log4j with your Java If you wish to combine the log4J logging in your Java application with log4j
applications logging in Artix, you must initialize log4] with the LogConfig.properties file
in your Java application code.

However, you can still use your own properties file to initialize log4j, and
you do no have to use LogConfig.properties

Note: log4j does not support C++ directly, however, using the Artix
log4j_log stream plug-in enables Artix C++ log events to be redirected
to log4j.

Further information For more information about using log4j, see the Apache documentation at:

http://logging.apache.org/log4j/docs/documentation.html

64

http://logging.apache.org/log4j/docs/documentation.htm

Configuring SNMP Logging

Configuring SNMP Logging

SNMP Simple Network Management Protocol (SNMP) is the Internet standard
protocol for managing nodes on an IP network. SNMP can be used to
manage and monitor all sorts of equipment (for example, network servers,
routers, bridges, and hubs).

The Artix SNMP Logstream plug-in uses the open source library net-snmp
(v.5.0.7) to emit SNMP v1/v2 traps. For more information on this
implementation, see http://sourceforge.net/projects/net-snmp/. To obtain a
freeware SNMP Trap Receiver, visit http://www.ncomtech.com.

Artix Management Information A Management Information Base (MIB) file is a database of objects that can

Base (MIB) be managed using SNMP. It has a hierarchical structure, similar to a DOS or
UNIX directory tree. It contains both pre-defined values and values that can
be customized. The Artix MIB is shown below:

Example 5: Artix MIB
IONA-ARTIX-MIB DEFINITIONS ::= BEGIN
IMPORTS

MODULE-IDENTITY, OBJECT-TYPE,
Integer32, Counter32,

Unsigned32,
NOTIFICATION-TYPE FROM SNMPv2-SMI
DisplayString FROM RFC1213-MIB

’

-- v2 s/current/current

iona OBJECT IDENTIFIER ::= { iso(l) org(3) dod(6) internet(l) private(4) enterprises(l) 3027 }

ionaMib MODULE-IDENTITY
LAST-UPDATED "2003032100002"

ORGANIZATION "IONA Technologies PLC"

65

http://sourceforge.net/projects/net-snmp/
http://sourceforge.net/projects/net-snmp/

CHAPTER 3 | Artix Logging

Example 5: Artix MIB

CONTACT-INFO
Corporate Headquarters
Dublin Office
The IONA Building
Shelbourne Road
Ballsbridge
Dublin 4 Ireland
Phone: 353-1-662-5255
Fax: 353-1-662-5244

US Headquarters

Waltham Office

200 West Street 4th Floor
Waltham, MA 02451

Phone: 781-902-8000

Fax: 781-902-8001

Asia-Pacific Headquarters
IONA Technologies Japan, Ltd
Akasaka Sanchome Bldg.

7F 3-21-16 Akasaka, Minato-ku,
Tokyo, Japan 107-0052

Tel: +81 3 3560 5611

Fax: +81 3 3560 5612

E-mail: support@iona.com

DESCRIPTION
"This MIB module defines the objects used and format of SNMP traps that are generated

from the Event Log for Artix based systems from IONA Technologies"

::= { iona 1 }

66

Configuring SNMP Logging

Example 5: Artix MIB

== iona (3027)

== ionaMib (1)

. | | I
. orbix3(2) IONAAdmin (3) Artix (4)

—— ArtixEventLogMibObjects (0) ArtixEventLogMibTraps (1)
== | |

== |- eventSource (1) |- ArtixbaseTrapDef (1)
. |- eventId (2)

== |- eventPriority (3)

—— |- timeStamp (4)

== |- eventDescription (5)

Artix OBJECT IDENTIFIER ionaMib 4 }
ArtixEventLogMibObjects OBJECT IDENTIFIER Artix 0 }
ArtixEventLogMibTraps OBJECT IDENTIFIER Artix 1 }
ArtixBaseTrapDef OBJECT IDENTIFIER ArtixEventLogMibTraps 1 }

-— MIB variables used as varbinds

eventSource OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..255))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The component or subsystem which generated the event."
::= { ArtixEventLogMibObjects 1 }

67

CHAPTER 3 | Artix Logging

Example 5: Artix MIB

eventId OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The event id for the subsystem which generated the event."

::= { ArtixEventLogMibObjects 2 }

eventPriority OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The severity level of this event. This maps to IT Logging::EventPriority types. All
priority types map to four general types: INFO (I), WARN (W), ERROR (E), FATAL ERROR (F)"

::= { ArtixEventLogMibObjects 3 }

timeStamp OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..255))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The time when this event occurred."

::= { ArtixEventLogMibObjects 4 }

eventDescription OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..255))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The component/application description data included with event."
::= { ArtixEventLogMibObjects 5 }

-— SNMPv1l TRAP definitions

-- ArtixEventLogBaseTraps TRAP-TYPE
== OBJECTS {

== eventSource,

== eventIld,

== eventPriority,

68

Configuring SNMP Logging

Example 5: Artix MIB

—= timestamp,
. eventDescription

i STATUS current

== ENTERPRISE iona

—= VARIABLES { ArtixEventLogMibObjects }

. DESCRIPTION "The generic trap generated from an Artix Event Log."
- ::= { ArtixBaseTrapDef 1 }

-— SNMPv2 Notification type

ArtixEventLogNotif NOTIFICATION-TYPE
OBJECTS {
eventSource,
eventId,
eventPriority,
timestamp,
eventDescription

STATUS current
ENTERPRISE iona
DESCRIPTION "The generic trap generated from an Artix Event Log."

::= { ArtixBaseTrapDef 1 }

END

IONA SNMP integration Events received from various Artix components are converted into SNMP
management information. This information is sent to designated hosts as
SNMP traps, which can be received by any SNMP managers listening on the
hosts. In this way, Artix enables SNMP managers to monitor Artix-based
systems.
Artix supports SNMP version 1 and 2 traps only.
Artix provides a log stream plug-in called snmp_log_stream. The shared
library name of the SNMP plug-in found in the artix.cfq file is:

plugins:snmp log stream:shlib name = "it snmp"

69

CHAPTER 3 | Artix Logging

Configuring the SNMP plug-in

Configuring the Enterprise Object

Identifier

70

plugins:
plugins:
plugins:
plugins:
plugins:

The SNMP plug-in has five configuration variables, whose defaults can be

overridden by the user. The availability of these variables is subject to
change. The variables and defaults are:

snmp_log stream
snmp_log stream
snmp log stream
snmp log stream

snmp_log stream:

rcommunity =

:server
:port
:trap type
oid

"public";

= "localhost";

— "162",‘

- "6",‘

= "your IANA number in dotted decimal notation"

The last plug-in described, oid, is the Enterprise Object Identifier. This is

assigned to specific enterprises by the Internet Assigned Numbers Authority
(IANA). The first six numbers correspond to the prefix:
iso.org.dod.internet.private.enterprise (1.3.6.1.4.1). Each
enterprise is assigned a unique number, and can provide additional
numbers to further specify the enterprise and product.

For example, the oid for IONA is 3027. IONA has added 1.4.1.0 for Artix.
Therefore the complete OID for IONA's Artix is 1.3.6.1.4.1.3027.1.4.1.0.
To find the number for your enterprise, visit the IANA website at
http://www.iana.org.

The SNMP plug-in implements the IT Logging::LogStream interface and
therefore acts like the 1ocal log stream plug-in.

http://www.iana.org

CHAPTER 4

Enterprise
Performance
Logging

IONA’s performance logging plug-ins enable Artix to integrate
effectively with third-party Enterprise Management Systems

(EMS).
In this chapter This chapter contains the following sections:
Enterprise Management Integration page 72
Remote Performance Logging page 74
Configuring Performance Logging page 77
Configuring Remote Performance Logging page 81
Performance Logging Message Formats page 87

71

CHAPTER 4 | Enterprise Performance Logging

Enterprise Management Integration

Overview

Performance logging

Example EMS integration

72

IONA’s performance logging plug-ins enable both Artix and Orbix to integrate
effectively with Enterprise Management Systems (EMS), such as IBM
Tivoli™, HP OpenView™, or BMC Patrol™. The performance logging
plug-ins can also be used in isolation or as part of a bespoke solution.

Enterprise Management Systems enable system administrators and
production operators to monitor enterprise-critical applications from a single
management console. This enables them to quickly recognize the root cause
of problems that may occur, and take remedial action (for example, if a
machine is running out of disk space).

When performance logging is configured, you can see how each Artix server
is responding to load. The performance logging plug-ins log this data to file
or syslog. Your EMS (for example, IBM Tivoli) can read the performance
data from these logs, and use it to initiate appropriate actions, (for example,
issue a restart to a server that has become unresponsive, or start a new
replica for an overloaded cluster).

Figure 1 shows an overview of the IONA and IBM Tivoli integration at work.
In this example, a restart command is issued to an unresponsive server.

In Figure 1, the performance log files indicate a problem. The IONA Tivoli
Provider uses the log file interpreter to read the logs. The provider sees when
a threshold is exceeded and fires an event. The event causes a task to be
activated in the Tivoli Task Library. This task restarts the appropriate server.

This chapter explains how to manually configure the performance logging
plug-ins. It also explains the format of the performance logging messages.

For details on how to integrate your EMS environment with Artix, see the
IONA guide for your EMS. For example, see the IBM Tivoli Integration Guide
or BMC Patrol Integration Guide.

../tivoli/index.htm
../bmc/index.htm

LN EMS

Enterprise Management Integration

g

IONA QI restart IONA I
server Task Library

Provider

T

l

Log File Interpreter

start

= = script

Log File

/

|Pqu-Ins

o

User
Application

Figure 1:

Log File Log File

A
& &

| Plug-ins Plug-ins
Artix Locator
Server Service

Overview of an Artix and IBM Tivoli Integration

73

CHAPTER 4 | Enterprise Performance Logging

Remote Performance Logging

Overview IONA’s performance logging plug-ins can be configured to log data to a local
file or to a remote endpoint. Depending on your specific architecture, it
might not always be desirable or feasible to deploy the required
management tools on a particular platform (for example, on z/0S). In this
case, it would not be appropriate to persist the performance logging data to
a local file, because there would be no local application to consume it.

In some situations, NFS or a similar file sharing mechanism might be used
to persist data across your distributed system. However, security and
performance concerns often prevent the use of such protocols. In such
cases, Artix provides a remote logging facility for the purposes of sending
logging data to a remote endpoint where the data can be persisted and
subsequently consumed by an application that is native to that remote
system.

Components of a remote logging The components of a remote logging framework are as follows:

framework ® The performance logging collector plug-in runs within a deployed
application on the source host (that is, the host that will send its
logging data to a remote endpoint). The collector is configured to
harvest the required performance logging data and to "write" this data
to a remote CORBA endpoint (instead of, for example, to a local file on
the source host).

Note: Remote logging is only supported in the C++ version of the
performance logging collector plug-in.

® The remote logger daemon is an Artix application that is deployed on
the remote target host. It loads the remote log receiver servant, which
is accepts the performance logging data from the source applications
and logs this data to a local file on the target host.

® The EMS component (for example, a Tivoli or BMC Patrol agent) runs
on the remote target host. It consumes the data from the file and
propagates the performance information to the centralized region
manager.

74

Remote Performance Logging

Remote logging overview Figure 2 provides a graphical overview of how remote logging works in Artix.
Source Host Source Host Source Host
Source Application Source Application Source Application

o 3 &

Performance Performance Performance
Logging Plug-in Logging Plug-in Logging Plug-in

1IOP IIOP IIOP
Target Host
Remote Logger
Daemon
i EMS Component
(e.g. Tivoli or
BMC Patrol
agent)
Performance
Logging Data

Figure 2: Remote Logging Framework

75

CHAPTER 4 | Enterprise Performance Logging

Deploying a remote logger
daemon

Points to note

76

As explained in “Components of a remote logging framework” on page 74,
the remote logger daemon loads the remote log receiver servant, which
accepts the performance logging data from the source application(s) and
logs this data to a local file on the target host. You may deploy the remote
logger plug-in in any Artix application. IONA recommends that the remote
logger plug-in should be deployed within a standalone container whose sole
purpose is to log data from one or more source applications. The local file on
the remote host can then be consumed by the EMS agent running on that
host, or used as part of some custom-made solution.

The following points should be noted:

® |IOP is used for the data communication between the collector and the
remote logger daemon. This adds very low overhead to the logging
payload, because it uses a binary protocol on the wire (CDR).

® To secure the message transfer, [IOP/TLS can be used for data
communication between the collector and the remote logger daemon.

® The timestamps embedded within the remote logging data are
localized to the specific source system on which the monitored
application is running. You must ensure that the system clocks on all
participating systems are synchronized to an acceptable level, as
governed by your EMS or your custom-made solution.

Configuring Performance Logging

Configuring Performance Logging

Overview This section explains how to manually configure performance logging. This
section includes the following:
® “Performance logging plug-in”.
® “Monitoring Artix requests”.
® “Specifying a log file".
® “Monitoring clusters”.
® “Configuring a server ID".
® “Configuring a client ID".
® “Configuring with the Artix Designer GUI".
Note: You can also use the Artix Designer GUI tool to configure
performance logging automatically. However, manual configuration gives
you more fine-grained control.
Performance logging plug-in The performance logging component includes the following plug-in:

Table 6: Performance Logging Plug-in

Plug-in Description

Response monitor Monitors response times of requests as they
pass through the Artix binding chains.
Performs the same function for Artix as the
response time logger does for Orbix.

Collector Periodically collects data from the response
monitor plug-in and logs the results.

77

CHAPTER 4 | Enterprise Performance Logging

Monitoring Artix requests

Logging to a file or memory

Specifying a log file

Monitoring clusters

78

You can use performance logging to monitor Artix server and client requests.

To monitor both client and server requests, add the bus response monitor
plug-in to the orb plugins list in the global configuration scope. For
example:

orb plugins = ["xmlfile log stream", "socap", "at http",
"bus_response monitor"];

To configure performance logging on the client side only, specify this setting
in a client scope only.

You can specify whether logging is output to a file or stored in memory using
plugins:bus_response monitor:type variable. Specifying file outputs
performance logging data to a file, while specifying memory places the data
into memory so it can be retrieved using the Artix container service. when
file is enabled, memory is also enabled. For example:

plugins:bus response monitor:type = "file";

You can configure the collector plug-in to log data to a specific file location.

The following example configuration results in performance data being
logged to /var/log/my app/perf logs/treasury app.log

plugins:it response time collector:filename =
"/var/log/my app/perf logs/treasury app.log";

You can configure your EMS to monitor a cluster of servers. You can do this
by configuring multiple servers to log to the same file. If the servers are
running on different hosts, the log file location must be on an NFS mounted
or shared directory.

Configuring a server ID

Configuring a client ID

Configuring Performance Logging

Alternatively, you can use syslogd as a mechanism for monitoring a cluster.
You can do this by choosing one syslogd to act as the central logging server
for the cluster. For example, say you decide to use a host named teddy as
your central log server. You must edit the /etc/syslog.conf file on each
host that is running a server replica, and add a line such as the following:

Substitute the name of your log server
user.info Qteddy

Some syslog daemons will not accept log messages from other hosts by
default. In this case, it may be necessary to restart the syslogd on teddy
with a special flag to allow remote log messages.

You should consult the man pages on your system to determine if this is
necessary and what flags to use.

You can configure a server ID that will be reported in your log messages.
This server ID is particularly useful in the case where the server is a replica
that forms part of a cluster.

In a cluster, the server ID enables management tools to recognize log
messages from different replica instances. You can configure a server ID as
follows:

plugins:it response time collector:server-id = "Locator-1";

This setting is optional; and if omitted, the server ID defaults to the ORB
name of the server. In a cluster, each replica must have this value set to a
unique value to enable sensible analysis of the generated performance logs.

You can also configure a client ID that will be reported in your log messages,
for example:

plugins:it response time collector:server-id = "my client app";

This setting enables management tools to recognize log messages from
client applications. This setting is optional; and if omitted, it is assumed that
that a server is being monitored.

79

CHAPTER 4 | Enterprise Performance Logging

Configuration example The following simple example configuration file is from the management

demo supplied in your Artix installation:

include "../../../../../etc/domains/artix.cfg";

demos {
management
{
orb plugins = ["xmlfile log stream", "soap", "at http",
"bus response monitor"];
client {

plugins:it response time collector:server-id=
"management-demo-client";

plugins:it response time collector:filename=
"management demo client.log";

}i

server {
plugins:it response time collector:server-id=
"management-demo-server";

plugins:it response time collector:filename=
"management demo server.log";
}i
}i
}i

In this example, the bus_response monitor plug-in is set in the global
scope. This specifies settings for both the client and server applications.

Configuring with the Artix The Artix Designer GUI tool automatically generates performance logging
Designer GUI configuration for the Artix services. The generated server-id defaults to the
following format: DomainName ServiceName Hostname (for example,

artix_locator myhost).

For details on how to automatically generate performance logging, see the

IBM Tivoli Integration Guide or BMC Patrol Integration Guide.

80

../tivoli/index.htm
../bmc/index.htm

Configuring Remote Performance Logging

Configuring Remote Performance Logging

Overview This section explains how to configure remote logging, to send logging data
to a remote endpoint on another host rather than to a local file.

In this section This section discusses the following topics:

Configuring the Remote Logger Daemon page 82

Configuring a Deployed Application on the Source Host page 84

81

CHAPTER 4 | Enterprise Performance Logging

Configuring the Remote Logger Daemon

Overview This subsection describes how to configure the remote logger daemon that
runs on the remote target host.

Configuration scope To configure the remote logger daemon, add the following configuration
scope to your Artix configuration domain:

remote logger daemon

{
orb plugins = ["local log stream", "remote log receiver"];
event log:filters = ["IT MGMT LOGGING=*"];

plugins:remote log receiver:log filename =
"/var/logs/remote perflogs.txt";

plugins:remote log receiver:ior filename =
"/var/publish/logger ref.txt";

plugins:remote log receiver:iiop:addr list = ["host:port"];
plugins:remote log receiver:prerequisite plugins =
["iiop profile", "giop", "iiop"l;

Note: You may add this configuration scope directly to your Artix
configuration domain in artix.cfg, Or you may create a separate
configuration file that includes artix.cfg.

82

Configuring Remote Performance Logging

Remote logging configuration The settings for the remote log receiver plug-in can be explained as

settings follows:

plugins:remote log receiver:

log filename

plugins:remote log receiver:

ior_ filename

plugins:remote log receiver:

iiop:addr list

plugins:remote log receiver:

prerequisite plugins

This is the local file on the remote host
to which all logs are directed.

When the remote logger daemon is
started, it writes a stringified object
reference to the file specified by this
configuration item. This IOR may be
subsequently made available to the
source applications, which are acting as
clients of the remote logger. However,
this is not required if the source
applications use a corbaloc URL rather
than an IOR to contact the remote
logger.

This specifies the hostname or IP
address of the host on which the remote
logger is running, and the port that is
uses to listen for logging requests.

This must specify the 110OP plug-ins that
the remote logger needs for
communication with the source host(s).

TLS security If you are using TLS security:

® Ensure that you replace the plugins:remote log receiver:iiop:
addr 1list configuration item with plugins:remote log receiver:

iiop tls:addr list.

Ensure that the plugins:remote log receiver:prerequisite

plugins configuration item lists "iiop tls" rathern than "iiop".

Running the remote logger To run the remote logger daemon, run the Artix container as follows:

daemon

it container -ORBname remote logger daemon

Note: This is assuming that the relevant configuration scope is called

remote logger daemon.

83

CHAPTER 4 | Enterprise Performance Logging

Configuring a Deployed Application on the Source Host

Overview This subsection describes how to configure a deployed application to use
performance logging with the remote logger capability. For the purposes of
illustration, it describes the steps that are required to configure an Artix for
z/0S application.

Steps To enable a deployed application (for example, on z/0S) to use performance
logging with the remote logger capability:

1. Ensure that the remote logger daemon has been configured correctly
and deployed on the target host, as described in “Configuring the
Remote Logger Daemon” on page 82.

2. Open the configuration domain for your deployed application (by
default, this is artixhlq.CcoNFIG (ARTIX) for Artix for z/OS
applications).

3. Go to the appropriate configuration scope for your application.

Add it response time logger to the end of the ORB plug-ins list
setting. Also, ensure that IIOP is enabled for the application. For
example:

orb plugins = ["local log stream", "iiop profile", "giop",
"iiop", .., "it response time logger"];

Note: Ensure that you have a management license available.

5. Add it response time logger to the server binding list for the
application. For example:

binding:server binding list =

["SOAP+it response time logger",
"it response time logger"];

84

2006-10-18
2006-10-18
2006-10-18
2006-10-18
2006-10-18 10:09:22
max=110 min=110
int=30001 oph=119
2006-10-18 10:09:22
max=809 min=809
int=30001 oph=119
2006-10-18 10:09:52
2006-10-18 10:09:52
min=793
int=29998 oph=120
2006-10-18 10:10:22
2006-10-18 10:10:22
max=0 min=0
int=30000 oph=120
2006-10-18 10:10:
2006-10-18 10:11:
2006-10-18 10:11:
2006-10-18 10:12:
2006-10-18 10:12:
int=29999
oph=120

10:
10:
10:

08:22
08:22
08:52
10:09:22

52
22
52
22
22

Configuring Remote Performance Logging

6. Add the following collector plug-in configuration items:

update the log every 30 seconds
plugins:it response time collector:period = "30";

the id of the server for the log output
plugins:it response time collector:server-id = "server-id";

the remote endpoint details:
plugins:it response time collector:remote logging enabled =

"true";

initial references:IT PerfloggingReceiver:reference =

"corbaloc:iiop:1.2@remote host:1234/IT PerflLoggingReceiver

Note:

",
’

Ensure that the server-id value is replaced with the actual server

ID for the log output (for example, cics-server-adapter-1).

The following is an example of output from the performance log on the
remote file system where a number of different operations have been run
against the application:

server=cics-server-adapter-1
server=cics-server-adapter-1
server=cics-server-adapter-1
server=cics-server-adapter-1
server=cics-server-adapter-1

server=cics-server-adapter-1

server=cics-server-adapter-1
server=cics-server-adapter-1

server=cics-server-adapter-1
server=cics-server-adapter-1

server=cics-server-adapter-1
server=cics-server-adapter-1
server=cics-server-adapter-1
server=cics-server-adapter-1
server=cics-server-adapter-1

status=starting up

status=running

status=running

status=running

[operation=test bounded] count=1 avg=110

[operation=test unbounded] count=1 avg=809

status=running
[operation=call me] count=l avg=793 max=793

status=running
[operation= get currentMappings] count=1 avg=0

status=running
status=running
status=running
status=running
[operation=resolve] count=1 avg=0 max=0 min=0

85

CHAPTER 4 | Enterprise Performance Logging

2006-10-18 10:12:52 server=cics-server-adapter-1 status=running
2006-10-18 10:12:57 server=cics-server-adapter-1 status=shutdown started
2006-10-18 10:12:57 server=cics-server-adapter-1 status=shutdown complete

86

Performance Logging Message Formats

Performance Logging Message Formats

Overview This section describes the performance logging message formats used by
IONA products. It includes the following:

® “Artix log message format”.

® “Orbix log message format”.

® “Simple life cycle message formats”.

Artix log message format Performance data is logged in a well-defined format. For Artix applications,

this format is as follows:

YYYY-MM-DD HH:MM:SS server=ServerID [namespace=nnn service=sss
port=ppp operation=name] count=n avg=n max=n min=n int=n oph=n

Table 7: Artix log message arguments

Argument

Description

server

The server ID of the process that is logging the
message.

namespace

The Artix namespace.

service

The Artix service.

port

The Artix port.

operation

The name of the operation for CORBA
invocations or the URI for requests on servlets.

count

The number of operations of invoked (IIOP).
or

The number of times this operation or URI was
logged during the last interval (HTTP).

avg

The average response time (milliseconds) for
this operation or URI during the last interval.

87

CHAPTER 4 | Enterprise Performance Logging

Table 7: Artix log message arguments

Argument

Description

max

The longest response time (milliseconds) for
this operation or URI during the last interval.

min

The shortest response time (milliseconds) for
this operation or URI during the last interval.

int

The number of milliseconds taken to gather the
statistics in this log file.

oph

Operations per hour.

The combination of namespace, service and port above denote a unique

Artix endpoint.

Orbix log message format The format for Orbix log messages is as follows:

YYYY-MM-DD HH:MM:SS server=ServerID [operation=Name] count=n
avg=n max=n min=n int=n oph=n

Table 8: Orbix log message arguments

Argument

Description

server

The server ID of the process that is logging the
message.

operation

The name of the operation for CORBA invocations or
the URI for requests on servlets.

count

The number of operations of invoked (lIOP).
or

The number of times this operation or URI was
logged during the last interval (HTTP).

avg

The average response time (milliseconds) for this
operation or URI during the last interval.

max

The longest response time (milliseconds) for this
operation or URI during the last interval.

88

Simple life cycle message formats

Performance Logging Message Formats

Table 8: Orbix log message arguments

Argument Description

min The shortest response time (milliseconds) for this
operation or URI during the last interval.

int The number of milliseconds taken to gather the
statistics in this log file.

oph Operations per hour.

The server will also log simple life cycle messages. All servers share the
following common format.

YYYY-MM-DD HH:MM:SS server=ServerID status=CurrentStatus

Table 9: Simple life cycle message formats arguments

Argument Description
server The server ID of the process that is logging the
message.
status A text string describing the last known status of
the server (for example, starting up, running,
shutting down).

89

CHAPTER 4 | Enterprise Performance Logging

90

In this chapter

CHAPTER 5

Using Artix with
International
Codesets

The Artix SOAP and CORBA bindings enable you to transmit
and receive messages in a range of codesets.

This chapter includes the following:

Introduction to International Codesets page 92
Working with Codesets using SOAP page 95
Working with Codesets using CORBA page 96
Working with Codesets using Fixed Length Records page 99
Working with Codesets using Message Interceptors page 102
Routing with International Codesets page 111

91

CHAPTER 5 | Using Artix with International Codesets

Introduction to International Codesets

Overview

European languages

ldeograms

92

A coded character set, or codeset for short, is a mapping between integer
values and characters that they represent. The best known codeset is ASCII
(American Standard Code for Information Interchange). ASCII defines 94

graphic characters and 34 control characters using the 7-bit integer range.

The 94 characters defined by the ASCII codeset are sufficient for English,
but they are not sufficient for European languages, such as French, Spanish,
and German.

To remedy the situation, an 8-bit codeset, ISO 8859-1, also known as
Latin-1, was invented. The lower 7-bit portion is identical to ASCII. The
extra characters in the upper 8-bit range cover those languages used widely
in Western Europe.

Many other codesets are defined under ISO 8859 framework. These cover
languages in other regions of Europe, as well as Russian, Arabic and
Hebrew. The most recent addition is ISO 8859-15, which is a revision of
ISO 8859-1. This adds the Euro currency symbol and other letters while
removing less used characters.

For further information about ISO-8859-x encoding, see the following web
site: “The ISO 8859 Alphabet Soup”
(http://wwwwbs.cs.tu-berlin.de/user/czyborra/charsets/).

Asian countries that use ideograms in their writing systems need more
characters than fit in an 8-bit integer. Therefore, they invented double-byte
codesets, where a character is represented by a bit pattern of 2 bytes.

These languages also needed to mix the double-byte codeset with ASCIl in a
single text file. So, character encoding schemas, or simply encodings, were
invented as a way to mix characters of multiple codesets.

Some of the popular encodings used in Japan include:
* Shift JIS

® Japanese EUC

® Japanese ISO 2022

http://wwwwbs.cs.tu-berlin.de/user/czyborra/charsets
http://wwwwbs.cs.tu-berlin.de/user/czyborra/charsets

Unicode

Charset names

Introduction to International Codesets

Unicode is a new codeset that is gaining popularity. It aims to assign a
unique number, or code point, to every character that exists (and even once
existed) in all languages. To accomplish this, Unicode, which began as a
double-byte codeset, has been expanded into a quadruple-byte codeset.

Unicode, in pure form, can be difficult to use within existing computer
architectures, because many APIs are byte-oriented and assume that the
byte value 0 means the end of the string.

For this reason, Unicode Transformation Format for 8-bit channel, or
UTF-8, is frequently used. When browsers list “Unicode” in its encoding
selection menu, they usually mean UTF-8, rather than the pure form of
Unicode.

For more information about Unicode and its variants, visit Unicode
(http://www.unicode.org/).

To address the need for computer networks to connect different types of
computers that use different encodings, the Internet Assigned Number
Authority, or IANA, has a registry of encodings at
http://www.iana.org/assignments/character-sets.

IANA names are used by many Internet standards including MIME, HTML,
and XML.

Table 10 lists IANA names for some popular charsets.

Table 10: /ANA Charset Names

IANA Name Description

US-ASCII 7-bit ASCII for US English

ISO-8859-1 Western European languages

UTF-8 Byte oriented transformation of Unicode

UTF-16 Double-byte oriented transformation of Unicode

Shift_JIS Japanese DOS & Windows

EUC-JP Japanese adaptation of generic EUC scheme, used in
UNIX

93

http://www.unicode.org
http://www.unicode.org
http://www.iana.org/assignments/character-sets

CHAPTER 5 | Using Artix with International Codesets

Table 10: /ANA Charset Names

IANA Name Description

ISO-2022-JP | Japanese adaptation of generic ISO 2022 encoding
scheme

Note: IANA names are case insensitive. For example, US-ASCII can be
spelled as us-ascii or US-ascii.

CORBA names

In CORBA, codesets are identified by numerical values registered with the
Open Group's registry, OSF Codeset Registry:
ftp://ftp.opengroup.org/pub/code_set registry/code _set registryl.2g.txt.
Java names

Java has its own names for charsets. For example, ISO-8859-1 is named
1508859 1, Shift_JIS is named sJzs, and UTF-8 is named UTFs.

Java is transitioning to IANA charset names, to be aligned with MIME. JDK
1.3 and above recognizes both names.

Note: Artix uses IANA charset names even for CORBA codesets.

94

ftp://ftp.opengroup.org/pub/code_set_registry/code_set_registry1.2g.txt

Working with Codesets using SOAP

Working with Codesets using SOAP

Overview

Making requests

Responding to SOAP requests

Because SOAP messages are XML based, they are composed primarily of
character data that can be encoded using any of the existing codesets. If the
applications in a system are using different codesets, they can not interpret
the messages passing between them. The Artix SOAP plug-in uses the XML
prologue of SOAP messages to ensure that it stays in sync with the
applications that it interacts with.

When making requests or broadcasting a message, the SOAP plug-in
determines the codeset to use from its Artix configuration scope. You can set
the SOAP plug-in's character encoding using the plugins:soap:encoding
configuration variable. This takes the IANA name of the desired codeset.
The default value is uTr-8.

For more information on this configuration variable, see the Artix
Configuration Reference. For general information on configuring Artix
applications, see “Getting Started” on page 17.

When an Artix server receives a SOAP message, it checks the XML prologue
to see what encoding codeset the message uses. If the XML prologue
specifies the message’s codeset, Artix uses the specified codeset to read the
message and to write out its response to the request. For example, an Artix
server that receives a request with the XML prologue shown in Example 6
decodes the message using uTr-16 and encodes its response using UTF-16.

Example 6: XML Prologue
<?xml version="1.0" encoding="UTF-16"7?>

If an Artix server receives a SOAP message where the XML prologue does
not include the encoding attribute, the server will use whatever default
codeset is specified in its configuration to decode the message and encode
the response.

95

../config_ref/index.htm
../config_ref/index.htm

CHAPTER 5 | Using Artix with International Codesets

Working with Codesets using CORBA

Overview

Native codeset

96

The Artix CORBA plug-in supports both wide characters and narrow
characters to accommodate an array of codesets. It also supports codeset
negotiation. Codeset negotiation is the process by which two CORBA
processes which use different native codesets determine which codeset to
use as a transmission codeset. Occasionally, the process requires the
selection of a conversion codeset to transmit data between the two
processes. The algorithm is defined in section 13.10.2.6 of the CORBA
specification (http://www.omg.org/cgi-bin/apps/doc?formal/02-12-06.pdf).

Note: For CORBA programing in Java, you can specify a codeset other
than the true native codeset.

A native codeset (NCS) is a codeset that a CORBA program speaks natively.

For Java, this is UTF-8 (0x05010001) for char and String, and UTF-16
(0x00010109) for wechar and wstring.

For C and C++, this is the encoding that is set by setlocale (), which in
turn depends on the LaNG and Lc_xxxx environment variables.

You can configure the Artix CORBA plug-in’s native codesets using the
configuration variables listed in Table 11.

Table 11: Configuration Variables for CORBA Native Codeset

Configuration Variable Description

plugins:codeset:char:ncs Specifies the native codeset for narrow
character and string data.

plugins:codeset :wchar:ncs Specifies the native codeset for wide
character and string data.

http://www.omg.org/cgi-bin/apps/doc?formal/02-12-06.pdf

Conversion codeset

Transmission codeset

Negotiation algorithm

Working with Codesets using CORBA

A conversion codeset (CCS) is an alternative codeset that the application
registers with the ORB. More than one CCS can be registered for each of the
narrow and wide interfaces. CCS should be chosen so that the expected
input data can be converted to and from the native codeset without data
loss. For example, Windows code page 1252 (0x100204e4) can be a
conversion codeset for ISO-8859-1 (0x00010001), assuming only the
common characters between the two codesets are used in the data.

You can configure the Artix CORBA plug-in’s list of conversion codesets
using the configuration variables listed in Table 12.

Table 12: Configuration Variables for CORBA Conversion Codesets

Configuration Variable Description

plugins:codeset:char:ccs Specifies the list of conversion codesets
for narrow character and string data.

plugins:codeset:wchar:ccs Specifies the list of conversion codesets
for wide character and string data.

A transmission codeset (TCS) is the codeset agreed upon after the codeset
negotiation. The data on the wire uses this codeset. It is either the native
codeset, one of the conversion codesets, or UTF-8 for the narrow interface
and UTF-16 for the wide interface.

Codeset negotiation uses the following algorithm to determine which
codeset to use in transferring data between client and server:

1. If the client and server are using the same native codeset, no
translation is required.

2. If the client has a converter to the server's codeset, the server's native
codeset is used as the transmission codeset.

3. Ifthe client does not have an appropriate converter and the server does
have a converter to the client’s codeset, the client’s native codeset is
used as the transmission codeset.

97

CHAPTER 5 | Using Artix with International Codesets

Codeset compatibility

98

If neither the client nor the server has an appropriate converter, the
server ORB tries to find a conversion codeset that both server and
client can convert to and from without loss of data. The selected
conversion codeset is used as the transmission codeset.

If no conversion codeset can be found, the server ORB determines if
using UTF-8 (narrow characters) or UTF-16 (wide characters) will
allow communication between the client and server without loss of
data. If UTF-8 or UTF-16 is acceptable, it is used as the transmission
codeset. If not, a CODESET INCOMPATIBLE exception is raised.

The final steps involve a compatibility test, but the CORBA specification
does not define when a codeset is compatible with another. The
compatibility test algorithm employed in Orbix is outlined below:

1.
2.

3.

ISO 8859 Latin-n codesets are compatible.

UCS-2 (double-byte Unicode), UCS-4 (four-byte Unicode), and UTF-x
are compatible.

All other codesets are not compatible with any other codesets.

This compatibility algorithm is subject to change without notice in future
releases. Therefore, it is best to configure the codeset variables as explicitly
as possible to reduce dependency on the compatibility algorithm.

Working with Codesets using Fixed Length Records

Working with Codesets using Fixed Length

Records

Overview

Encoding attribute

Fixed binding example

Artix fixed record length support enables Artix to interact with mainframe
systems using COBOL. For example, many COBOL applications send fixed
length record data over WebSphere MQ.

Artix provides a fixed binding that maps logical messages to concrete fixed
record length messages. This binding enables you to specify attributes such
as encoding style, justification, and padding character.

The Artix fixed binding provides an optional encoding attribute for both its
fixed:binding and fixed:body elements. The encoding attribute specifies
the codeset used to encode the text data. Valid values are any IANA codeset
name. See http://www.iana.org/assignments/character-sets for details.

The encoding attribute for the fixed:binding element is a global setting;
while the fixed:body attribute is per operation. Both settings are optional. If
you do not set either, the default value is uTr-s8.

For more details, see fixed-binding.xsd, available in

InstallDir\iona\artix\Version\schemas.

The following WSDL example shows a fixed binding with encoding
attributes for fixed:body elements. This binding includes two operations,
echoVoid and echoString.

Example 7: Fixed Length Record Binding

<?xml version="1.0" encoding="UTF-8"7?>

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:fixed="http://schemas.iona.com/bindings/fixed"
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
xmlns:iiop="http://schemas.iona.com/transports/iiop tunnel"
xmlns:mg="http://schemas.iona.com/transports/mq"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

29

http://www.iana.org/assignments/character-sets

CHAPTER 5 | Using Artix with International Codesets

Example 7: Fixed Length Record Binding

xmlns:tns="http://www.iona.com/artix/test/I18nBase/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://www.iona.com/artix/test/I18nBase" name="I18nBaseService"
targetNamespace="http://www.iona.com/artix/test/I18nBase/"

<message name="echoString">
<part name="stringParamO" type="xsd:string"/>
</message>

<message name="echoStringResponse">
<part name="return" type="xsd:string"/>
</message>

<message name="echoVoid"/>
<message name="echoVoidResponse" />

<portType name="I18nBasePortType">
<operation name="echoString">
<input message="tns:echoString" name="echoString"/>
<output message="tns:echoStringResponse" name="echoStringResponse"/>
</operation>
<operation name="echoVoid">
<input message="tns:echoVoid" name="echoVoid"/>
<output message="tns:echoVoidResponse" name="echoVoidResponse"/>
</operation>
</portType>

<binding name="I18nFIXEDBinding" type="tns:I1l8nBasePortType">
<fixed:binding/>
<operation name="echoString">
<fixed:operation discriminator="discriminator"/>
<input name="echoString">
<fixed:body encoding="ISO-8859-1">
<fixed:field bindingOnly="true" fixedvalue="01" name="discriminator"/>
<fixed:field name="stringParam0" size="50"/>
</fixed:body>
</input>
<output name="echoStringResponse">
<fixed:body encoding="ISO-8859-1">
<fixed:field name="return" size="50"/>
</fixed:body>
</output>
</operation>

100

Working with Codesets using Fixed Length Records

Example 7: Fixed Length Record Binding

<operation name="echoVoid">
<fixed:operation discriminator="discriminator"/>
<input name="echoVoid">
<fixed:body>
<fixed:field name="discriminator" fixedValue="02" bindingOnly="true"/>
</fixed:body>
</input>
<output name="echoVoidResponse">
<fixed:body/>
</output>
</operation>
</binding>
</definitions>

Further information For more details on the Artix fixed length binding, see Understanding Artix
Contracts.

101

../contract/index.htm
../contract/index.htm

CHAPTER 5 | Using Artix with International Codesets

Working with Codesets using Message

Interceptors

Overview

Codeset conversion attributes

102

Artix provides support for codeset conversion for transports that do not have
their own concept of headers. For example, IBM Websphere MQ, BEA
Tuxedo, and Tibco Rendezvous. This generic support is implemented using
an Artix message interceptor and WSDL port extensors.

For example, an Artix C++ client could use Artix Mainframe to access a
mainframe system, using a binding for fixed length record over MQ. In this
scenario, an Artix message interceptor can be configured to enable codeset
conversion between ASCII and EBCDIC (Extended Binary Coded Decimal
Interchange Code).

You can enable this codeset conversion simply by editing your WSDL file, or

by using accessor methods in your application code. This section explains
how to use both of these approaches.

Note: Codeset conversion set in application code takes precedence over
the same settings in a WSDL file.

This generic support for codeset conversion is implemented using a message
interceptor. This message interceptor manipulates the following codeset
conversion attributes:

LocalCodeSet Specifies the codeset used locally by a client or
server application.

OutboundCodeSet Specifies the codeset used by the application for
outgoing messages.

InboundCodeSet Specifies the codeset used by the application for
incoming messages.

You can specify these attributes to convert client-side requests and
server-side responses. All three attributes are optional.

Working with Codesets using Message Interceptors

Configuring codeset conversionin You can configure codeset conversion by setting the codeset conversion
a WSDL file attributes in a WSDL file. Example 8 shows the contents of the Artix
internationalization schema (i18n-context.xsd).

Example 8: Artix iI18n Schema

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://schemas.iona.com/bus/il8n/context"
xmlns:il8n-context="http://schemas.iona.com/bus/i18n/context"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:import namespace = "http://schemas.xmlsoap.org/wsdl/"
schemaLocation="wsdl.xsd"/>

<xs:element name="client" type="il8n-context:ClientConfiguration" />
<xs:complexType name="ClientConfiguration">

<xs:annotation>
<xs:documentation> I18n Client Context Information
</xs:documentation>

</xs:annotation>

<xs:complexContent>
<xs:extension base="wsdl:tExtensibilityElement" >
<xs:attribute name="LocalCodeSet" type="xs:string" use="optional" />
<xs:attribute name="OutboundCodeSet" type="xs:string" use="optional" />
<xs:attribute name="InboundCodeSet" type="xs:string" use="optional" />
</xs:extension>
</xs:complexContent>
</xs:complexType>

103

CHAPTER 5 | Using Artix with International Codesets

Example 8: Artix i18n Schema

<xs:element name="server" type="il8n-context:ServerConfiguration"/>

<xs:complexType name="ServerConfiguration" >
<xs:annotation>
<xs:documentation> I18n Server Context Information
</xs:documentation>
</xs:annotation>

<xs:complexContent>
<xs:extension base="wsdl:tExtensibilityElement" >
<xs:attribute name="LocalCodeSet" type="xs:string" use="optional" />
<xs:attribute name="OutboundCodeSet" type="xs:string" use="optional" />
<xs:attribute name="InboundCodeSet" type="xs:string" use="optional" />
</xs:extension>
</xs:complexContent>

</xs:complexType>

</xs:schema>

The Artix internationalization message interceptor uses this schema as a
port extensor. This enables you to configure codeset conversion attributes in
a WSDL file.

Client/server WSDL example The following example shows codeset conversion settings for a client and a
server application specified in a sample WSDL file:

Example 9: /18n Specified in a WDSL File

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="Il8nBaseService"
targetNamespace="http://www.iona.com/artix/test/I18nBase/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.iona.com/artix/test/I18nBase/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:mg="http://schemas.iona.com/transports/mg"
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
xmlns: fixed="http://schemas.iona.com/bindings/fixed"
xmlns:il8n-context="http://schemas.iona.com/bus/i18n/context"
xmlns:xsdl="http://www.iona.com/artix/test/I18nBase">

104

Working with Codesets using Message Interceptors

Example 9: i18n Specified in a WDSL File

<import namespace="http://www.iona.com/artix/test/I18nBase"
location="./I18nServiceBindings.wsdl"/>

<service name="I18nService">

<port binding="tns:I18nFIXEDBinding" name="I18nFIXED HTTPPort">
<http:address location="http://localhost:0"/>
<il8n-context:client LocalCodeSet="IS0-8859-1" InboundCodeSet="UTF-8"/>
<il8n-context:server LocalCodeSet="UTF-8" OutboundCodeSet="IS0-8859-1"/>
</port>

<port binding="tns:I18nFIXEDBinding" name="I18nFIXED MQPort">

<mg:client QueueManager="MY DEF QM" QueueName="MY FIRST Q" AccessMode="send"
ReplyQueueManager="MY DEF QM" ReplyQueueName="REPLY Q"
CorrelationStyle="messageld copy" />

<mqg:server QueueManager="MY DEF QM" QueueName="MY FIRST Q"
ReplyQueueManager="MY DEF QOM" ReplyQueueName="REPLY Q" AccessMode="receive"
CorrelationStyle="messageId copy" />
<il8n-context:client LocalCodeSet="UTF-8" InboundCodeSet=""/>
<il8n-context:server LocalCodeSet="IS0-8859-1"/>
</port>

</service>

</definitions>

This sample WSDL file shows a single service named 118nservice, with two
bindings and two ports named I18nFIXED HTTPPort and I18nFIXED MQPort.
The binding in both cases is fixed length record, each with a single
operation.

105

CHAPTER 5 | Using Artix with International Codesets

Enabling codeset conversion in
application code

Linking with the context library

106

You can also enable codeset conversion attributes by calling the following
accessor methods in your C++ application code:

void setLocalCodeSet (const IT Bus::String * val);
void setLocalCodeSet (const IT Bus::String & val);

void setOutboundCodeSet (const IT Bus::String * val);
void setOutboundCodeSet (const IT Bus::String & val);

void setInboundCodeSet (const IT Bus::String * val);
void setInboundCodeSet (const IT Bus::String & val);

An Artix contextContainer in the message interceptor, and the WSDL
configuration are checked for each attribute. This is performed during the
client’s intercept invoke () method and the server's
intercept_dispatch() method. The client request buffer or server response
buffer can be converted to another encoding as needed. This conversion can
occur on the outbound or inbound intercept points.

The interceptor refers to the current context on a per-thread basis. For
detailed information on Artix contexts, see Developing Artix Applications
with C++.

The message interceptor uses a common type library of Artix context
attributes. The application must be linked with this common library, and
with any transports that use this context to set or get attributes. The
generated header files for this common library are available in the following
directory:
InstallDir\artix\Version\include\it bus pdk\context attrs

You must ensure that your application links with the context library that
contains the generated stub code for i18n-context.xsd.

http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm

Working with Codesets using Message Interceptors

Client code example Example 10 shows an example of the code that you need to add to your
C++ client application:

Example 10: Accessing i18n in C++ Client Code
void
I18nTest::echoString(
Il18nBaseClient* client, const String& instr)
String outstr;
try
{

// Set the 118n request context to match the fixed binding encoding setting

IT Bus::Bus var bus = client->get bus();
ContextRegistry * reg = bus->get context registry();

ContextCurrent & cur = reg->get current();
ContextContainer * registered ctx = cur.request contexts();

AnyType & il8n ctx info =
registered ctx->get context (IT ContextAttributes::I18N INTERCEPTOR CLIENT QONAME, true);
ClientConfiguration & 118n ctx cfg = dynamic cast<ClientConfiguration&> (il8n_ctx info);

// Set the Inbound codeset to match the binding encoding

static const String LOCAL CODE SET = "ISO-8859-1";
i18n_ctx cfg.setlLocalCodeSet (LOCAL CODE SET) ;

const String & local codeset = (*il8n ctx cfg.getLocalCodeSet());
client->echoString (instr, outstr);

// Read the 118n reply context

registered ctx = cur.reply contexts();

AnyType & 118n ctx reply info =
registered ctx->get context (IT ContextAttributes::I18N INTERCEPTOR CLIENT QONAME, true);

const ClientConfiguration & i18n ctx reply cfg =
dynamic cast<const ClientConfiguration&> (il8n ctx reply info);

107

CHAPTER 5 | Using Artix with International Codesets

Example 10: Accessing i18n in C++ Client Code

const String * local codeset reply = il18n ctx reply cfg.getLocalCodeSet();
const String * outbound codeset reply = i18n ctx reply cfg.getOutboundCodesSet ();
const String * inbound codeset reply = il1l8n ctx reply cfg.getInboundCodeSet () ;

if (local codeset reply)

cout << "client LocalCodeSet reply context:" << local codeset reply->c str() << endl;
if (outbound codeset reply)

cout << "client OutboundCodeSet reply context:"<< outbound codeset reply->c str << endl;
if (inbound codeset reply)

cout << "client InboundCodeSet reply context" << inbound codeset reply->c str() << endl;

}

catch (IT Bus::ContextExceptioné& ce)

{

}

catch (IT Bus::Exceptioné& ex)

catch ()
{
}
}
Server code example Example 10 shows example of the code that you need to add to your C++
servant application.
Example 11: Accessing i18n in C++ Server Code
void

I18nServiceImpl::echoString(
const Stringé& stringParam0,
String & var return) IT THROW DECL((IT Bus::Exception))

var return = stringParam0;

108

Working with Codesets using Message Interceptors

Example 11: Accessing i18n in C++ Server Code

try
{
// Read the i118n reply context

ContextRegistry * reg = m bus->get context registry();

ContextCurrent & cur = reg->get current();
ContextContainer * registered ctx = cur.request contexts();

AnyType & 118n ctx info =

registered ctx->get context (IT ContextAttributes::I18N_INTERCEPTOR SERVER QONAME, false);
const ServerConfiguration & i18n ctx cfg =

dynamic cast<const ServerConfiguration&> (il8n_ctx info);

const String * local codeset = il8n ctx cfg.getLocalCodeSet () ;
const String * outbound codeset = i18n ctx cfg.getOutboundCodeSet () ;
const String * inbound codeset = i118n ctx cfg.getInboundCodeSet () ;
if (local codeset)
cout << "server LocalCodeSet request context:" << local codeset->c str() << endl;
if (outbound codeset)
cout << "server OutboundCodeSet request context:" << outbound codeset->c str() << endl;
if (inbound codeset)
cout << "server InboundCodeSet request context:" << inbound codeset->c_str() << endl;
// Add code to change the reply context

registered ctx = cur.reply contexts();

AnyType & 118n reply ctx =
registered ctx->get context (IT ContextAttributes::I18N INTERCEPTOR SERVER QONAME, true);

ServerConfiguration & i118n reply ctx cfg =
dynamic cast<ServerConfiguration&> (i18n reply ctx);

// Set the local codeset to match the binding encoding

static const String LOCAL CODE SET = "ISO-8859-1";
118n_reply ctx cfg.setLocalCodeSet (LOCAL CODE_SET) ;

String & set local context = (*il8n reply ctx cfg.getLocalCodeSet()) ;

assert (set local context == LOCAL CODE SET) ;
}

109

CHAPTER 5 | Using Artix with International Codesets

Example 11: Accessing i18n in C++ Server Code

catch (IT Bus::ContextException& ex)
{
cout << "Error with server context" << ex.message() << endl;
}
catch (IT Bus::Exception& ex)
{
cout << "Error with server context" << ex.message() << endl;
}
catch (...)
{

cout << "Unknown Error with server context" << endl;

}

Artix configuration settings Finally, you must also enable the i18n message interceptor in your Artix
configuration file (artix.cfqg). Example 12 shows the required settings:

Example 12: Artix Configuration File Settings

// Add to a demo/application scope.

interceptor({
binding:artix:client message interceptor list = "il8n-context:Il8nInterceptorFactory";
binding:artix:server message interceptor list = "il8n-context:Il8nInterceptorFactory";
orb plugins = ["xmlfile log stream", "il8n interceptor"];
event log:filters = ["*=WARN+ERROR+FATAL"];
i
Further information For more information details on writing Artix C++ applications and on Artix

contexts, see Developing Artix Applications with C++.

110

http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm

Routing with International Codesets

Routing with International Codesets

Overview

Routing between
internationalized endpoints

When routing between applications, Artix attempts to correctly map
between different codesets. If both endpoints use bindings that support
internationalization (i18n), Artix uses codeset conversion. If only one of the
endpoints supports internationalization, the Artix endpoint supporting
internationalization attempts to use codeset conversion on the messages.

The following bindings do not natively support internationalization:

® Tagged
* G2++
* XML

However, for these bindings you can use the Artix i18n interceptor to
perform codeset conversion on the message buffer before it is placed on the
wire. For more details, see Writing Artix Contracts.

When Artix is routing between internationalized endpoints, the receiving
endpoint and the sending endpoint both behave independently of each
other.

For example, if one endpoint of a router receives a request in Shift_JIS and
the router is configured to use 1ISO-8859-1, the Shift_JIS request is properly
decoded by the router.

However, when the request is passed on by the router, it is passed on in
ISO-8859-1. If the two codesets are not compatible, there is a good chance
that data will be lost in the conversion and the request will not be properly
handled.

Note: If the codesets are not compatible, and data is lost in the router,
Artix does not generate a warning.

111

message URL ../contract/index.htm

CHAPTER 5 | Using Artix with International Codesets

Routing from
non-internationalized to
internationalized bindings

Routing from internationalized to
non-internationalized bindings

112

When Artix is routing from a non-internationalized endpoint to an
internationalized endpoint, it uses the default codeset specified in the
router’s configuration for writing messages to internationalized endpoints. If
the Artix router is configured to encode messages using a codeset that is
different from the one used by the endpoint, you will lose data.

For example, if a Tibco application makes a request on a Web service
through a router, the router receives non-internationalized data from the
Tibco application. And the router then writes the SOAP message using the
codeset specified in its configuration. If the Web service and the router are
both configured to write in us-dk, the operation proceeds without a problem.
The router receives the encoded response from the server and passes it back
to the Tibco binding.

However, if the Web service is configured to accept data using us-dk, and
the router is configured to encode data using Chinese, data may be lost
between the router and the Web service due to codeset incompatibility.

When Artix is routing SOAP messages to a non-SOAP endpoint, such as a
Tuxedo server on a mainframe using the fixed plug-in, Artix handles the
message transformations so that the SOAP application receives responses in
the correct codeset.

For example, a Web service client in a Chinese locale encodes its requests in
eucTW and invokes on a service that is hosted on a mainframe that is
behind an Artix router, as shown in Figure 3.

.
%% Artix Router Mainframe
eucTwW \
SOAP Fixed
SOAP Cllent\l Plug-in PIug-in TUX Service

0AP i =
A el d G T

Figure 3: Routing Internationalized Requests

Routing with International Codesets

The Artix router would process the request as follows:

1.

On receiving the SOAP request, the router inspects the XML prologue
and decodes the message using the specified codeset (in this case,
eucTw).

The fixed binding plug-in then writes out the message to the
mainframe service.

When the mainframe sends its response back to the router, the fixed
binding decodes the message and passes it back to the SOAP plug-in.
The SOAP plug-in inspects the message and determines the request to
that corresponds it.

The SOAP plug-in then encodes the message using the codeset
specified in the request (in this case, eucTW), and passes the response
to the client.

113

CHAPTER 5 | Using Artix with International Codesets

114

Part Il

Deploying Artix Services

In this part This part contains the following chapters:
Deploying Services in an Artix Container page 117
Deploying an Artix Transformer page 149
Deploying a Service Chain page 161
Deploying High Availability page 169
Deploying Reliable Messaging page 189

115

116

In this chapter

CHAPTER 6

Deploying Services
In an Artix
Container

The Artix container enables you to deploy and manage C++
and Java services dynamically. For example, you can deploy a
new service into a running container, or perform runtime tasks
such as start, stop, and list existing services in a container.

This chapter discusses the following topics:

Introduction to the Artix Container page 118
Generating a Plug-in and Deployment Descriptor page 123
Running an Artix Container Server page 128
Running an Artix Container Administration Client page 131
Deploying Services on Restart page 136
Running an Artix Container as a Windows Service page 140
Debugging Plug-ins Deployed in a Container page 145

117

CHAPTER 6 | Deploying Services in an Artix Container

Introduction to the Artix Container

Overview

Artix plug-ins

Benefits

Main components

118

The Artix container provides a consistent mechanism for deploying and
managing Artix services. This section provides an overview the Artix
container architecture and its main components. The Artix container is the
recommended way to deploy Artix services. To use the container, your
services should be developed as Artix plug-ins.

You can write Artix Web service implementations as C++ and Java
plug-ins. An Artix plug-in is a code library that can be loaded into an Artix
application at runtime.

Artix provides a platform-independent framework for loading plug-ins
dynamically, based on the dynamic linking capabilities of modern operating
systems (using shared libraries, DLLs, and Java classes).

Writing your application as an Artix plug-in means that you need to write
less code, and that you can deploy your services into an Artix container.
When you deploy your service into a container, this eliminates the need to
write your own C++ or Java server mainline. Instead, you can deploy your
service by simply passing the location of a generated deployment descriptor
to an Artix container's administration client. This provides a powerful
programming model where the code is location independent.

In addition, the Artix container retains information about the services that it
deploys. This enables the container to reload services dynamically when it
restarts.

The Artix container architecture includes the following main components:
® Artix container server

® Artix container service

® Artix service plug-in

® Artix deployment descriptor

® Artix container administration client

® WSDL contract

How it works

Introduction to the Artix Container

Figure 4 shows an simple overview of how the main Artix container
components interact. Some user-defined service plug-ins are deployed into
an Artix container server, along with an Artix container service.

When the Artix container service is running, you can then use a container
administration client to communicate with it at runtime. This client enables
you to deploy and manage your services dynamically.

An Artix container service can run inside any Artix bus. Because it is
implemented as an Artix plug-in, it can be loaded into any application. The
recommended approach is to deploy it into an Artix container server, as
shown in Figure 4.

Admin Client Container Server
™
I:l - B I ContainerService

© © ©

Service Service Service
One Two Three

D Java service plug-in

I:‘ C++ service plug-in

Figure 4: Artix Container Architecture

119

CHAPTER 6 | Deploying Services in an Artix Container

Artix container server

Artix deployment descriptor

Artix container service

120

An Artix container server is a simple Artix application that hosts the
container service. It consists of a server mainline that initializes a bus and
loads the Artix container service, which enables you to remotely deploy and
manage your services.

You can run an Artix container server using the it _container command. If
your application requires some configuration, you can start an Artix
container server with a configuration scope. For more details, see “Running
an Artix Container Server” on page 128.

When deploying a user-defined service into an Artix container, you must
pass in a generated Artix deployment descriptor. This is a simple XML file
that specifies the details such as:

® Service name.

® Plug-in that implements the service.

® Whether the plug-in is C++ or Java.

You can generate a C++ or Java deployment descriptor by using Artix code

generation commands. For more details, see “Generating a Plug-in and
Deployment Descriptor” on page 123.

The Artix container service is a remote interface that supports the following
operations:

® List all services in the application.

® Stop a running service.

® Start a dormant service.

® Remove a service.

® Deploy a new service.

® Get an endpoint reference for a service.
® Get the WSDL for a service.

® Get the URL to a service’s WSDL.

® Shut down the container service.

When an Artix container service deploys a new service, it loads the
appropriate plug-ins, sets up and activates your service.

Artix container administration
client

Multiple Artix services and
containers

Artix container demos

Introduction to the Artix Container

The Artix container service assumes that the plug-ins are available in your
application environment, so you must ensure that they are in the expected
library path. The Artix container service supports C++ and Java
applications, provided that they are compiled into plug-ins.

The Artix container service has a WSDL-based interface and so can be used
with any binding or transport.

Because the Artix container service has a WSDL-based interface with a
SOAP/HTTP binding, you can communicate with it using any client. Artix
provides a command-line tool that uses the Artix container stub code, and
which enables you to manage the container service easily. The Artix
container administration client currently supports SOAP/HTTP only.

You can run an Artix container administration client using the

it _container admin command. This client makes all the container service
operations available through simple command-line options. For more
details, see “Running an Artix Container Administration Client” on

page 131.

You can deploy single or multiple Artix services in a single Artix container.
How many containers you should have depends on the needs of your
system. In general, it is recommended that you deploy services that need to
co-exist into the same container. Otherwise, you should partition your
services into different Artix containers.

The following demos in your Artix installation show use of the Artix
container:

® .. .\demos\advanced\container\deploy plugin

This shows how starting with a .wsdu file, you can use the wsdltocpp
or wsdltojava command-line tool to generate a C++ or Java plug-in
and deployment descriptor. It then shows how to deploy the plug-in

into the Artix container.

121

CHAPTER 6 | Deploying Services in an Artix Container

b ... \demos\advanced\container\deploy routes

This shows how routes are simply advanced services that happen to be
implemented by the router plug-in, and whose implementation is just a
proxy to a different service. It shows how you can dynamically deploy
and manage routes in the Artix container.

... \demos\advanced\container\secure container

This shows how to run a container server in a secure mode with client
authentication and authorization. It shows how to restart a service in
secure mode, and how to shutdown a container by requesting a user
name and password from a console. For details of securing a
container, see the Artix Security Guide.

Several other advanced Artix demos also use the Artix container, for
example:

b ... \demos\advanced\locator
® ... \demos\advanced\session management

b .. .\demos\routing

122

../security_guide/index.htm

Generating a Plug-in and Deployment Descriptor

Generating a Plug-in and Deployment
Descriptor

Overview Artix services are implemented by C+ + or Java plug-ins. When you want to
deploy a service into an Artix container, the first step is to generate a plug-in
from a WSDL contract.

For a C++ service, this generates a dynamic library (Windows), or shared
library (UNIX), and a dependencies file. For a Java service, this generates
the Java classes required to implement the plug-in. An XML deployment
descriptor is also generated for both C++ and Java service. You can
generate a plug-in and deployment descriptor using any of the following
commands:

® wsdltocpp
® wsdltojava

® wsdd

Using wsdltocpp For example, to generate a C+ + plug-in library and a deployment descriptor
for a specified .wsdu file, use the following command:

wsdltocpp -n deploy plugin -impl -server -m NMAKE:library
-plugin:it simple service cpp bus plugin -deployable simple service.wsdl

The -plugin and -deployable options are the most important. -plugin
generates a new plug-in, and -deployable generates a corresponding
deployment descriptor.

The generated plug-in can have an optional name (in this case,

it _simple service cpp bus plugin). If @ name is specified, the generated
plug-in library uses this name. The name is ignored if the .wsd1 file contains
more than one service definition. If no plug-in name is set or ignored, the
plug-in name takes the following format: serviceNamePort TypeName.

123

CHAPTER 6 | Deploying Services in an Artix Container

Using wsdltojava

124

In this example, -impl generates the skeleton code for implementing the
server defined by the WSDL. -server generates code for a server sample
implementation, and -m generates a makefile.

Note: You specify a11 as the make target; the default target does not
generate the dependencies file (.dps).

For full details on using the wsditocpp command, see the Artix Command
Line Reference, or Developing Artix Applications in C++.

C++ deployment descriptor

The deployment descriptor generated for the example C+ + service is as
follows:

<?xml version="1.0" encoding="utf-8"?>
<ml:deploymentDescriptor xmlns:ml="http://schemas.iona.com/deploy">
<service xmlns:servicens
="http://www.iona.com/bus/tests">servicens:SimpleServiceService</service>
<plugin>
<name>it simple service cpp bus plugin</name>
<type>Cxx</type>
</plugin>
</ml:deploymentDescriptor>

The type element tells the Artix container that this is a C++ service.

For example, to generate a Java plug-in library and a deployment descriptor
for a specified .wsd1 file, use the following command:

wsdltojava -impl -server -ant -plugin -deployable simple service.wsdl

The -plugin and deployable options are the most important. -plugin
generates a new plug-in, and -deployable generates a corresponding
deployment descriptor.The name of the Java class that implements the
plug-in factory is derived from the port type name in the WSDL file.

In this example, -imp1 generates the skeleton class for implementing the
server defined by the WSDL. -server generates code for a server sample
implementation, and -ant generates an Ant build.xml file.

For more details on using the wsditojava command, see the Artix
Command Line Reference, or Developing Artix Applications in Java.

../command_ref/index.htm
../command_ref/index.htm
../prog_guide/index.htm
../command_ref/index.htm
../command_ref/index.htm
../java_guide/index.htm

Generating a Plug-in and Deployment Descriptor

Java deployment descriptor
The deployment descriptor generated for the example Java service is as
follows:

<?xml version="1.0" encoding="utf-8"?>
<ml:deploymentDescriptor xmlns:ml="http://schemas.iona.com/deploy">
<service xmlns:servicens
="http://www.iona.com/bus/tests">servicens:SimpleServiceService</service>
<plugin>
<name>it simple service java bus plugin</name>
<type>Java</type>
<implementation>com.iona.bus.tests.SimpleServiceServicePluginFactory</implementation>
</plugin>
</ml:deploymentDescriptor>

The type element tells the Artix container that this is a Java service.

Using wsdd For more complex deployment descriptors, you can use the Web services
deployment descriptor (wsdd) command as an alternative to wsdltocpp and
wsdltojava
The descriptors generated by wsdltocpp and wsdltojava do not include all
the possible information that descriptors can have—for example,
providerinamespace(Seethe advanced/container/deploy routes demo).

The following example uses the wsdd command:

wsdd -service {http://www.iona.com/test}CustomService
-pluginName testplugin -pluginType Cxx

The full syntax of the wsdd command is as follows:
wsdd -service QOName -pluginName PluginName -pluginType Cxx|Java
[-pluginImpl Library/ClassName] [-pluginDir Dir] [-wsdlurl

WsdlLocation] [-provider ProviderNamespace] [-file
OutputFile] [-d OutputDir] [-h] [-v] [-verbose] [-quiet]

125

CHAPTER 6 | Deploying Services in an Artix Container

The following arguments are required:

Table 13: Required Arguments to wsdd

-service OName Specifies the name of a service to be
deployed.

-pluginName PluginName | Specifies the name that a plug-in is
registered as.

-pluginType Cxx|Java Specifies the name of a plug-in type.

The following arguments are optional:

Table 14: Optional Arguments to wsdd

-pluginImpl Specifies either a library name (.d11/.so)
Library/ClassName for a C++ plug-in, or a class name of the
plug-in factory for Java plug-ins

-pluginDir Dir Specifies the location where plug-in
library/classes are located. This option, if
specified, has no effect on deployment.

-wsdlurl WsdlLocation Specifies a URL to a service WSDL.

-provider Specifies the provider namespace. Used in
ProviderNamespace the container/deploy routes demo. For
example, this can be used by plug-ins to
provide servant implementations for more
than one service.

-file OutputFile Specifies the name of the generated
descriptor file. The default is
deployserviceLocalName. For example, if
-service
{http://www.iona.com/test}CustomServic
e is used, it is deployCustomService.xml

-d OutputDir The location where a descriptor should be
generated.

-hlelp] Displays detailed help information for each
option.

126

Generating a Plug-in and Deployment Descriptor

Table 14: Optional Arguments to wsdd

-v[ersion] Displays the version of the tool.
-verbose Displays output in verbose mode.
-quiet Displays output in quiet mode.
Adding business logic For both C++ and Java applications, you must still add your business logic

code to the servant implementation class.

The supplied Artix demos include a fully implemented servant file instead of
the generated file.

Artix deployment descriptors As well as hosting user-defined services, an Artix container can be used to
host IONA services such as the locator. The following is an example
generated deployment descriptor for the locator service:

<?xml version="1.0" encoding="utf-8"?>
<ml:deploymentDescriptor xmlns:ml="http://schemas.iona.com/deploy">
<service xmlns:servicens
="http://www.iona.com/bus/tests">servicens:SimpleServiceService</service>
<plugin>
<name>it simple service java bus_plugin</name>
<type>Java</type>
<implementation>com.iona.bus.tests.SimpleServiceServicePluginFactory</implementation>
</plugin>
</ml:deploymentDescriptor>

For details on deploying a locator in the container, see the Artix Locator
Guide.

127

../locator_guide/index.htm
../locator_guide/index.htm

CHAPTER 6 | Deploying Services in an Artix Container

Running an Artix Container Server

Overview

Using the it_container command

128

An Artix container server is an Artix server mainline that initializes an Artix
bus, and loads an Artix container service.

As well as hosting your own service plug-ins, the Artix container server can
also be used to host Artix services, such as the locator, session manager,
router, and so on. You can run as many instances of the Artix container
server as your applications require.

This section explains how to run an Artix container server process using the
it container command.

To run an Artix container server, use the it container command. This has
the following syntax:

it container [-s[ervice] Options] [-d[aemon]] [-plort]
PortNumber] [-publish [-file Filename]] [-deploy
DeploymentDescriptor] [-deployfolder] [-v[ersion]] [-hlelp]]

-s[ervice] On Windows, runs the container server as a

Windows service. Without this parameter, it
runs in foreground. See “Running an Artix
Container as a Windows Service” on

page 140.

-d[aemon] On UNIX, runs the container server as a

daemon in the background. Without this
parameter, it runs in the foreground.

-plort] PortNumber Specifies the port number for the container
service.

-publish [-file Filename] Specifies the location to export the container
service URL. By default, this is

/ContainerService.url. YOU can override
the default using -file.

Running the container server in
the background

Publishing the container service
URL in a file

Running an Artix Container Server

-deploy Descriptor Deploys a service using a specified
deployment descriptor (for example, at
startup). This is instead of deploying with the
container service (see “Using the
it_container_admin command” on
page 131).

-deployfolder Path Specifies the location of a local folder to store
deployment descriptors. This enables
redeployment of existing services on restart
(see “Deploying Services on Restart” on

page 136).
-v[ersion] Prints version information and exits.
-hlelp] Prints usage summary and exits.

On UNIX, to run a container server in the background, use the it _container
-daemon command.

If the -daemon option is not specified, the container server runs in the
foreground of the active command window. This option does not apply on
Windows.

To publish a container service URL, use the -pub1ish option, for example:

it container -publish -file
my directory/my container service.url

The -publish option tells the container server to publish the container
service URL in a local file. This URL can then be later retrieved by the
it _container admin command, which uses it to contact the container
service, and initialize a container service client proxy.

By default, a containerservice.url file is created in the local directory.
Use the -file option to override this behavior.

129

CHAPTER 6 | Deploying Services in an Artix Container

Running the container server on a
specified port

Specifying configuration to the
container server

130

To run a container server on a specific port, specify the -port option, for
example:

it container -port 1111
it container -port 2222

This port is used for the container service. This is also the port for the
wsdl publish plug-in. The container administrative client uses

wsdl publish to get contracts for the container service and for all other
services hosted by the container.

This port number can then be used by a container service administration
client when contacting the container server, for example:

it container admin -port 1111

You can run it_container without any configuration. This is sufficient for
many simple applications. However, if your application requires additional
settings, you can start it container with command-line configuration.

For simple applications, the container server loads any plug-ins that you
need to instantiate your service, so you do not normally need to configure a
plug-ins list, or any other configuration. However, some advanced features
may involve launching it container with command-line configuration.

The following example is from the . .demos\advanced\locator demo and
shows running the locator service in the container server:

it container -BUSname demo.locator.service -BUSdomain name
locator -BUSconfig domains dir ../../etc -publish -file
../../etc/ContainerService.url

In this example, the locator service picks up specific configuration from its
demo. locator.service scope. For more details, see the demos for the
locator, session manager, and router.

Running an Artix Container Administration Client

Running an Artix Container Administration
Client

Overview This section explains how to use the Artix container administration client to
perform tasks such as deploying a generated plug-in into the Artix container
server, and retrieving a service URL. It explains the full syntax of the
it container admin command, which is used to control the Artix container
administration client.

Using the it_container_admin The full syntax for the it _container admin command is as follows:
command

-deploy -file dd.xml Deploys a new service into the container
server. This involves loading a plug-in
that contains the service
implementation. You must specify an
Artix deployment descriptor using the
-file option.

-listservices Displays all services in the application.
Shows the state of each service (for
example, active, de-activated, or
shutting down).

-startservice -service Restarts the specified service that is

{Namespace}LocalPart visible but dormant, or that has been
previously stopped.

-stopservice -service Stops the specified running service.

{Namespace}LocalPart

-removeservice -service Removes and undeploys all trace of the

{Namespace}LocalPart specified service from the application.

-publishreference -service Gets an endpoint reference for the

{Namespace}LocalPart specified service. The -file option

[-file Filename] publishes the reference to a local file.

This can then be used to initialize a
client application.

131

CHAPTER 6 | Deploying Services in an Artix Container

132

-publishwsdl -service
{Namespace}LocalPart
[-file Filename]

-publishurl -service
{Namespace}LocalPart
[-file Filename]

—-shutdown [-soft]

-port ContainerPort

-host ContainerHostname

-container File.url

-getlogginglevel [-subsystem
SubSystem] [-service
{Namespace} LocalPart]

-setlogginglevel -subsystem
SubSystem -level Level
[-propagate] [-service
{Namespace} Localpart]

Gets the WSDL for the specified service.
The -file option publishes the WSDL to
a local file. This can then be used to
initialize a client application.

Gets an HTTP URL for the specified
service from which you can then
download the WSDL. The -file option
publishes the URL to a local file. This
can then be used to initialize a client
application.

Shuts down the entire application. The
-soft option shuts down gracefully.

Contacts the container server on the
specified port. See “Running the
container server on a specified port” on
page 130. This can be used with other
options instead of -container.

Contacts the container server on the
specified host. Defaults to localhost if
unspecified. The -host option is for use
with -port only.

Runs the specified container service.
This can be used with other options
instead of -port and -host.

Gets the dynamic logging level for the
specified subsystem or service. See
“Dynamic Artix Logging” on page 56.

Sets the logging level for a specified
subsystem of a specified service. See
“Dynamic Artix Logging” on page 56.

Note: By default, it container admin looks in the local directory for the
ContainerService.url file. If this file is not local, use the -container
option, or the —-port and -host options, to contact the container.

Deploying the generated plug-in

Getting service WSDL

Running an Artix Container Administration Client

To deploy a generated plug-in into the container server, use the -deploy
option, for example:

it container admin -deploy -file
. ./plugin/deploySimpleServiceService.xml

The -file option specifies a generated deployment descriptor. This lists the
service that this plug-in can provide, the plug-in name, and plug-in type. In
this example, the portable C++ plug-in library name is expected to be the
same as the plug-in name. The library is expected to be located in the
../plugin directory.

When a container service loads the plug-in, it registers a servant for the
service that is described in the deployment descriptor.

To get the WSDL for a deployed service from the container, use the
-publishwsdl option, for example:

it container admin -publishwsdl -service
{http://www.iona.com/bus/demos}WelliWisherService -file
my service

The -publishurl option gets the service’s WSDL contract. The -file option
publishes the URL to a local file. When the client runs, it reads the
published WSDL from the local file, and uses it to initialize a client stub,
and communicate with a deployed service.

Using the -publishreference, -publishwsdl, and -publishurl options
means that you can write WSDL contracts without hard-coded ports, and
that your clients will still be able to call against them.

133

CHAPTER 6 | Deploying Services in an Artix Container

Getting a service URL

Listing deployed services

Stopping deployed services

134

To get a URL for a deployed service from the container service, use the
-publishurl option, for example:

it container admin -publishurl -service
{http://www.iona.com/bus/tests}SimpleServiceService -file
my service

The -publishurl option gets a URL to the service’s WSDL contract. The
-file option publishes the URL to a local file. When the client runs, it reads
the published WSDL URL from the local file, and uses it to initialize a client
stub, and then communicate with a deployed service.

To display a list of the services in your application, use the -1istservices
option, for example:

it container admin -port 2222 -listservices
{http://www.iona.com/demos/wellwisher}WellWisherService ACTIVATED
{http://www.iona.com/demos/greeter}GreeterService ACTIVATED

This example shows the output listed under the it container admin
-listservices command. The acTIvaTED state indicates that both services
are running. In this example, the -port option is used to contact a container
server that was already started on port 2222.

To stop a currently deployed service, use the -stopservice option, for
example:

it container admin -port 2222 -stopservice -service
{http://www.iona.com/demos/wellwisher}WellWisherService

This following example shows the output from -listservices after the
service has been stopped.

it container admin -port 2222 -listservices
{http://www.1iona.com/demos/wellwisher}WellWisherService DEACTIVATED

{http://www.iona.com/demos/greeter}GreeterService ACTIVATED

The wellWisherService is now listed as DEACTIVATED.

Specifying configuration to the
administration client

Running an Artix Container Administration Client

You can run it_container admin without any configuration. This is
sufficient for most simple applications. However, if your application requires
additional settings, you can start it container admin with command-line
configuration.

For simple applications, the container service loads any plug-ins that you
need to instantiate your service, so you do not normally need to configure a
plug-ins list, or any other configuration. However, some advanced features
may involve launching it container admin with command-line
configuration.

The following example shows shutting down the locator service using the
it _container admin -shutdown option:

it container admin -ORBdomain name locator -ORBconfig domains_dir
../../etc -container ../../etc/ContainerService.url -shutdown

For more details, see the demos for the locator, session manager, and
router.

135

CHAPTER 6 | Deploying Services in an Artix Container

Deploying Services on Restart

Overview

How it works

136

The Artix container can be configured to retain information about the service
plug-ins that it has deployed. This enables it to reload services automatically
on restart. This ability to remember deployed services is known as
persistent deployment.

To enable persistent deployment, you must configure the container to use a
local folder to store deployment descriptors. These descriptors specify what
the container should deploy at startup. The container ensures that this folder
accurately reflects what is deployed in case of a restart.

To reload services that have been deployed by the container service before
shutdown, the container persists all deployment descriptors when
processing new deployment requests. The container needs to know the
location of a local folder where deployment descriptor files are saved to, and
where to read them from on restart.

The container finds the location of this folder from either:
® A command-line argument passed to the container.
® A configuration variable in an Artix configuration file.

Note: The command-line arguments take precedence over the
configuration variables.

At startup, the container looks in the configured deployment folder and
deploys the contents of the folder. It deploys all services that it finds in the
folder where possible. If any deployment fails, the container fails to start.

Persistent deployment modes

Enabling dynamic read/write
deployment

Deploying Services on Restart

You can configure the deployment descriptor folder for either read/write or
read-only deployment.

Dynamic read/write deployment

In this case, the container adds and removes files from the deployment
folder dynamically as services are deployed or removed from the container.
When a call to deploy a service is made, a descriptor file is added to the
folder. When a call to remove a service is made, a descriptor file is removed,
and the service is not redeployed upon restart.

Read-only deployment

The deployment descriptor folder can also be used as a read-only
initialization folder that predeploys the same required set of services after
every restart.

When a deployment folder is read-only, the container predeploys the same
set of services on restart. No deployment descriptors are removed from, or
saved into, a read only deployment folder by the container.

By making a deployment folder read-only, you can share deployment
descriptors between multiple container instances. In this scenario, you can
enable a single container instance to modify the contents of this folder, and
all container instances are affected after restart.

You can enable a read/write deployment folder using the following
command-line arguments:

it container -deployfolder ../etc
Alternatively, you can set the following variable in a configuration file:
plugins:container:deployfolder="../etc";

This means that the ../etc folder is used for predeploying services and
persisting new descriptors.

137

CHAPTER 6 | Deploying Services in an Artix Container

Enabling read-only deployment

Predeploying a service on startup

Naming conventions

138

You can enable a read-only deployment folder using the following
command-line arguments:

it container -deployfolder -readonly ../etc
Alternatively, you can set the following variables in a configuration file:

plugins:container:deployfolder="../etc";
plugins:container:deployfolder:readonly="true";

This means that the .. /etc folder is used for predeploying services only.

The it _container command also provides a -deploy argument, which can
be used to predeploy a single service on startup, for example:

it container -deploy deployCORBAService.xml

The -deploy and -deployfolder arguments can be used together, for
example:

it container -deploy deployMyService.xml -deployfolder ../etc

This means that Myservice identified by deployMyService.xmil, and all
services identified by descriptors in the .. /etc folder, are deployed. The
deployMyService.xml that is specified using the -deploy argument is not
copied into a deployment folder. If you wish to copy a descriptor to the
deployment folder, use the following command:

it container admin -deploy -file deployMyService.xml
-deployfolder -deployfolder ../etc

The Artix container uses the following format when persisting deployment
descriptors into files:

deployLocalServiceName.xml

You should follow the same pattern when generating custom descriptors
where possible. The container expects that all files in the deployment folder
that have the .xm1 extension are valid deployment descriptors.

Removing a service

Warnings and exceptions

Further information

Deploying Services on Restart

By default, deployment descriptors generated by Artix tools use the name of
the service's local part. If you have two services with the same local part but
different namespaces, you should use the wsdd -file option to avoid the
name clashing. For more details, see “Using wsdd” on page 125.

When using a read/write deployment folder, you can remove a service by
calling it _container admin -removeservice ON a running container. For
example:

it container admin -removeservice -service
{http://www.iona.com/bus/tests}SimpleServiceService

Alternatively, you can remove the deployment descriptor file from the folder.
Both of these approaches ensure that the container does not reload the
service at startup.

When using a read-only folder, removing a service using -removeservice
does not prevent it from being redeployed after a restart. Only removing a
descriptor file from the folder prevents it from being redeployed.

Note: Copying or removing files from the deployment folder has no
impact if the container is already running. The container cannot react to
these events. The contents of the folder is read once at startup. This only
applies to services that are started using deployment descriptors.

It is possible that using different descriptors might lead to the container
attempting to deploy the same service twice.

In this case, the container logs a warning message and proceeds with
deploying other services. An exception is thrown if an attempt to deploy the
same service is made from an administration console.

For a working example of persistent deployment, see the following Artix
demo:

.../demos/advanced/container/deploy plugin

139

CHAPTER 6 | Deploying Services in an Artix Container

Running an Artix Container as a Windows

Service

Overview

Format of service names

Setting your environment
variables

140

On Windows, you can install instances of an Artix container server as a
Windows service. By default, this means that the installed container will
start up when your system restarts.

This feature also enables you to manage the container using the Windows
service controls. For example, you can start or stop a container using the
Windows Control Panel, or Windows net commands, such as net stop

ServiceName.

When a container is installed as a Windows service, the container name
takes the following format in the Windows registry:

ITArtixContainer ServiceName

For example, if you call your service test _service, the name generated by
the install command that appears in the registry is:

ITArtixContainer test service
This name is stored under the following entry in the registry:

HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Services

Before installing the Artix container as a Windows service, you must ensure
that your system environment variables have been set correctly, and that
your machine has rebooted. These steps can be performed either when
installing Artix, or at any time prior to installing the container as a Windows
service.

Your environment variables enable the container to find all the information it
needs on restart. They must be set as follows:

Running an Artix Container as a Windows Service

Environment
Variable

Setting

IT PRODUCT DIR

Your Artix installation directory (for example,
c:\iona).

Note: This is needed only if your paTH specifies
$IT_PRODUCT DIR$, instead of the full path to any
Artix directories.

PATH Should include the following:
® Any C++ plug-ins that will be deployed by
the container.
® InstallDir\bin and
InstallDir\artix\Version\bin.
® The JRE libraries, JpkInstallDir\jre\bin
and JpKInstallDir\jre\bin\server.
CLASSPATH Should include the following:

Any Java plug-ins that will be deployed by
the container. If the plug-in is packaged in a
JAR, you must list the .jar file. If .class
files are used, only the directory needs to be
listed.

The Artix runtime JAR,
InstallDir\artix\Version\lib\artix-rt.
jar

InstallDir\etc and
InstallDir\artix\Version\etc

Your JDK/JRE runtime JAR (for example,
JDKInstallDir\jre\lib\rt.jar).

Note: If you used Microsoft Visual C++ 7.1 to create your service
plug-in, include the following in your paTH, in this order:

InstallDir\bin\vc71l; InstallDir\bin; InstallDir\artix\Version\bin\
vc71l;InstallDir\artix\Version\bin

141

CHAPTER 6 | Deploying Services in an Artix Container

Installing a container

142

To install a container as a Windows service, use the it _container
-service install command:

it container -service install [-ORBParamName [ParamValue]]
-displayname Name -svcName ServiceName

These parameters are described as follows:

—ORBParamName

—-displayname

—svcName

Represents zero or more -ORBParamName command-line
options (for example, -ORBlicense file). These
specify the location of the Artix license file, domain
name, configuration directory, or ORB name.

These values must be specified either as command-line
parameters or environment variables. However,
specifying on the command line allows easier
deployment of multiple it container instances as
multiple Windows services.

Specifies the name that is displayed in the Windows
Services dialog (select Start|Settings | Control

Panel | Application Tools | Services). The -displayname
parameter is required.

Specifies the service name that is listed in the Windows
registry (select Start| Run, and type regedit). The
-svcName parameter is required.

In addition to the -service install parameters, the following
it container parameters also apply:

—port

—deployfolder

Specifies the port that the container will run on (see
“Running the container server on a specified port” on
page 130). This parameter is required.

Specifies a local folder to store deployment descriptors.
This enables redeployment on startup (see “Deploying
Services on Restart” on page 136). This parameter is
optional.

Running an Artix Container as a Windows Service

Example command

The following example shows all the parameters needed to install a
container instance as a Windows service:

it container -service install -BUSlicense file c:\InstallDir\etc\licenses.txt
-BUSconfig dir c:\InstallDir\artix\Version\etc -BUSdomain name artix
—-displayName "My Test Service" -svcName my test service -port 2222
—-deployfolder C:\deployed files

If you do not set your license file, domain name, and configuration directory,
as environment variables, you must set them as -Bus Paramname entries (the
recommended approach). The -Busname parameter is optional.

Example service

The installed Windows service is listed in the Services dialog, as shown in
Figure 5.

J Action Wiew |J1- -D| | ||§|J > W I E
Tree I Mame # | Diescription | Statuz | Startup Type | Log On &g | ;I
W % Meszenger Sends andr.. Started Automatic LocalSystem
% MGABGEXE Started Automatic LocalSystem
Supportz pa.. Started Automatic LocalSystem
% Mettesting Remate .. Allows auth... M anual LocalSystem
Metwork Aszzociates .. Started Automatic LocalSystem
% Metwork Associates ... Started Automatic LocalSpstem
% Metwork Connections Manages 0. Started M anual LocalSystem
% Metwork DDE Provides ne... Manual LocalSpstem
% Metwork DDE DSDM Manages =... M anual LocalSystem
% MT LM Security Sup... Provides ze... Started Automatic LocalSystem
% Performance Logz a... Configures ... M anual LocalSystem
% Flug and Flay Manages d... Started Automatic LocalSystem
% Partable Media Seria.. Retrieves th.. Manual LocalSpstem
% Frint Spooler Loads files t... Started Automatic LocalSystem
% Protected Storage Providesz pr... Started Automatic LocalSystem
% (o5 RSVP Provides ne.. Marual LocalSpstem
% Rational Cred Mana.. Rational Cr... Started Automatic LocalSpstem
% Rational Lock Mana... Rational Lo.. Started Automatic LocalSpstem
% Remaote Access Aut.. Createsac. Manual LocalSpstem
%% Remate Access Con.. Createsan.. Stared M anual Local3ystern LI
|

Figure 5: Installed Windows Service

143

CHAPTER 6 | Deploying Services in an Artix Container

Uninstalling a container

144

Clicking on My Test service displays the properties shown in Figure 6.

My Test Service Properties [Local Computer] K E3
General | Log DnI Hecoveryl Dependenciesl

Service name: ITArtixContainer my_test_service

Dizplay name:

Description:

Fath to executable:
FADMANartx 3. D5binkit_container. exe’ -0RBproduct_dir "F:\iona" -ORBli

Startup type: Automatic j

Service statug: Stopped

Start | Stop | Bause Eesume |

“r'ou can specify the start parameters that apply when pou start the service
fram here.

Start parameters: I

QK I Cancel Lol

Figure 6: Service Properties

After running the it container -service install command, you must
start the services manually. However, when your computer is restarted, the
installed services are configured to restart automatically.

To uninstall a container as a Windows service, use the it container
uninstall command.

it container -service uninstall -svcName ServiceName
For example:

it container -service uninstall -svcName my artix test

Debugging Plug-ins Deployed in a Container

Debugging Plug-ins Deployed in a Container

Overview

Debugging Artix C++ plug-ins:

When developing and testing Artix plug-ins, you may need to debug your
plug-in code while it runs in the Artix container. This section explains how to
debug C++ and Java plug-ins deployed in an Artix container.

The easiest option is to create an empty project in your development

environment (for example, Microsoft Visual C++ or Sun Workshop), and set

up a debug session. To debug an Artix C+ + plug-in, perform the following

steps:

1. Start your development tool from an environment that is initialized for
Artix (for example, a shell that has already run the artix env script).

2. When configuring the debug session, provide the same details for the
executable and parameters as when starting the Artix container from
command line. Figure 7 shows a Visual C++ example based on the
ArtiX hello world soap http demo.

Project Settings i 2 x|
Settings For: |Win32 Debug » General Debug | C/C++ | Link | Resources | Browse Ir% B
DehugAltix
Cateqgory: IGeneraI ﬂ

Executable for debug session:

|C:\IUNA\artix\4.1\bin\it_[:untainer.exe J

Working directory:

IC:\IONA\ar‘tix\4.1\dEm|:|s\hasil::\hEIInfwnrldfsnapfhttp\cxx\plugi

Program arguments:

|-|Jurt 20211 -deploy .\.\etc\deployCxxSOAPService.xml -ORBna

Remote executable path and file name:

OK | Cancel

Figure 7: Project Settings in Visual C++

145

CHAPTER 6 | Deploying Services in an Artix Container

3. Load the application plug-in source code into your development
environment, and set the breakpoints accordingly.

4. Start the debug session. On Windows, using Visual C++, starting the
debug session may raise the exception shown in Figure 8:

Microsoft Visual C++ | x|

”!5 One or more breakpoints cannot be set and have been disabled. Execution will stop at the beginning of the program.

Figure 8: Visual C++ Debug Exception

This is because the Artix container executable does not contain any
debug information, and as a result, Visual C++ disables all previously
set breakpoints. When the container has started in the debugger, you
may need to re-enable the breakpoints in the application code.

Debugging Artix Java plug-ins: The Artix container creates an internal Java Virtual Machine (JVM) to run
Artix Java plug-in code. Because this JVM runs in-process with the Artix
container, unlike with C++, you can not setup a local Java debug session in
your Java development environment.

Instead, you must attach your debugger to the JVM running in the Artix
container. You can do this using the Java Platform Debugging Architecture
(JPDA), supported by most JVM implementations, and Java development
environments, such as Eclipse. JPDA must be explicitly enabled in the JVM.
For example, the following JVM options enable JPDA on port 8787:

—Xdebug -Xrunjdwp:transport=dt socket,address=8787, server=y, suspend=y

To debug an Artix Java plug-in, perform the following steps:

1. Instruct the Artix container to set the JVM options for the JVM that it
creates internally. You can do this by setting the Artix jvm options
configuration variable in the Artix configuration file, as follows:

jvm options = ["-Xdebug", "-Xrunjdwp:transport=dt socket,address=8787, server=y, suspend=y"];

146

Debugging Plug-ins Deployed in a Container

2. When starting the Artix container, the execution stops at the creation of
the internal JVM until a debugger attaches to the specified port. If you
do not want the JVM to halt its execution at startup, set suspend=n.

Using JDK 1.5
When using JDK 1.5, the JVM confirms the settings by logging the
following to standard output.

Listening for transport dt socket at address: 8787

While the Artix container process should write:

IONA Artix container server startinglListening for transport
dt socket at address: 8787to the console

Using JDK 1.4

When using JDK 1.4.x, this second line is not printed. However you
can confirm that a listener was created on port 8787 by using netstat
or a similar tool.

3. Create a remote debug session in your development environment and
connect to the Artix container internal JVM. This is straightforward in
Eclipse (other tools use similar approaches), as shown in Figure 8.

4. Specify the hostname and port number in the Connect tab of the
wizard.

5. Specify the directory containing the Java source code to the session
using the Source tab. This enables Eclipse to load the application
source code of your Artix plug-in.

Click Debug and the remote debugging session starts.

Set your breakpoints and test your code.

147

CHAPTER 6 | Deploying Services in an Artix Container

& Debug

Create, manage, and run configurations
Attach to a Java virtual machine accepting debug connections

Artix Container JVM
® Eclipse Application
Java Applet
+-[7] Java Application
43 JBoss 2.4.x
1 JBoss 3.0.x
4 IBoss 3.2.x |
1 JBoss 4.0.x
& JBoss AOP Application
1 JBoss Remote
Ju JUnit
+-Jii JUnit Plug-in Test

Standard (Socket Attach) |

=T, Remote Java Applicati localhost
4 8787
3, Celtix 1.0 Process

BA SWT Application

Figure 9: Eclipse Debug Screen

Further information For more information on JPDA, refer to
http://java.sun.com/j2se/1.4.2/docs/guide/jpda/.

148

http://java.sun.com/j2se/1.4.2/docs/guide/jpda/

In this chapter

CHAPTER 7

Deploying an Artix
Transformer

Artix provides an XSLT transformer service that can be
configured to run as a servant process that replaces an Artix
server.

This chapter discusses the following topics:

The Artix Transformer page 150
Standalone Deployment page 153
Deployment as Part of a Chain page 156
Optional Configuration page 159

149

CHAPTER 7 | Deploying an Artix Transformer

The Artix Transformer

Overview

Deployment Patterns

Standalone deployment

150

The Artix transformer provides a means of processing messages without
writing application code. The transformer processes messages based on
XSLT scripts and returns the result to the requesting application. XSLT
stands for Extensible Stylesheet Language Transformations.

These XLST scripts can perform message transformations, such as
concatenating two string fields, reordering the fields of a complex type, and
truncating values to a given number of decimal places. XSLT scripts can also
be used to validate data before passing it onto a Web service for processing,
and a number of other applications.

The Artix transformer is implemented as an Artix plug-in. Therefore, it can
be loaded into any Artix process. This makes it extremely flexible in how it
can be deployed in your environment. If the speed of calls or security is an
issue, the transformer can be loaded directly into an application. If you need
to spread resources across a number of machines, the transformer plug-in
can be loaded in a separate process.

There are two main patterns for deploying the Artix transformer:
® Standalone deployment
® Deployment as part of a chain

The first pattern is to deploy the transformer by itself. This is useful if your
application is doing basic data manipulation that can be described in an
XSLT script. The transformer replaces the server process and saves you the
cost of developing server application code. This style of deployment can also
be useful for performing data validation before passing requests to a server
for processing.

The Artix Transformer

The most straightforward way to deploy the transformer is to deploy it as a
separate servant process hosted by the Artix container server. When
deployed in this way the transformer receives requests from a client,
processes the message based on supplied XSLT scripts, and replies with the
results of the script. In this configuration, shown Figure 10, the transformer
becomes the server process in the Artix solution.

Figure 10: Artix Transformer Deployed as a Servant

Client 5 i

r |"ﬁ_ .
LY =

Artix Artix Service
Transformer

g ——

You can modify the deployment pattern shown in Figure 10 by eliminating
the Artix container server and having your client directly load the
transformer’s plug-in as shown in Figure 11. This saves the overhead of
making calls outside of the client process to reach the transformer However,
it can reduce the overall efficiency of your system if the transformer requires
a large amount of resources to perform its work.

Figure 11: Artix Transformer Loaded by a Client

¢ Client E
=]
| . S| |
: :
Artix
: Transformer :

151

CHAPTER 7 | Deploying an Artix Transformer

Deployment as part of a chain

152

The second pattern is to deploy the Artix transformer as part of a Web
service chain controlled by the Web service chain builder. This deployment
is useful if you need to connect legacy clients to updated servers whose
interfaces may have changed or are connecting applications that have
different interfaces. It can also be useful for a range of applications where
data transformation is needed as part of a larger set of business logic.

Figure 12 shows an example of this type of deployment where the
transformer and the chain builder are both hosted by the Artix container
server. The chain builder directs the requests to the transformer which
transforms messages. When the transformer returns the processed data, the
chain builder then passes it onto the server. In this example, the server
returns the results to the client without further processing, but the results
can also be passed back through the transformer. Neither the client nor the
server need to be aware of the processing.

Figure 12: Artix Transformer Deployed with the Chain Builder

@ Artix Service

Client Chain Builder Server

Y
I||él|

Artix
Transformer

You could modify this deployment pattern in a number of ways, depending
on how you allocate resources. For example, you can configure the client
process to load the chain builder and the transformer. You can also load the
chain builder and the transformer into separate processes.

Standalone Deployment

Standalone Deployment

Overview

Updating the orb_plugins list

Adding an Artix endpoint
definition

To deploy an instance of the Artix transformer you must first decide what
process is hosting the transformer’s plug-in. You must then add the
following to the process configuration scope:

® The transformer plug-in, xslt.

® An Artix endpoint configuration to represent the transformer.

® The transformer’s configuration information.

Configuring the application to load the transformer requires adding it to the
application’s orb_plugins list. The plug-in name for the transformer is xs1t.
Example 13 shows an orb plugins list for a process hosting the
transformer.

Example 13: Plug-in List for Using XSLT

orb plugins={"xslt", "xml log stream"};

The transformer is defined as a generic Artix endpoint. To instantiate it as a
servant, Artix must know the following details:

® The location of the Artix contract that defines the transformer’s
endpoint.

® The interface that the endpoint implements.

® The physical details of its instantiation.

This information is configured using the configuration variables in the
artix:endpoint namespace. These variables are described in Table 15.

Table 15: Artix Endpoint Configuration

Variable

Function

artix:endpoint:endpoint list

Specifies a list of the endpoints and their names for
the current configuration scope.

artix:endpoint:endpoint name:wsdl location Specifies the location of the contract describing this

endpoint.

153

CHAPTER 7 | Deploying an Artix Transformer

Table 15: Artix Endpoint Configuration

Variable Function

artix:endpoint:endpoint name:wsdl port Specifies the port that this endpoint can be
contacted on. Use the following syntax:

[{service gname}]service name| /portﬁname]

For example:

{http://www.mycorp.com}my service/my port

Configuring the transformer Configuring the transformer involves two steps that enable it to instantiate
itself as a servant process and perform its work.

® Configuring the list of servants.
® Configuring the list of scripts.

Configuring the list of servants

The name of the endpoints that will be brought up as transformer servants is
specified in plugins:xslt:servant list. The endpoint identifier is one of
the endpoints defined in artix:endpoint:endpoint list entry. The
transformer uses the endpoint’s configuration information to instantiate the
appropriate servants

Note: artix:endpoint:endpoint list must be specified in the same
configuration scope.

Configuring the list of scripts

The list of the XSLT scripts that each servant uses to process requests is
specified in plugins:xslt:endpoint name:operation map. Each endpoint
specified in the servant list has a corresponding operation map entry. The
operation map is specified as a list using the syntax shown in Example 14.

Example 14: Operation Map Syntax

plugins:xslt:endpoint name:operantion map = ["wsdlOpl@filenamel"
, "wsdlOp2@filenameZ2", ..., "wsdlOpN@filenameN"];

154

Standalone Deployment

Each entry in the map specifies a logical operation that is defined in the
service's contract by an operation element, and the XSLT script to run
when a request is made on the operation. You must specify an XSLT script
for every operation defined for the endpoint. If you do not, the transformer
raises an exception when the unmapped operation is invoked.

Configuration example Example 15 shows the configuration scope of an Artix application,
transformer, that loads the Artix Transformer to process messages. The
transformer is configured as an Artix endpoint named hannibal and the
transformer uses the endpoint information to instantiate a servant to handle
requests.

Example 15: Configuration for Using the Artix Transformer

transformer

{

orb plugins = ["local log stream","xslt"];
artix:endpoint:endpoint list = ["hannibal"];

artix:endpoint:hannibal:wsdl location = "transformer.wsdl";
artix:endpoint:hannibal:wsdl port = "{http://transformer.com/xslt}WhiteHat/WhitePort";

plugins:xslt:servant list=["hannibal"]

plugins:xslt:hannibal:operation map = ["opl@../script/opl.xsl", "op2@../script/op2.xsl",
"op3@../script/op3.xs1"]

}

155

CHAPTER 7 | Deploying an Artix Transformer

Deployment as Part of a Chain

Overview

Procedure

156

Deploying the Artix Transformer as part of Web service chain allows you to
use it as part of an integration solution without needing to necessarily
modify your applications. The Artix Web service chain builder facilitates the
placement of the transformer into a series of Web service calls managed by
Artix.

The plug-in architecture of the transformer and the chain builder allow for
you to deploy this type of solution in a variety of ways depending on what is
the best fit for your particular solution. The most straightforward way to
deploy this type of solution is to deploy both the transformer and the chain
builder into the same process. This is the deployment that will be used to
outline the steps for configuring the transformer to be deployed as part of a
Web service chain. In general, you will need to complete all of the same
steps regardless of how you choose to deploy your solution.

To deploy the transformer as part of a Web service chain you need to
complete the following steps:

1. Modify your process’s configuration scope to load the transformer and
the chain builder.

2. Configure Artix endpoints for each of the applications that will be part
of the chain.

3. Configure an Artix endpoint to represent the transformer.
Configure the transformer.

5. Configure the service chain to include the transformer at the
appropriate place in the chain.

Updating the orb_plugins list

Configuring the endpoints in the
chain

Configuring the transformer

Placing the transformer in the
chain

Configuration example

Deployment as Part of a Chain

Configuring the application to load the transformer plug-in and the chain
builder plug-in requires adding them to the process’s orb _plugins list. The
plug-in name for the transformer is xs1t and the plug-in name for the chain
builder is ws_chain. Example 16 shows an orb plugins list for a process
hosting the transformer and the chain builder.

Example 16: Loading the Artix Transformer as Part of a Chain

orb plugins={"xslt", "ws_chain", "xml log stream"};

The Artix Web service chain builder uses generic Artix endpoints to
represent all of the applications in a chain, including the transformer.
Table 15 on page 153 shows the configuration variables used to configure a
generic Artix endpoint.

The transformer requires the same configuration information regardless of
how it is deployed. You must provide it with the name of the endpoints it
will instantiate from the list of endpoints and provide each instantiation with
an operation map. For more information about providing this information
see “Configuring the transformer” on page 154.

The chain builder instantiates a servant for each endpoint specified in its
servant list. Each servant can have a multiple operations. For each operation
that will be involved in a Web service chain, you need to specify a list of
endpoints and their operations that make up the chain. This list is specified
using plugins:chain: endpoint name:operation name:service chain.

To include the transformer in one of the chains, you add the appropriate
operation and endpoint names for the transformer at the appropriate place
in the service chain.

For more information on configuring the chain builder see “Deploying a
Service Chain” on page 161.

Example 17 shows a configuration scope that contains configuration
information for deploying the transformer as part of a Web service chain.

157

CHAPTER 7 | Deploying an Artix Transformer

Example 17: Configuring the Artix Transformer in a Web Service Chain

transformer

{
orb plugins = ["ws chain", "xslt"];
event log:filters = ["*=FATAL+ERROR+WARNING", "IT XSLT=*"];
bus:gname alias:oldClient = "{http://bank.com}ATM";
bus:initial contract:url:oldClient = "bank.wsdl";
bus:gname_alias:newServer = "{http://bank.com}newATM" ;
bus:initial contract:url:newServer = "bank.wsdl";
artix:endpoint:endpoint list = ["transformer"];
artix:endpoint:transformer:wsdl location = "bank.wsdl";

artix:endpoint:transformer:wsdl port =
"{http://bank.com}transformer/transformer port";

plugins:xslt:servant list = ["transformer"];
plugins:xslt:transformer:operation map =
["transform@transformer.xsl"];

plugins:chain:servant list = ["oldClient"];
plugins:chain:oldClient:client operation:service chain =
["transform@transformer", "withdraw@newServer"];

}i

Note: Even though a list of servants can be specified, only one servant is
currently supported in a process.

158

Optional Configuration

Optional Configuration

Overview

Specifying an XSLT trace filter

Specifying message part element
names

You can also use the following optional configuration settings:
® “Specifying an XSLT trace filter”
® “Specifying message part element names”

You can use the plugins:xslt:endpoint name:trace filter variable to
trace and debug the output of the XSLT engine. For example:

plugins:xslt:endpoint name:trace filter =
"INPUT+TEMPLATE+ELEMENT+GENERATE+SELECT" ;

These settings are described as follows:

INPUT Traces the XML input passed to the XSLT engine.
TEMPLATE Traces template matches in the XSLT script.
ELEMENT Traces element generation.

GENERATE Traces generation of text and attributes.

SELECT Traces node selections in the XSLT script.

You can use the plugins:xslt:endpoint name:use element name variable
to specify whether to use the message part element name or message part
name when performing transformations. The default value is false, which
means to use the message part name.

Using the message part element name matches the behavior of Artix
content-based routing. To use the message part element name, specify the
following setting:

plugins:xslt:endpoint name:use element name = "true";

159

CHAPTER 7 | Deploying an Artix Transformer

160

The following WSDL file extract shows an example message part element
name and part name:

<message name="client request message">
<part element="tns:client request type" name="client request'/>
</message>

The following XSL file extract shows the example part element name when
this variable is set to true:

<xsl:template match="client request type">
<xsl:value-of select="first name"/>
<xsl:text> </xsl:text>
<xsl:value-of select="last name"/>
</xsl:template>

If this variable is set to false, the part name is used instead (in this case,
client_request).

CHAPTER 8

Deploying a
Service Chain

Artix provides a chain builder that enables you to create a
series of services to invoke as part of a larger process.

In this chapter This chapter includes the following sections:
The Artix Chain Builder page 162
Configuring the Artix Chain Builder page 164

161

CHAPTER 8 | Deploying a Service Chain

The Artix Chain Builder

Overview

Chaining services together

162

The Artix chain builder enables you to link together a series of services into a
multi-part process. This is useful if you have processes that require a set
order of steps to complete, or if you wish to link together a number of
smaller service modules into a complex service.

For example, you may have four services that you wish to combine to
service requests from a single client. You can deploy a service chain like the
one shown in Figure 13.

Figure 13: Chaining Four Servers to Form a Single Service

Artix Service

v

j
1l

Client Chain Builder / @
—

™

IIEI
L]

SERVER 4 SERVER 3

Assumptions

The Artix Chain Builder

In this scenario, the client makes a single request and the chain builder
dispatches the request along the chain starting at serveri. The chain
builder takes the response from serverl and passes that to the next
endpoint in the chain, server2. This continues until the end of the chain is
reached at server4. The chain builder then returns the finished response to
the client.

The chain builder is implemented as an Artix plug-in so it can be deployed
into any Artix process. The decision about which process that you deploy it
in depends on the complexity of your system, and also how you choose to

allocate resources for your system.

To make the discussion of deploying the chain builder as straightforward as
possible, this chapter assumes that you are deploying it into an instance of
the Artix container server. However, the configuration steps for configuring
and deploying a chain builder are the same no matter which process you
choose to deploy it in.

163

CHAPTER 8 | Deploying a Service Chain

Configuring the Artix Chain Builder

Overview

Adding the chain builder in the
orb_plugins list

Configuring the services in the
chain

164

To configure the Artix chain builder, complete the following steps:
1. Add the chain builder’s plug-in to the orb plugins list.
2. Configure all the services that are a part of the chain.

3. Configure the chain so that it knows what servants to instantiate and
the service chain for each operation implemented by the servant.

Configuring the application to load the chain builder's plug-in requires
adding it to the application’s orb plugins list. The plug-in name for the
chain builder is ws_chain. Example 18 shows an orb plugins list for a
process hosting the chain builder.

Example 18: Plug-in List for Using a Web Service Chain

orb plugins={"ws chain", "xml log stream"};

Each service that is a part of the chain, and the client that makes requests
through the chain service, must be configured in the chain builder's
configuration scope. For example, you must supply the service name and
the location of its contract.

This provides the chain builder with the necessary information to instantiate
a servant that the client can make requests against. It also supplies the
information needed to make calls to the services that make up the chain.

Configuring the Artix Chain Builder

To configure the services in the chain, use the configuration variables in
Table 16.

Table 16: Artix Service Configuration

Variable Function

bus:gname alias:service Specifies a service name using the

following syntax:
{service gname}service name
For example:

{http://www.mycorp.com}my service

bus:initial contract:url:service Specifies the location of the contract

describing this service. The default is the
current working directory.

Configuring the service chains

The chain builder requires you to provide the following details

® Alist of services that are clients to the chain builder.

® Alist of operations that each client can invoke.

® Service chains for each operation that the clients can invoke.

Specifying the servant list

The first configuration setting tells the chain builder how many servants to
instantiate, the interfaces that the servants must support, and the physical
details of how the servants are contacted. You specify this using the
plugins:chain:servant list variable. This takes a list of service names
from the list of Artix services that you defined earlier in the configuration
scope.

Specifying the operation list

The second part of the chain builder's configuration is a list of the operations
that each client to the chain builder can invoke. You specify this using
plugins:chain:endpoint:operation list Where endpoint refers to one of
the endpoints in the chain’s service list.

165

CHAPTER 8 | Deploying a Service Chain

plugins:chain:endpoint:operation list takes a list of the operations that
are defined in <operation> tags in the endpoint’s contract. You must list all
of the operations for the endpoint or an exception will be thrown at runtime.
You must also be sure to enter a list of operations for each endpoint
specified in the chain’s service list.

Specifying the service chain

The third piece of the chain builder’'s configuration is to specify a service
chain for every operation defined in the endpoints listed in
plugins:chain:servant list. This is specified using the
plugins:chain:endpoint:operation:service chain configuration variable.
The syntax for entering the service chains is shown in Example 19.

Example 19: Entering a Service Chain

plugins:chain:endpoint:operation:service chain=["opl@endptl", "op2@endpt2", ..., "opNeendptN"];

166

For each entry, the syntax is as follows:

endpoint Specifies the name of an endpoint from the chain builder's
servant list

operation Specifies one of the operations defined by an operation entry
in the endpoints contract. The entries in the list refer to
operations implemented by other endpoints defined in the
configuration.

opN Specifies one of the operations defined by an operation entry
in the contract defining the service specified by endptn. The
operations in the service chain are invoked in the order
specified. The final result is returned back to the chain
builder which then responds to the client.

Configuring the Artix Chain Builder

Instantiating proxy services The chain invokes on other services, and for this reason, it instantiates proxy

Configuration example

services. It can instantiate proxies when the chain servant starts (the
default), or later, when a call is made. The following configuration variable
specifies to instantiate proxy services when a call is made:

plugins:chain:init on first call ="true";

This defaults to false, which means that proxies are instantiated when the
chain servant starts. However, you might not be able to instantiate proxies
when the chain servant is started because the servant to call has not
started. For example, this applies when using the Artix locator or UDDI.

Example 17 shows the contents of a configuration scope for a process that
hosts the chain builder.

Table 17: Configuration for Hosting the Artix Chain Builder

colaboration {

orb plugins = ["ws_chain"];

bus:gname alias:customer= "{http://needs.com}POC";
bus:initial contract:url:customer = "order.wsdl";

bus:gname alias:pm = "{http://ORBSrUs.com}prioritize";
bus:initial contract:url:pm = "manager.wsdl";

bus:gname alias:designer = "{http://ORBSrUs.com}design";
bus:initial contract:url:designer = "designer.wsdl";

bus:gname alias:builder = "{http://ORBSrUs.com}produce";
bus:initial contract:url:builder = "engineer.wsdl";

plugins:chain:servant list = ["customer"];
plugins:chain:customer:requestSolution:service chain =

["estimatePriority@pm", "makeSpecification@designer",
"buildORB@builder"];

167

CHAPTER 8 | Deploying a Service Chain

Configuration guidelines When Web services are chained, the following rules must be obeyed:

® The input type of the chain service (in this example, customer) must
match the input of the first service in the chain (pm).

® The output type of a previous service in the chain must match the
input type of the next service in the chain.

® The output type of the last service in the chain must match the output
of the chain service.

® One configuration entry must exist for each operation in the portType
of the chain service (for example, customer). This simple example
shows only one entry, and the portType for the customer endpoint has
only one operation (requestSolution).

® The chain service can invoke only on services that have one port.

® Finally, not all operations must be configured in the chain, only those
that are invoked upon. This means that no check is made when all
operations are mapped to a chain. If a client invokes on an unmapped
operation, the chain service throws a FaultException.

168

In this chapter

CHAPTER 9

Deploying High

Availability

Artix uses Berkeley DB high availability to provide support for
replicated services. This chapter explains how to configure and

deploy high availability in Artix.

This chapter discusses the following topics:

Introduction page 170
Setting up a Persistent Database page 173
Configuring Persistent Services for High Availability page 174
Configuring Locator High Availability page 178
Configuring Client-Side High Availability page 181

169

CHAPTER 9 | Deploying High Availability

Introduction

Overview

How it works

170

Scalable and reliable Artix applications require high availability to avoid any
single point of failure in a distributed system. You can protect your system
from single points of failure using replicated services.

A replicated service is comprised of multiple instances, or replicas, of the
same service; and together, these act as a single logical service. Clients
invoke requests on the replicated service, and Artix routes the requests to
one of the member replicas. The routing to a replica is transparent to the
client.

Artix high availability support is built on Berkeley DB, and uses its
replication features. Berkeley DB has a master-slave replica model where a
single replica is designated the master, and can process both read and write
operations from clients. All other replicas are slaves and can only process
read operations. Slaves automatically forward write requests to masters, and
masters push all updates out to slaves, as shown in Figure 14.

Figure 14: Artix Master Slave Replication

Artix Artix
Service (A) Service (B)
- .
Master_ Slave
UPDATE ’
Updates
pushed
from master
Berkeley Berkeley
Database Database

Electing a master

Introduction

Using Artix high availability, when members of a replicated cluster start up,
they all start up as slaves. When the cluster members start talking to each
other, they hold an election to select a master.

Election protocol
The protocol for selecting a master is as follows:

1. For an election to succeed, a majority of votes must be cast. This
means that for a group of three replicas, two replicas must cast votes.
For a group of four, three replicas must cast votes; for a group of five,
three must cast votes, and so on.

2. If aslave exists with a more up-to-date database than the other slaves,
it wins the election.

3. If all the slaves have equivalent databases, the election result is based
on the configured priority for each slave. The slave with the highest
priority wins.

Note: Because voting is done by majority, it is recommended that high
availability clusters have an odd number of members. The recommended
minimum number of replicas is three.

After the election

When a master is selected, elections stop. However, if the slaves lose
contact with the master, the remaining slaves hold a new election for
master. If a slave can not get a majority of votes, nobody is promoted.

At this point, the database remains as a slave, and keeps holding elections
until a master can be found. If this is the first time for the database to start
up, it blocks until the first election succeeds, and it can create a database
environment on disk.

If this is not the first time that the database has started up, it starts as a
slave (using the database files already on disk from its previous run), and
continues holding elections in the background anyway.

Auto-demotion

In the event of a network partition, by default, the master replica is
configured to automatically demote itself to a slave when it loses contact
with the replica cluster. This prevents the creation of duplicate masters.

171

CHAPTER 9 | Deploying High Availability

Request forwarding

Setting up high availability

172

Slave replicas automatically forward write requests to the master replica in a

cluster. Because slaves have read-only access to the underlying Berkeley DB

infrastructure, only the master can make updates to the database. This

feature works as follows:

1. When a replicated server starts up, it loads the request forwarder
plug-in.

2. When the client invokes on the server, the request forwarder plug-in
checks if it should forward the operation, and where to forward it to.
The server programmer indicates which operations are write operations
using an API.

3. If the server is running as a slave, it tries to forward any write
operations to the master. If no master is available, an exception is
thrown to the client, indicating that the operation cannot be processed.

Because the forwarding works as an interceptor within a plug-in, there is
minimal code impact to the user. No servant code is impacted. For details
on how to configure request forwarding, see “Specifying your orb_plugins
list” on page 175.

You can configure all the necessary settings in an Artix configuration file (see
“Configuring Persistent Services for High Availability” on page 174).

Replication is supported for C++ and Java service development, and by the
Artix locator (see “Configuring Locator High Availability” on page 178).

Setting up a Persistent Database

Setting up a Persistent Database

Overview

Using the Persistence API

Further information

To enable a service able to take advantage of high availability, it needs to
work with a persistent database. This is created using a C++ or Java API.
There are no configuration steps required. The Artix configuration variables
for persistent databases are set with default values that should not need to
be changed.

Artix provides set of C++ and Java APIs for manipulating persistent data.
For example, the C++ API uses the persistentMap template class. This
class stores data as name value pairs. This APl is defined in

it bus_pdk\persistent map.h.

This API enables you to perform tasks such as the following:

® (Create a PersistentMap database.

® |nsert data into a PersistentMap.

® Get data from a persistentMap.

® Remove data from a PersistentMap.

For more details, see the Developing Artix Applications in C++. For details
of the Java implementation, see Developing Artix Applications in Java.

For detailed information on the Berkeley DB database environment, see
http://www.sleepycat.com/

Artix ships Berkeley DB 4.2.52. Alternatively, you can download and build
Berkeley DB to obtain additional administration tools (for example, do_dump,
db verify, do_recover, db_stat).

173

http://www.sleepycat.com/
http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm

CHAPTER 9 | Deploying High Availability

Configuring Persistent Services for High

Availability
Overview
Configuring a service for

replication

Specifying a replication list

174

For a service to participate in a high availability cluster, it must first be
designed to use persistent maps (“Setting up a Persistent Database” on
page 173). However, services that use persistent maps are not replicated
automatically; you must configure your service to be replicated.

To replicate a service, you must add a replication list to your configuration,
and then add configuration scopes for each replicated instance of your
service. Typically, you would create a scope for your replica cluster, and
then create sub-scopes for each replica. This avoids duplicating
configuration settings that are common to all replicas, and separates the
cluster from any other services configured in your domain.

To specify a cluster of replicas, use the following configuration variable:
plugins:artix:db:replicas

This takes a list of replicas specified using the following syntax:
ReplicaName=HostName: PortNum

For example, the following entry configures a cluster of three replicas spread
across machines named jimi, noel, and mitch.

plugins:artix:db:replicas=[“repl=jimi:2000”, “rep2=mitch:3000”,
“rep3=noel:4000”];

Note: It is recommended that you set Rep1icaName to the same value as
the replica’s sub-scope (see “Configuration example” on page 176).

Specifying your orb_plugins list

Specifying replica priorities

Configuring Persistent Services for High Availability

Because IIOP is used for communication between replicas, you must include
the following plug-ins in your replica’s orb plugins list:

® iiop profile

giop
iiop

In addition, to enable automatic forwarding of write requests from slave to
master replicas, include the request forwarder plug-in. You must also
specify this plug-in as a server request interceptor. The following example
shows the required configuration:

orb plugins = ["xmlfile log stream", "local log stream",
"request forwarder", "iiop profile", "giop", "iiop"];

binding:artix:server request interceptor list=
"request forwarder";

This configuration is loaded when the replica service starts up. It applies to
both C++ and Java applications.

Note: To enable forwarding of write requests, programmers must have
already specified in the server code which operations can write to the
database. For details, see “Forwarding write requests” on page 186.

In each of the sub-scopes for the replicas, you must give each replica a
priority, and configure the IIOP connection used by the replicas to conduct
elections. This involves the following configuration variables:

175

CHAPTER 9 | Deploying High Availability

plugins:artix:db:priority

plugins:artix:db:iiop:port

Configuration example

Specifies the replica priority. The
higher the priority the more likely the
replica is to be elected as master. You
should set this variable if you are using
replication.

There is no guarantee that the replica
with the highest priority is elected
master. The first consideration for
electing a master is who has the most
current database.

Note: Setting a replica priority to 0
means that the replica is never elected
master.

Specifies the 11OP port the replica
starts on. This entry must match the
corresponding entry in the replica list.

The following example shows a simple example in an Artix configuration file:

ha cluster({

bi

176

plugins:artix:db:replicas = [“repl=jimi:2000”,
“rep2=mitch:3000”, “rep3=noel:4000"7];

repl {

plugins:
plugins:

bi
rep2 {

plugins:
plugins:

bi
rep3{

plugins:
plugins:

bi

artix:
artix:

artix:
artix:

artix:
artix:

:priority = 80;
riiop:port =

2000;

:priority = 20;
:iiop:port =

3000;

:priority = 0;
riiop:port = 4000;

Configuring Persistent Services for High Availability

Configuration guidelines
You should keep the following in mind:

® By default, the DB home directory defaults to replicaconfigScope db
(for example, repl db), where ReplicacConfigScope is the inner-most
replica configuration scope. If this directory does not already exist, it
will be created in the current working directory.

® All replicas must be represented by separate WSDL ports in the same
WSDL service contract. By default, you should specify the inner-most
replica scope as the WSDL port name (for example, rep1l).

Configuring a minority master It is recommended that high availability clusters have an odd number of
members, and the recommended minimum number is three. However, it is
possible to use a cluster with two members if you specify the following
configuration:

plugins:artix:db:allow minority master=true;

This allows a lone slave to promote itself if it sees that the master is
unavailable. This is only allowed when the replica cluster has two members.
This variable defaults to faise (which means it is not allowed by default). If
it is set to true, a slave that cannot reach its partner replica will promote
itself to master, even though it only has fifty per cent of the votes (one out of
two).

WARNING: This variable must be used with caution. If it is set to true,
and the two replicas in the cluster become separated due to a network
partition, they both end up as master. This can be very problematic
because both replicas could make database updates, and resolving those
updates later could be very difficult, if not impossible.

Configuring request forward You can also specify to output logging from the request forwarder plug-in.

logging To do this, specify the following logging subsystem in your event log filter:

event log:filters =
["IT BUS.SERVICE.REQUEST FORWARDER=INFO LOW+WARN+ERROR+FATAL"];

177

CHAPTER 9 | Deploying High Availability

Configuring Locator High Availability

Overview

Setting locator persistence

Setting load balancing

178

Replicating the locator involves specifying the same configuration that you
would use for other Artix services, as described in “Configuring Persistent
Services for High Availability” on page 174. However, there are some
additional configuration variables that also apply to the locator.

To enable persistence in the locator, set the following variable:
plugins:locator:persist data="true";

This specifies whether the locator uses a persistent database to store
references. This defaults to false, which means that the locator uses an
in-memory map to store references.

When replicating the locator, you must set persist data to true. If you do
not, replication is not enabled.

When persist_data is set to true, the load balancing behavior of the
locator changes. By default, the locator uses a round robin method to hand
out references to services that are registered with multiple endpoints.
Setting persist_data to true causes the locator to switch from round robin
to random load balancing.

You can change the default behavior of the locator to always use random
load balancing by setting the following configuration variable:

plugins:locator:selection method = “random”;

Configuration example

Using multiple locator replica
groups

Configuring Locator High Availability

The following example shows the configuration required for a cluster of three
locator replicas.

Example 20: Settings for Locator High Availability

service {

bus:initial contract:url:locator = "../../../etc/locator.wsdl";
orb plugins = ["local log stream", "wsdl publish", "request forwarder",
"service locator", "iiop profile", "giop", "iiop"]:

binding:artix:server request interceptor list= "request forwarder";
plugins:locator:persist data = "true";

plugins:artix:db:replicas = ["Locatorl=localhost:7876",
"Locator2=localhost:7877", "Locator3=localhost:7878"];

Locatorl{
plugins:artix:db:priority = "100";
plugins:artix:db:iiop:port = "7876";
i
Locator2{
plugins:artix:db:priority = "75";
plugins:artix:db:iiop:port = "7877";
}i
Locator3{
plugins:artix:db:priority = "0";
plugins:artix:db:iiop:port = "7878";
}i

A highly available locator consists of a group of locators, one of which is
active. The rest are replicas, which are used only when the active locator
becomes unavailable. The locator group is represented by a locator WSDL
file that contains multiple endpoints—one for each locator. When the
ha_conf plug-in is loaded by Artix clients, it uses this WSDL file to resolve
and connect to a locator. It tries the first endpoint, and if this does not yield
a valid connection, it tries the second endpoint, and so on.

179

CHAPTER 9 | Deploying High Availability

Further information

180

Using the ha_conf plug-in, Artix client applications can failover between
locators in the same replica group. However, if you are using two separate
replica locator groups, you want your clients to try one group first, and then
the other. In this case, you can use one of the following approaches to
failover between two separate replica locator groups:

Combine the two groups

You can combine two groups by taking the locator endpoints from the
second replica group's WSDL file, and adding them to the list of endpoints in
the first replica group's WSDL file. You now have a single WSDL file that
contains all the locator endpoints. The ha conf plug-in will try to contact
locators in the order specified in this WSDL file.

Change the configured contract

First, set your Artix configuration so that groupl .wsd1 is the first replica
group's WSDL file, for example:

bus:initial contract:url:locator = "groupl.wsdl";

Then if a connection cannot be made to any endpoint from this file, change
the configured WSDL file to group2.wsdi, re-initialize the bus, and try again.

In this way, by using an extra try/catch statement in the client, you can
achieve failover between two replica locator groups.

For a working example of Artix locator high availability, see the
...advanced/high availability locator demo.

Configuring Client-Side High Availability

Configuring Client-Side High Availability

Overview

Configuration steps

Specifying the replica group in
your contract

When you have implemented a highly available service using a group of
replica servers, a suitably configured client can talk to the master replica. In
the event that the master replica fails, one of the other replicas takes over as
master, and the client fails over to one of the other replicas.

As far as the client application logic is concerned, there is no discernible
interruption to the service. This section shows how to configure the client to
use high availability features. It also explains the impact on the server.

In most cases, configuring high availability on the client side consists of two
steps:

® Create a service contract that specifies the replica group.
® Configure the client to use the high availability service.

Before your client can contact the replicas in a replica group, you must tell
the client how to contact each replica in the group. You can do this by
writing the WSDL contract for your service in a particular way.

Example 21 shows the hello world.wsdl contract from the

...\advanced\high availability persistent servers demo.

Example 21: Specifying a Replica Group in a Contract

?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions name="HelloWorld" targetNamespace="http://www.iona.com/hello world socap http"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.iona.com/hello world soap http"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

181

CHAPTER 9 | Deploying High Availability

Example 21: Specifying a Replica Group in a Contract

<wsdl:types>
<schema targetNamespace="http://www.iona.com/hello world soap http"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<element name="responseType" type="xsd:boolean"/>
<element name="requestType" type="xsd:string"/>
<element name="overwrite if needed" type="xsd:boolean"/>
</schema>
</wsdl:types>

<wsdl:service name="SOAPService">
<wsdl:port binding="tns:Greeter SOAPBinding" name="Serverl">
<soap:address location="http://localhost:9551/SOAPService/Serverl"/>
</wsdl :port>
<wsdl:port binding="tns:Greeter SOAPBinding" name="Server2">
<soap:address location="http://localhost:9552/SOAPService/Server2"/>
</wsdl :port>
<wsdl:port binding="tns:Greeter SOAPBinding" name="Server3">
<soap:address location="http://localhost:9553/SOAPService/Server3"/>
</wsdl :port>
</wsdl:service>

</wsdl:definitions>

In Example 21, the soapservice service contains three ports, all of the
same port type. The contract specifies fixed port numbers for the endpoints.
By convention, you should ensure that the first port specified by the service
corresponds to the master server.

182

Configuring Client-Side High Availability

Configuring the client to use high To configure your client for high availability, perform the following steps:
availability 1. Inyour client scope, add the high availability plug-in (ha_conf) to the
orb plugins list. For example:

client {
orb plugins = [...,"ha conf"];

}i

2. Configure the client so that the Artix bus can resolve the service
contract. You can do this by specifying the following configuration in
the client scope:

client {
bus:gname alias:soap service = "{http://www.iona.com/hello world soap http}SOAPService";
bus:initial contract:url:soap service = "../../etc/hello world.wsdl";

bi

Alternatively, you can also do this using the -Busservice contract
command line parameter as follows:

myclient -BUSservice contract ../../etc/hello world.wsdl

For more details on configuring initial contracts, see Chapter 12.

Impact on the server In Example 21, the contract specifies three separate ports in the same
service hamed soaPservice. The implication is that each port is
implemented by a different process, and if one of these processes fails, the
client switches to one of the others.

183

CHAPTER 9 | Deploying High Availability

Because the servers use the same contract, the server-side code must be
written so that the server can be instructed to instantiate a particular port.
Example 22 shows some relevant code. Depending on which argument the
server is started with (1, 2, or 3), it instantiates either serveri, server2 or

Server3.

Example 22: Server Code Chooses which Port to Instantiate

//CH+

String cfg scope = "demos.high availability persistent servers.server.";
String wsdl url = "../../etc/hello world.wsdl";

String server number = argv([1l];

String service name = "SOAPService";

String port name = "Server";

if (server number == "1")

{
cfg scope += "one";
port name += "1";
}
else if (server number == "2")
{
cfg scope += "two";
port name += "2";
}
else if (server number == "3")
{
cfg scope += "three";
port name += "3";

else

{
cerr << "Error: you must pass 1, 2 or 3 as a command line argument" <<
endl;
return -1;

IT Bus::Bus var bus = IT Bus::init(argc, argv, cfg scope.c str());

IT Bus::QName service gname (

wn
’

service name,
"http://www.iona.com/hello world soap http"
)7

184

Configuring Client-Side High Availability

Example 22: Server Code Chooses which Port to Instantiate
GreeterImpl servant (bus, service gname, port name, wsdl url);

bus->register servant (
servant,

wsdl url,

service gname,

port name

cout << "Server Ready" << endl;
IT Bus::run();
}

catch (const IT Bus::Exception& e)

{

cerr << "Error occurred: " << e.message() << endl;
return -1;

}
catch (...)

{

cerr << "Unknown exception!" << endl;
return -1;

}

return 0;

Server-side state

Client-side failover can be used with both stateful and stateless servers. If
your servers are stateful, server-side high availability must be enabled for
the servers. This has no impact on the client configuration.

If your servers are stateless, no server-side configuration is necessary.
However, your servers can share state using some other mechanism (for
example, a shared database). In this case, client-side failover can still be
used.

185

CHAPTER 9 | Deploying High Availability

Forwarding write requests

Random endpoint selection for
clients

186

When a client sends a write request to a slave replica, the slave must
forward the write request to the master replica. The server programmer
must use the mark_as write operations() method specify which WSDL

operations can write to the database.

C++
The C+ + function is as follows:

// Ct++
void
mark as write operations (
const IT Vector<IT Bus::String> operations,
const IT Bus::QName& service,
const IT Bus::Stringé& port,
const IT Bus::Stringé& wsdl url
) IT THROW DECL ((DBException));

Java
The method is as follows:

// Java

void

markAsWriteOperations (
String[] operations,
QName service,
String portName,
String wsdlUrl);

For a detailed example, see Developing Artix Applications in C++ and
Developing Artix Applications in Java.

The client-side ha_conf plug-in supports random endpoint selection. This
can be very useful if you want your client applications to pick a random
server each time they connect.

The random behavior can be applied all the time, so that the client always
picks a random server. This approach should be used if you want your
clients to be uniformly load-balanced across different servers. To use this
approach, set the following configuration:

plugins:ha conf:strategy="random";
plugins:ha conf:random:selection="always";

../prog_guide/index.htm

http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm

Further information

Configuring Client-Side High Availability

Alternatively, the random behavior can be applied only after the client loses
connectivity with the first server in the list. This approach should be used to
make your clients favour a particular server for their initial connectivity. To
use this approach, set the following configuration:

plugins:ha conf:strategy="random";
plugins:ha conf:random:selection="subsequent";

For working examples of high availability in Artix, see the following demos:
® ...advanced/high_availability persistent servers

® ...advanced/high availability locator

For full details of all database environment and high availability
configuration settings, see the Artix Configuration Reference.

187

../config_ref/index.htm

CHAPTER 9 | Deploying High Availability

188

In this chapter

ZCHAPTER 10

Deploying Reliable
Messaging

Artix supports Web Services Reliable Messaging (WS-RM) for
Java and C++ applications. WS-Addressing is used by
WS-RM. This chapter explains how to deploy WS-RM and
WS-Addressing in an Artix runtime environment.

This chapter discusses the following topics:

Introduction page 190
Configuring a WS-A Message Exchange Pattern page 193
Enabling WS-RM page 196
Configuring WS-RM Attributes page 197
Configuring WS-RM Threading page 205
Configuring WS-RM Persistence page 207

189

CHAPTER 10 | Deploying Reliable Messaging

Introduction

Overview

How it works

190

Web Services Reliable Messaging (WS-RM) is a standard protocol that
ensures the reliable delivery of messages in a distributed environment. It
enables messages to be delivered reliably between distributed applications
in the presence of software, system, or network failures.

For example, WS-RM can be used to ensure that the correct messages have
been delivered across a network exactly once, and in the correct order. Web
Services Reliable Messaging is also known as WS-ReliableMessaging.

WS-RM ensures the reliable delivery of messages between a source and
destination endpoint. The source is the initial sender of the message and the
destination is the ultimate receiver, as shown in Figure 15.

Initial Sender Ultimate Receiver
Application | Application
Source |9 4 Destination
_____________ Sandciilonn] o EEspnssde]
Deliver
r
RM RrM
Source E E Destination
Transmit
Transmit |*+— Recelve
Acknowledge

Figure 15: Web Services Reliable Messaging

WS-RM delivery assurances

Introduction

The flow of WS-RM messages can be described as follows:

1.

The RM source sends a CreateSequence protocol message to the RM
destination. This contains a reference for the source endpoint that
receives acknowledgements (wsrm:AcksTo endpoint).

The RM destination sends a CreateSequenceResponse protocol
message back to the RM source. This contains the sequence ID for the
RM sequence session.

The RM source adds an RM sequence header to each message sent by
the application source. This contains the sequence ID, and a unique
message ID.

The RM source transmits each message to the RM destination.

The RM destination acknowledges the receipt of the message from the
RM source by sending messages that contain the RM
SequenceAcknowledgement header.

The RM destination delivers the message to the application destination
in an exactly-once-in-order fashion.

The RM source retransmits a message for which it has not yet received
an acknowledgement.

The first retransmission attempt is made after a base retransmission
interval. Successive retransmission attempts are made after a linear
interval, or an exponential backoff interval (the default behavior). For
more details, see “Configuring WS-RM Attributes” on page 197.

WS-RM guarantees reliable message delivery in a distributed environment,
regardless of the transport protocol used. The source or destination endpoint
raises an error if reliable delivery can not be assured.

The default Artix WS-RM delivery assurance policy is ExactlyOnceInOrder.
This means that every message that is sent is delivered without duplication.
If not, an error is raised on at least one endpoint. In addition, messages are
delivered in the same order that they are sent.

191

CHAPTER 10 | Deploying Reliable Messaging

Supported specifications

Further information

192

Artix also supports the ExactlyonceConcurrent and
ExactlyOnceReceivedorder delivery assurance policies. For more details,
see “Message delivery assurance policies” on page 203.

Artix supports the 2005/02 version of the WS-ReliableMessaging
specification, which is based on the WS-Addressing 2004/08 specification.
Artix supports both the WS-Addressing 2004/08 specification and the
WS-Addressing 2005/03 specification. However, WS-Addressing 2004/08
must be used with WS-ReliableMessaging.

For more information, see “Configuring a WS-A Message Exchange Pattern”
on page 193.

For detailed information on WS-RM, see the specification at:
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf

http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf

Configuring a WS-A Message Exchange Pattern

Configuring a WS-A Message Exchange

Pattern

Overview

WS-Addressing Message
Exchange Pattern

When WS-RM is enabled in the Artix runtime, this automatically enables a
WS-Addressing 2004 Message Exchange Pattern (MEP). You can also
manually configure a WS-Addressing 2004 MEP, or a WS-Addressing 2005
MEP without using WS-RM. This section explains WS-Addressing MEPs,
and shows the Artix configuration settings. These settings apply to Web
services implemented in both C++ and Java.

Note: A WS-Addressing 2004 MEP must be used with WS-RM. You can
not use a WS-Addressing 2005 MEP with WS-RM.

Artix supports WS-Addressing 2004 and 2005 MEPs in SOAP message
headers. These enable Artix to send a request to an endpoint specified by a
wsa:To header, and to receive a reply at an endpoint specified by a
wsa:ReplyTo header.

If a wsa:ReplyTo header is not specified, by default, Artix uses the
anonymous URI to synchronously receive the reply. For example, the
WS-Addressing 2004 anonymous URI is:

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous
While the WS-Addressing 2005 anonymous URI is
http://www.w3.0rg/2005/08/addressing/anonymous

When a non-anonymous wsa:ReplyTo is used, the reply is received
asynchronously at the reply-to endpoint. The reply is matched with the
request using wsa:MessageId and wsa:RelatesTo message headers. From
the user's perspective, this is still a two-way synchronous call, but the
asynchronicity is handled by Artix. For oneway calls, the reply-to endpoint is
not needed.

193

CHAPTER 10 | Deploying Reliable Messaging

Enabling a WS-Addressing 2004
MEP

You can enable a WS-Addressing 2004 MEP in an Artix configuration file
either at the Artix bus-level or a specific WSDL port level. Port-specific
configuration overrides bus-specific configuration. When WS-RM is enabled,
this automatically enables a WS-Addressing 2004 MEP (see “Enabling
WS-RM” on page 196).

Bus configuration

To enable a WS-Addressing MEP at bus level, use the following setting:

plugins:messaging port:supports wsa mep = "true";

WSDL port configuration

To enable WS-A at a specific WSDL port level, you must specify the WSDL
service QName and the WSDL port name, for example:

plugins:messaging port:supports wsa mep:http://www.iona.com/bus/tests

Enabling a WS-Addressing 2005
MEP

194

:SOAPHTTPService: SOAPHTTPPort="true";

Similarly, you can enable a WS-Addressing 2005 MEP in an Artix
configuration file either at the Artix bus-level or a specific WSDL port level.
Port-specific configuration overrides bus-specific configuration.

Bus configuration

To enable a WS-Addressing MEP at bus level, use the following setting:

plugins:messaging port:supports wsa 2005 mep = "true";

WSDL port configuration

To enable WS-A at a specific WSDL port level, you must specify the WSDL
service QName and the WSDL port name, for example:

plugins:messaging port:supports wsa 2005 mep:http://www.iona.com
/bus/tests:SOAPHTTPService: SOAPHTTPPort="true";

Note: Either WS-A 2004 or WS-A 2005 should be enabled. If both are
enabled, Artix enables WS-A 2005, and ignores WS-A 2004, and logs a
MessagingPort warning message.

Configuring a non-anonymous
reply-to endpoint

Configuring a WS-A Message Exchange Pattern

The WS-A reply-to endpoint specifies a URI for receiving acknowledgement
messages from the destination. The scope of a reply-to endpoint is at the
proxy level. In Artix, two proxies can not share the same endpoint. This
means that each proxy has its own reply-to endpoint.

There are two ways of configuring a reply-to endpoint:
® “Setting a reply-to endpoint in configuration”
® “Setting a reply-to endpoint in a context”

Setting a reply-to endpoint in configuration

The WS-A reply-to endpoint can be set in an Artix configuration file, at the
Artix bus level or WSDL port level.

Because reply-to endpoints must have a unique URI per-proxy, a base URI
is specified in configuration. For example, if the base URI is specified as:

plugins:messaging port:base replyto url=
"http://localhost:0/WSATestClient/BaseReplyTo/";

And if two proxies are instantiated, the first proxy will have a reply-to
endpoint whose URI is as follows:

"http://localhost:2356/WSATestClient/BaseReplyTo/ReplyTo0001";

Similarly, the second proxy will have a reply-to endpoint whose URI is as
follows:

"http://localhost:2356/WSATestClient/BaseReplyTo/ReplyTo0002";

Setting a reply-to endpoint in a context

For C++ applications, you can also set a WS-A reply-to endpoint
programmatically using a configuration context. Using this approach, the
context is specific to the current proxy only, and can not be used by a proxy
created subsequently. You must also ensure that it is deleted after use. For
full details and examples, see Developing Artix Applications with C++.

195

../prog_guide/index.htm

CHAPTER 10 | Deploying Reliable Messaging

Enabling WS-RM

Overview

Prerequisites

Setting your orb_plugins list

Configuring WS-RM

196

This section describes the steps required to enable WS-RM in the Artix
runtime. All the necessary settings are specified in an Artix configuration file.
These settings apply to Web services implemented in both C++ and Java.

When you enable WS-RM, this automatically enables a WS-Addressing
2004 Message Exchange Pattern, which is required for WS-RM.

If you wish to make a two-way invocation, you must configure a
WS-RM-enabled WSDL port with a non-anonymous reply-to endpoint. See
“Configuring a non-anonymous reply-to endpoint” on page 195.

To use Artix WS-RM, you must first specify the wsrm plug-in on the
orb plugins lists for your client and server. For example:

orb plugins = ["xmlfile log stream", "iiop profile", "giop",
"iiOp" , "wsrm"] ;

WS-RM can be enabled in an Artix configuration file either at the bus-level
or a specific WSDL port level. Port-specific configuration overrides
bus-specific configuration.

Bus configuration

To enable WS-RM for a specific bus, use the following setting:

plugins:messaging port:wsrm enabled = "true";

WSDL port configuration

To enable WS-RM for a specific WSDL port, specify the WSDL service
QName and the WSDL port name, for example:

plugins:messaging port:wsrm enabled:http://www.iona.com/bus/tests:
SOAPHTTPService: SOAPHTTPPort="true";

Configuring WS-RM Attributes

Configuring WS-RM Attributes

Overview

WS-RM acknowledgement
endpoint URI

You can specify various Artix WS-RM attributes in a configuration file at the
bus-level or WSDL port level. Port-specific configuration overrides
bus-specific configuration. These settings apply to Web services
implemented in both C++ and Java.

The configurable WS-RM attributes are as follows:

®* “WS-RM acknowledgement endpoint URI”

® “Use replyTo endpoint for acknowledgement”

® “Use server endpoint for acknowledgement”

® “Base retransmission interval”

® “Exponential backoff for retransmission”

® “Maximum unacknowledged messages threshold”

® “Max retransmission attempts threshold”

* “Acknowledgement interval”

® “Number of messages in an RM sequence”

® “Message delivery assurance policies”

® “Per-thread RM session”

You can also set these attributes in your client code (see “Configuring
attributes in WS-RM contexts” on page 204).

This attribute specifies the endpoint at which the WS-RM source receives
acknowledgements. This is also known as the wsrm:AcksTo endpoint.

The default value is the WS-A anonymous URI:
http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

Bus configuration

The following example shows how to configure the acknowledgement
endpoint for a specific bus:

plugins:wsrm:acknowledgement uri =
"http://localhost:0/WSASource/DemoAcksTo/";

197

CHAPTER 10 | Deploying Reliable Messaging

WSDL port configuration

The following example shows how to configure the acknowledgement
endpoint for a specific WSDL port:

plugins:wsrm:acknowledgement uri:http://www.iona.com/bus/tests:SOAPHITPService:
SOAPHTTPPort = "http://localhost:0/WSASource/DemoAcksTo/";

Use replyTo endpoint for
acknowledgement

Use server endpoint for
acknowledgement

198

If a proxy is used to make two-way invocations, you can configure the proxy
so that its decoupled reply-to endpoint (wsa:replyTo), which receives the
application response, also receives acknowledgements for application
requests. In this way, the wsa:replyTo endpoint acts as a wsrm:AcksTo
endpoint.

Bus configuration
The following example shows how to configure this for a specific Artix bus:

plugins:wsrm:use wsa replyto endpoint for wsrm acknowledgement =
"true";

WSDL port configuration
The following example shows how to configure this for a specific WSDL
port:

plugins:wsrm:use wsa replyto endpoint for wsrm acknowledgement:
http://www.iona.com/bus/tests: SOAPHTTPService: SOAPHTTPPort =
"true";

If a service is used to make two-way invocations, you can configure the
service so that the server endpoint, which receives the application request,
also receives acknowledgements for the application response. In other
words, the server acts as a wsrm:AcksTo endpoint for the reverse WS-RM
channel.

Bus configuration
The following example shows how to configure for a specific Artix bus:

plugins:wsrm:use server endpoint for wsrm acknowledgement =
"true";

Base retransmission interval

Configuring WS-RM Attributes

WSDL port configuration
The following example shows how to configure for a specific WSDL port:

plugins:wsrm:use server endpoint for wsrm acknowledgement:http:
//www .iona.com/bus/tests: SOAPHTTPService : SOAPHTTPPort =
"true";

Order of preference for acknowledgement endpoints

The order of preference in which a wsrm:AcksTo endpoint is chosen for a RM

source endpoint is as follows:

1. Ifthe RM source endpoint is explicitly configured (in a configuration file
or code) to use a non-anonymous wsrm:AcksTo endpoint, it is chosen.

2. On the client-side, if the RM source endpoint is configured to use the
wsa:replyTo endpoint as wsrm:AcksTo, it is chosen for the application
request.
On the server-side, if the RM source endpoint is configured to use the
server endpoint as wsrm:AcksTo, it is chosen for the application
response.

3. If neither 1 or 2 is specified, the anonymous wsrm:AcksTo endpoint is
chosen.

This attribute specifies the interval at which a WS-RM source retransmits a
message that has not yet been acknowledged. The default value is 2000
milliseconds.

Bus configuration

The following example shows how to set the base retransmission interval for
a specific bus:

plugins:wsrm:base retransmission interval = "3000";

WSDL port configuration

The following example shows how to set the base retransmission interval for
a specific WSDL port:

plugins:wsrm:base retransmission interval:http://www.iona.com/bus
/tests:SOAPHTTPService: SOAPHTTPPort = "3000";

199

CHAPTER 10 | Deploying Reliable Messaging

Exponential backoff for
retransmission

Maximum unacknowledged
messages threshold

200

This attribute determines if successive retransmission attempts for an
unacknowledged message are performed at exponential intervals. The
default value is false, which means that they are attempted at exponential
intervals.

If the value is true (exponential backoff disabled), the retransmission of
unacknowledged messages is performed at the base retransmission interval.

Bus configuration

The following example shows how to set the exponential backoff for
retransmission for a specific bus:

plugins:wsrm:disable exponential backoff retransmission interval
= "true";

WSDL port configuration

The following example shows how to set the exponential backoff for
retransmission for a specific WSDL port:

plugins:wsrm:disable exponential backoff retransmission interval
thttp://www.iona.com/bus/tests: SOAPHTTPService: SOAPHTTPPort =
"true";

This attribute specifies the maximum permissible number of
unacknowledged messages at the WS-RM source. When the WS-RM source
reaches this limit, it sends the last message with a wsrm:AckRequested
header indicating that a WS-RM acknowledgement should be sent by the
WS-RM destination as soon as possible.

In addition, when the WS-RM source has reached this limit, it does not
accept further messages from the application source. This means that the
caller thread (making the invocation on the proxy) is blocked until the
number of unacknowledged messages drops below the threshold.

The default value is -1 (no limit on number of unacknowledged messages).

Bus configuration

The following example shows how to set the maximum unacknowledged
messages threshold for a specific bus:

plugins:wsrm:max unacknowledged messages threshold = "50";

Max retransmission attempts
threshold

Acknowledgement interval

Configuring WS-RM Attributes

WSDL port configuration

The following example shows how to set the maximum unacknowledged
messages threshold for a specific WSDL port:

plugins:wsrm:max unacknowledged messages threshold:http://www.iona.

com/bus/tests: SOAPHTTPService: SOAPHTTPPort = "50";

This attribute specifies the maximum number of retransmission attempts
that the RM source session makes for an unacknowledged message. If the
number of retransmission attempts reaches this threshold, the RM source
session sends a wsrm: SequenceTerminated fault to the peer RM destination
session, and closes the session. Any subsequent attempt to send a message
on this session results in an IT Bus::Exception. The default value is -1 (no
limit on the number of retransmission attempts).

Bus configuration

The following example shows how to set the maximum number of
retransmission attempts for a specific bus:

plugins:wsrm:max retransmission attempts = "8";

WSDL port configuration

The following example shows how to set the maximum number of
retransmission attempts for a specific WSDL port:

plugins:wsrm:max retransmission attempts:http://www.iona.com/bus
/tests:SOAPHTTPService: SOAPHTTPPort = "8";

This attribute specifies the interval at which the WS-RM destination sends
asynchronous acknowledgements. These are in addition to the synchronous
acknowledgements that it sends upon receipt of an incoming message. The
default asynchronous acknowledgement interval is 3000 milliseconds.

Asynchronous acknowledgements are sent by the RM destination only if
both of the following conditions are met:

1. The RM destination is using a hon-anonymous wsrm:AcksTo endpoint.

2. The RM destination is waiting for some messages to be received from
the RM source.

201

CHAPTER 10 | Deploying Reliable Messaging

Number of messages in an RM
sequence

202

For example, the RM destination receives five messages with message IDs
of 1, 2, 3, 4, and 5. This means that it has received all messages up to the
highest received message (5). There are no missing messages in this case,
so the RM destination will not send an asynchronous acknowledgement.
However, take the case where the RM destination receives 5 messages with
message IDs of 1, 2, 4, 5, and 7. This means that messages 3 and ¢ are
missing, and the RM destination is still waiting to receive them. This is the
case where the RM destination sends asynchronous acknowledgements.

Note: The RM destination still sends synchronous acknowledgements
upon receipt of a message from the RM source.

Bus configuration
The following example shows how to set the acknowledgement interval for a
specific bus:

plugins:wsrm:acknowledgement interval = "2500";

WSDL port configuration
The following example shows how to set the acknowledgement interval for a
specific WSDL port:

plugins:wsrm:acknowledgement interva:http://www.iona.com/bus/tests

:SOAPHTTPService: SOAPHTTPPort = "2500";

This attribute specifies the maximum number of user messages that are
permitted in a WS-RM sequence. The default is unlimited; and this is
sufficient is for most cases.

When this attribute is set, the RM endpoint creates a new RM sequence
when the limit is reached and after receiving all the acknowledgements for
the messages previously sent. The new message is then sent using the new
sequence.

Bus configuration
The following example shows how to set the maximum number of messages
for a specific bus

plugins:wsrm:max messages per sequence = "1";

Message delivery assurance
policies

Configuring WS-RM Attributes

WSDL port configuration

The following example shows how to set the maximum number of messages
for a specific WSDL port:

plugins:wsrm:max messages per sequence:http://www.iona.com/bus/tests

:SOAPHTTPService: SOAPHTTPPort = "1";

You can configure the RM destination to use the following delivery
assurance policies:

ExactlyOncelnOrder: The RM destination delivers the messages to the
application destination exactly once, and in increasing order of RM message
ID. The calls to the application destination are therefore serialized. This is
the default.

ExactlyOnceConcurrent: The RM destination delivers the messages to the
application destination exactly once. But instead of a serialized message
delivery (as in ExactlyonceInOrder), messages are delivered concurrently,
so they may not be delivered in order. However, for a message with ID n
that is being delivered, all the messages in the range of 1 to n are received
and acknowledged by the RM destination.

ExactlyOnceReceivedOrder: The RM destination delivers the messages to
the application destination exactly once, and as soon as it is received from
the underlying transport. The RM destination makes no attempt to ensure
that either the messages are delivered in the order of message ID, or all the
previous messages have been received/acknowledged. The benefit of this
policy is that it avoids a context-switch during dispatch in the RM layer, and
messages are not stored in the in-memory undelivered messages map.

Bus configuration

The default delivery assurance policy is Exact1lyOnceInOrder. YOU can
specify a different policy at bus level using the following variable:

plugins:wsrm:delivery assurance policy =
"ExactlyOnceConcurrent";

203

CHAPTER 10 | Deploying Reliable Messaging

WSDL port configuration
The following example shows how to set this policy at the WSDL port level:

plugins:wsrm:delivery assurance policy:http://www.iona.com/bus/tests:

Per-thread RM session

Configuring attributes in WS-RM
contexts

204

SOAPHTTPService: SOAPHTTPPort = "ExactlyOnceConcurrent";

When an RM source endpoint is concurrently invoked, by default, the RM

session is shared by all threads. However, with the per-thread RM session
attribute enabled, the RM source endpoint transparently creates a different
RM sequence session for each invoking thread.

Enabling this setting eliminates the possibility of indeterminate message 1D
allocation. All messages sent by a particular thread are allocated a message
ID in increasing order. When the RM source endpoint is closed, it closes all
the open RM sequence sessions. The default value is false (disabled).

Bus configuration

The following example shows how to enable a per-thread RM session for a
specific bus:

"true";

plugins:wsrm:enable per thread sequence scope

WSDL port configuration

The following example shows how to enable a per-thread RM session for a
specific WSDL port:

plugins:wsrm:enable per thread sequence scope:http://www.iona.com
/bus/tests:SOAPHTTPService: SOAPHTTPPort = "true";

For C++ applications, you can also specify Artix WS-RM attributes
programmatically using a configuration context. Using this approach, the
context is specific to the current proxy only, and can not be used by another
proxy created subsequently. For full details and examples, see Developing
Artix Applications with C+ +.

The order of precedence for setting WS-RM attributes is as follows:
1. Configuration context (programmatic).

2. WSDL port (configuration file).

3. Artix bus (configuration file).

../prog_guide/index.htm
../prog_guide/index.htm

Configuring WS-RM Threading

Configuring WS-RM Threading

Overview

Configuring a WS-RM thread pool

The Artix WS-RM layer maintains a bus-specific internal thread pool. It uses
this work queue to borrow execution resources for various asynchronous
tasks. For example, these tasks include:

® Retransmission scheduling at the RM source.

® Retransmissions at the RM source.

® Asynchronous acknowledgement scheduling at the RM destination.
® Asynchronous acknowledgement at the RM destination.

® Concurrent message dispatches to the application destination.

You can configure the WS-RM thread pool using the following variables:

initial_threads specifies the number of initial threads in the WS-RM thread
pool. The default is:

plugins:wsrm:thread pool:initial threads="5";

high water mark specifies the maximum number of threads allowed in the
WS-RM thread pool. The default is:

plugins:wsrm:thread pool:high water mark="-1";

low water mark specifies the minimum number of threads allowed in the
WS-RM thread pool. The default is:

plugins:wsrm:thread pool:low water mark="-1";

205

CHAPTER 10 | Deploying Reliable Messaging

206

max queue size specifies the maximum number of request items that can
be queued on the WS-RM thread work queue. The default is:

plugins:wsrm:thread pool:max queue size="-1";

stack size specifies the stack size for each thread. The stack size is
specified in bytes. The default is:

plugins:wsrm:thread pool:stack size="0S-specificDefault
ThreadStackSize";

Configuring WS-RM Persistence

Configuring WS-RM Persistence

Overview

How it works

The Artix WS-RM features already described in this chapter provide
reliability for cases such as network failures. Enabling WS-RM persistence
improves the Quality of Service by providing reliability across other types of
failures such as an RM source or destination crash.

WS-RM persistence involves storing the state of the various RM endpoints in
persistent storage. This enables the endpoints when reincarnated to
continue sending and receiving messages as before the crash.

Artix enables WS-RM persistence for at bus level in a configuration file, or in
code using an Artix context. The WS-RM persistence store implementation
uses a Berkeley DB, and is available as a separate plug-in. In addition, the
persistent store is also exposed using a C++ API. If you wish to implement
your own persistence mechanism, you can implement this APl with your
preferred DB (see Developing Artix Applications with C++).

Note: WS-RM persistence is supported for oneway calls only. It is
disabled by default.

Artix WS-RM persistence works as follows:

® At the RM source endpoint, an outgoing message is persisted before
transmission. It is evicted from the persistent store after the
acknowledgement is received.

® After a recovery from crash, it recovers the persisted messages and
retransmits until all the messages have been acknowledged. At that
point, the RM sequence is closed.

® At the RM destination endpoint, an incoming message is persisted,
and upon a successful store, the acknowledgement is sent. When a
message is successfully dispatched, it is evicted from the persistent
store.

® After a recovery from crash, it recovers the persisted messages and
dispatches them. It also brings the RM sequence to a state where new
messages are accepted, acknowledged, and delivered.

207

../prog_guide/index.htm

CHAPTER 10 | Deploying Reliable Messaging

Enabling WS-RM persistence To enable WS-RM persistence for a specific Artix bus, perform the following
steps:
1. Add the wsrm db plug-in to the orb plugins list. For example:

orb plugins = ["xmlfile log stream", "iiop profile", "giop",
"iiop", "wsrm db"];
The wsrm_db plug-in is the plug-in that implements the RM persistent
store API. The wsrm plug-in is loaded automatically when wsrm_db is
specified in the orb_plugins list.

2. Configure the Berkeley DB store used by the wsrm db plug-in as
follows:

plugins:artix:db:home = "db directory";

The default value is the current directory (.).

Further details For working examples of reliable messaging in Artix, see the
.../advanced/wsrm demo.

208

Part IlI

Accessing Artix Services

In this part This part contains the following chapters:
Publishing WSDL Contracts page 211
Accessing Contracts and References page 223
Accessing Services with UDDI page 245
Embedding Artix in a BEA Tuxedo Container page 251

209

210

In this chapter

CHAPTER 11

Publishing WSDL
Contracts

This chapter describes how to publish WSDL files that
correspond to specific Web services. This enables clients to
access the WSDL file and invoke on the service.

This chapter discusses the following topics:

Artix WSDL Publishing Service page 212
Configuring the WSDL Publishing Service page 214
Querying the WSDL Publishing Service page 218

211

CHAPTER 11 | Publishing WSDL Contracts

Artix WSDL Publishing Service

Overview The Artix WSDL publishing service enables Artix processes to publish WSDL
files for specific Web services. Published WSDL files can be downloaded by
other Artix processes (for example, especially clients), or viewed in a Web
browser. They can also be downloaded by Web service processes created by
other vendor tools (for example, Systinet).

The WSDL publishing service enables Artix applications to be used in
various deployment models, (for example, J2EE), without the need to
specify file system locations. It is the recommended way to publish WSDL
for Artix services.

The WSDL publishing service is implemented by the wsdl_publish plug-in.
This plug-in can be loaded by any Artix process that hosts a Web service
endpoint. This includes server applications, Artix routing applications, and
applications that expose a callback object.

Use with endpoint references It is recommended that you use the WSDL publishing service for any
applications that generate and export references. To use references, the
client must have access to the WSDL contract referred to by the reference.
The simplest way to accomplish this is to use the WSDL publishing service.

Figure 16 shows an example of creating references with the WSDL
publishing service. The wsdl publish plug-in automatically opens a port,
from which clients can download a copy of the server's dynamically updated
WSDL file. Generated references have their WSDL location set to the
following URL:

http://Hostname: WSDLPublishPort/QueryString

Hostname is the server host, wspr.rublishport is a TCP/IP port used to serve
up WSDL contracts, and guerystring is a string that requests a particular
WSDL contract (see “Querying the WSDL Publishing Service” on page 218).
If a client accesses the WSDL location URL, the server converts the WSDL
model to XML on the fly and returns the WSDL contract in a HTTP message.

For more details on references, see Developing Artix Applications in C++,
or Developing Artix Applications in Java.

212

../prog_guide/index.htm

http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm

Artix WSDL Publishing Service

Figure 16: Creating References with the WSDL Publishing Service

Artix Client Artix Server
Artix Bus
p
Reference Reference
l —
WSDL publish port pp_wsok WsbL
»O——mF—F -~ -E _ Read and parse | ———=
i [— 1 [—
P —
! WSDL Model | WSDL File

Multiple transports

 wsdl publish pugin

The WSDL publishing service makes the WSDL file available through an
HTTP URL. However, the Web service described in the WSDL file can use a
transport other than HTTP.

For example, when the wsdl publish plug-in is loaded into an Artix server
process that hosts a Web service using II0P, it publishes the service’s
WSDL file at an HTTP URL.

213

CHAPTER 11 | Publishing WSDL Contracts

Configuring the WSDL Publishing Service

Overview

Loading the wsdl_publish plug-in

214

This section describes how to load the wsdl publish plug-in, and configure
it to suit your needs.

Note: In a production environment, it is strongly recommended that you
set a wsdl publish port and hostname format.

To load the wsdl publish plug-in, add the wsdl publish string to your
orb plugins setting, in the process configuration scope. For example, if
your configuration scope is demos.server, you might use the following
orb plugins list:

Artix Configuration File
demos {
server
{
orb plugins = ["xmlfile log stream", "wsdl_publish"];

bi
17

When the process starts, the WSDL file is available at an HTTP URL that
uses a TCP/IP port assigned by the operating system. This URL is
embedded in the WSDL 1ocation value in an endpoint reference. Processes
receiving the reference can download the WSDL file from this URL.
However, there is no easy way to determine the port assigned by the
operating system. This makes it difficult to view the WSDL file in a web
browser, or to open this port through a firewall. You can solve this problem
by configuring a port for publishing WSDL.

Specifying a port for publishing
WSDL

Viewing the WSDL file in a web
browser

Configuring the WSDL Publishing Service

To enable viewing of WSDL files in a web browser, configure the

wsdl publish plug-in to use a specified port instead of a one assigned by
the operating system. The plugins:wsdl publish:publish port
configuration variable specifies the TCP/IP port that WSDL files are
published on. For example,

plugins:wsdl publish:publish port="2222";

When specifying a publish port, you must confirm that the specified port
is not already in use. If the port is in use, the server process will still start,
but the following error message will be displayed

ConnectionFailed on HTTP Port 2222 return 3: Unknown socket error: 0

The default value is 0, which means that the port is assigned by the
operating system at runtime.

If you know either the wsd1l_publish plug-in or the TCP/IP port used by the
service, you can view or download the WSDL file in a web browser.

In the browser address box, enter one of the following URLs, where
wsDLPublishport is the TCP/IP port used by the wsdl publish plug-in:

http://HostNameOrIP: WSDLPublishPort/get wsdl?
http://HostNameOrIP: WSDLPublishPort

The Artix process returns a web page that lists all of its services. Click on an
entry to retrieve the corresponding WSDL file.

Alternatively, you can enter one of the following URLs, where serviceport
is the TCP/IP port used by the Web service:

http://HostNameOrIP: ServicePort/service?wsdl
http://HostNameOrIP: ServicePort/service

The Artix process returns the WSDL file for the service. The
http://HostNameOrIP: ServicePort/service?wsdl format is used in the
JAX-WS specification.

215

CHAPTER 11 | Publishing WSDL Contracts

Specifying a hostname format

216

The plugins:wsdl publish:hostname variable specifies how the hostname
is constructed in the wsdl_publish URL. This is the URL that the
wsdl publish plug-in uses to retrieve WSDL contracts.

This variable has three possible values:

canonical The fully qualified hostname (for example,
http://myhost .mydomain.com).

unqualified The unqualified local hostname (for example,
http://myhost).

ipaddress The IP address (for example, http://10.1.2.3).

By default, the unqualified local hostname is used.

Note: This variable should not be confused with the following:
O policies:soap:server address mode policy:publish hostname

® policies:at http:server address mode policy:publish hostname

These specify how endpoint URLs are published in WSDL contracts.

plugins:wsdl publish:hostname Specifies only how to construct the URL
used by the wsdl publish plug-in to access the WSDL.

Whereas,
policies:soap:server address mode policy:publish hostname and
policies:at http:server address mode policy:publish hostname

specify how to construct the URL in the published WSDL contract.

You must be aware of both sets of configuration entries when using the
wsdl publish plug-in (for example, to avoid publishing a WSDL file that
does not contain a complete URL).

Specifying WSDL preprocessing

Configuring the WSDL Publishing Service

You can use the plugins:wsdl publish:processor variable to specify the
kind of preprocessing done before publishing a WSDL contract.

Because published contracts are intended for client consumption, by
default, all server-side WSDL artifacts are removed from the published
contract. You can also specify to remove all IONA-specific extensors.
Preprocessing can also be disabled; the only modification is updating the
location and schemalocation attributes to HTTP based URLs.

This variable has the following possible values:

artix Remove server-side artifacts. This is the default setting.
standard Remove server-side artifacts and IONA proprietary extensors.
none Disable preprocessing.

For example:

plugins:wsdl publish:processor="standard";

217

CHAPTER 11 | Publishing WSDL Contracts

Querying the WSDL Publishing Service

Overview

Example query syntax

218

If you know the TCP/IP port used by either the wsdl_publish plug-in or the
Web service, you can view or download the WSDL file in a web browser.

This section shows examples of querying the WSDL Publishing service. It
also describes its HTML menu and WSIL support.

Assume you configured wsdl publish using the following values on a
system with an IP address of 10.1.2.3:

test.scope {
plugins:wsdl publish:publish port = 1234;
plugins:wsdl publish:hostname = "ipaddress";
}i

The wsdl publish base URL is http://10.1.2.3:1234. And requests on the

following types of URLs are serviced:

® http://10.1.2.3:1234/get _wsdl, http://10.1.2.3:1234/get _wsdl/,

http://10.1.2.3:1234/get_wsdl?, or

http://10.1.2.3:1234/get_wsdl/? returns the HTML Menu (see

“Using the HTML menu” on page 219).

http://10.1.2.3:1234/get wsdl?service=name&scope=EncodedUrl

returns the contract for the service specified in the query string.

® http://10.1.2.3:1234/get_wsdl?stub=EncodedUrl returns the
contract for IONA specific services.

® http://10.1.2.3:1234/inspection.wsil returns a WSIL document
containing information about active Web services (see “WSIL support”
on page 220).

® http://10.1.2.3:1234/get wsdl/context/filename.wsdl returns the
specified WSDL contract. The value of context is generated at
runtime.

® http://10.1.2.3:2000/service Of
http://10.1.2.3:2000/service?wsdl returns the contract for the
specified service. The value of the URL is the same as the one
specified in the WSDL as the soap:address of the service.

Querying the WSDL Publishing Service

If an invalid URL is provided, wsdl_publish returns an HTTP 404 (File Not
Found) Error.

For more details, see “Viewing the WSDL file in a web browser” on
page 215.

Querying CORBA services
Use the following wsdl_publish URL format when using CORBA-only
services:

WSDLPublishURL/get wsdl?service=Name&scope=NS

For example, a client could use the following setting:

bus:initial contract:url:greeter =
"http://localhost:9005/get wsdl?service=GreeterService&scope=http://www.iona.com/demo";

Using the HTML menu

For more details, see Artix for CORBA.

The WSDL publishing service provides an HTML menu page that contains
links to the contracts of activated services. This page shows all services
activated on the current bus associated with a specified wsdl publish
instance.

Note: A process might have more than one active bus, and so more Web
services might be activated in that process. Contracts for other Web
services can be obtained from the wsdl_publish instance associated with
their buses.

For example, an it _container instance is started on port 2000, and the
wsdl publish port is configured as 1234. The HTML menu available at
http://10.1.2.3:1234/get_wsdl is as follows:

WSDL Services available

ContainerService (http://ws.iona.com/container)

ContainerService (http://ws.iona.com/container)

219

../corba_ws/index.htm

CHAPTER 11 | Publishing WSDL Contracts

WSIL support

220

The HTML source is as follows:

<html>
<body>
<h1>WSDL Services available</hl>
<a href=
"http://10.1.2.3:2000/get wsdl/WPabcd/container.wsdl">Contain

erService (http://ws.iona.com/container)

<a href=
"http://10.1.2.3:2000/services/container/ContainerService?wsd
1">ContainerService (http://ws.iona.com/container)

</body>

</html>

The first entry downloads the WSDL from the wsdl publish port, while the
second downloads the WSDL from the service's port.

The hostname format assigned to plugins:wsdl publish:hostname affects
the syntax of the first entry's URL, while the server address mode policy
variables affect the syntax of the second entry's URL. For more details, see
“Specifying a hostname format” on page 216.

The Web Services Inspection Language (WSIL) specification, available at
http://wow-128.ibm.com/developerworks/library/specification/ws-wsilspec,
provides a standard way of inspecting a Web service, and getting the
contracts of active Web services.

http://www-128.ibm.com/developerworks/library/specification/ws-wsilspec/

Querying the WSDL Publishing Service

For example, the WSIL document available from
http://10.1.2.3:1234/inspection.wsil has the following content:

<?xml version="1.0"?>
<inspection targetNamespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
xmlns="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
xmlns:wsilwsdl="http://schemas.xmlsoap.org/ws/2001/10/inspection/wsdl/">
<service>
<description referencedNamespace="http://schemas.xmlsoap.org/wsdl/"
location="http://10.1.2.3:1234/get wsdl/WPabcd/container.wsdl">
<wsilwsdl:reference>
<wsilwsdl:referencedService xmlns:nsl="http://ws.iona.com/container">
nsl:ContainerService
</wsilwsdl:referencedService>
</wsilwsdl:reference>
</description>
</service>
<service>
<description referencedNamespace="http://schemas.xmlsoap.org/wsdl/"
location="http://10.1.2.3:2000/services/container/ContainerService?wsdl">
<wsilwsdl:reference>
<wsilwsdl:referencedService xmlns:nsl="http://ws.iona.com/container">
nsl:ContainerService
</wsilwsdl:referencedService>
</wsilwsdl:reference>

</description>
</service>
</inspection>
HTTP transport For an Artix process that exposes a Web service over HTTP, the WSDL
Publishing service provides an alternative way to view or download the
WSDL file.

Artix distinguishes between HTTP POST and HTTP GET calls. HTTP POST
calls are used to invoke on the target Web service. HTTP GET calls return
the WSDL file.

221

CHAPTER 11 | Publishing WSDL Contracts

Servant registration

222

In the following WSDL file, the port element specifies the HTTP transport
and makes the Web service available at a specified HTTP URL.

<definitions name="HelloWorld"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
L>

<service name="SOAPService">

<port binding="tns:Greeter SOAPBinding" name="SoapPort">
<soap:address location="http://hostname:9000/test"/>
</port>

</service>

</definitions>

If the Artix server hosting this service loads the wsdl publish plug-in, the
WSDL file may be viewed or downloaded using a web browser.

In the browser’s address box, enter:
http://hostname: 9000/test

For this approach to work, the service’s HTTP URL must include a unique
context (in this example case, /test).

When the WSDL Publishing service publishes a WSDL file for a service
using a statically registered servant, the published file contains valid
connection details. This is true even if the WSDL file originally specified
dynamic port assignment (for example, an HTTP transport with a location
URL of the form http://HostName:0, or an IIOP transport with a location
entry of the form ior:).

The HTTP URL is revised to http://HostName: ServicePort, Where
ServicePort is @ TCP/IP port assigned by the operating system. The 110P
location entry is revised to 1oR: ..., where ... is the string representation of
the CORBA object reference.

However, when the wsdl publish plug-in publishes a WSDL file for a
service using a transiently registered servant, the published file does not
contain valid connection details. Valid connection details can only be
obtained from the endpoint reference corresponding to the service.

For more details on servant registration, see Developing Artix Applications in
C++, or Developing Artix Applications in Java.

../prog_guide/index.htm

../prog_guide/index.htm

http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm

In this chapter

CHAPTER 12

Accessing
Contracts and
References

Artix enables you to decouple the location of WSDL contracts
and endpoint references from your server and client. This
avoids hard-coding the location of WSDL files in your
applications. This chapter explains the benefits, and shows
how to use the different ways of accessing WSDL contracts
and endpoint references.

This chapter discusses the following topics:

Introduction page 224
Enabling Server and Client Applications page 227
Accessing WSDL Contracts page 231
Accessing Endpoint References page 237
Accessing Artix Services page 243

223

CHAPTER 12 | Accessing Contracts and References

Introduction

Overview Artix enables client and server applications to access WSDL service
contracts and endpoint references in a variety of ways (for example, by
specifying their location on the command line, or in a configuration file).
This section explains the benefits of using these features.

Hard coding WSDL in servers Hard coding WSDL in servers limits the portability of your application, and
can make it more difficult to develop and deploy.

For example, you have developed a Web service application that includes a
client and a service implemented in a server process. When you first write
the application, you have a local copy of the WSDL, and you have hard
coded the WSDL location into your application.

Example C+ + server

// C++
OName service gname ("", "SOAPService",
http://www.iona.com/hello world soap http);

HelloWorldImpl servant (bus) ;
bus->register servant (
"../../etc/hello.wsdl",
service gname
)i

Example Java server

// Java

QOName serviceQName = new
QOName ("http://www.iona.com/hello world soap http",
"SOAPService") ;

Servant servant = new SingleInstanceServant (new SoapImpl (),

"../../etc/hello.wsdl", bus);
bus.registerServant (servant, serviceQName, "SoapPort") ;

224

Introduction

Similarly, you have also hard-coded your client with the location of your
local WSDL:

Hard coding WSDL in clients

Example C+ + client

// C++
HelloWorldClient proxy("../../etc/hello.wsdl");

proxy.sayHello() ;

Example Java client

// Java
QOName serviceQName = new
OName ("http://www.iona.com/hello world soap http", "SOAPService");

URL wsdlLocation = null;

try {
wsdlLocation = new URL("../../etc/hello.wsdl");

} catch (java.net.MalformedURLException ex) {
wsdlLocation = new File (wsdlPath) .toURL() ;

Soap impl =
(Soap) bus.createClient (wsdlLocation, serviceQName, portName, Soap.class) ;

String returnval = impl.sayHi();

Note: For simplicity, this example uses the Artix bus helper to create
proxies. You can also use JAX-RPC.

225

CHAPTER 12 | Accessing Contracts and References

Deploying your application

226

However, when your application is no longer a demo, and you want to
deploy it in multiple locations, your hard-coded application may make this
difficult. For example, if your client is no longer run from the same directory
or machine as the server.

To solve this problem, Artix enables you to write code that is location
independent, and therefore easy to distribute and deploy.

Note: These features are designed for WSDL-based services. They do not
provide mechanisms for resolving local objects. For details of how to do
this, see Developing Artix Applications with C++ and Developing Artix
Applications in Java.

http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm
http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm
../prog_guide/index.htm

Enabling Server and Client Applications

Enabling Server and Client Applications

Overview

Enabling servers to access WSDL

Artix addresses two typical use case scenarios:

® Enabling server applications to access WSDL contracts.

® Enabling client applications to access endpoint references.

Artix supports both of these use cases for C++ and Java applications.

When you want to activate your service in a mainline or a plug-in, you
should not hard code the WSDL location. Instead, you can use Artix APIs to
decouple the WSDL location from your application logic.

C++ example

The C++ get service contract () function takes the QName of the
desired service as a parameter, and returns a pointer to the specified

service. When you change your old hard-coded application to use this
method, your C++ server becomes:

// C++
IT Bus::QName service gname (
"", "SOAPService", "http://www.iona.com/hello world soap http"
)i
// Find the WSDL contract.

IT WSDL::WSDLService* wsdl service = bus->get service contract (
service gname

);

// Register the servant

bus->register servant (
servant,
*wsdl_service

);

For simplicity, this example does not show any error handling. For details,
see Developing Artix Applications with C+ +.

227

http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm

CHAPTER 12 | Accessing Contracts and References

Enabling clients to access
endpoint references

228

Java example

The Java getservicewsplL () method takes the QName of the desired service
as a parameter, and returns the URL for the specified service WSDL. Your
Java server becomes:

// Java
QName serviceQName = new
OName ("http://www.iona.com/hello world socap http", "SOAPService");

String hwiWsdl = bus.getServiceWSDL (serviceQName) ;

Servant servant = new SingleInstanceServant (new SoapImpl (), hwWsdl, bus);
bus.registerServant (servant, serviceQName, "SoapPort") ;

Associating your server with a specific WSDL contract is not addressed in
your application code. This is specified at runtime instead. The available
options are explained in “Accessing WSDL Contracts” on page 231.

When you want to initialize your client proxies in your applications, you
should no longer depend on local WSDL files or static stub code information
to properly instantiate a proxy. Instead, you can use Artix APIs to decouple
the location of client references from your application logic.

Note: The Artix 3.0 APIs for resolving initial references have been
deprecated in Artix 4.0. These APIs are supported for backwards
compatibility, however, it is recommended that you update your
applications to use the new WS-Addressing APIs in Artix 4.0.

C++ example

The C++resolve initial reference() function takes the QName of the
desired service as a parameter, and returns the endpoint reference for the
specified service.

Enabling Server and Client Applications

You can change your old hard-coded client application as follows:

// Ct+
IT Bus::QName service gname (

"", "SOAPService", "http://www.iona.com/hello world soap http"
)i

WS Addressing::EndpointReferenceType ref;

// Find the initial reference.
bus->resolve initial reference (
service gname,
ref
)i
// Create a proxy and use it
GreeterClient proxy (ref);
proxy.sayHi () ;

Java example

The Java resolvelInitialEndpointReference () method takes the QName
of the desired service as a parameter, and returns the endpoint reference for
the specified service. You can change your old hard-coded Java client as
follows:

// Java
OName name = new QName ("http://www.iona.com/hello world soap http",
"SOAPService") ;

EndpointReferenceType ref;

// Find the initial reference.
ref = bus.resolvelInitialReference (name) ;

// Create a proxy and use it.

GreeterClient proxy = (GreeterClient)bus.CreateClient (ref,
GreeterClient.class);

proxy.sayHi () ;

The association of your client with a specific endpoint reference is not
addressed in your application code. This is specified at runtime instead. The
available options are explained in “Accessing Endpoint References” on
page 237.

229

CHAPTER 12 | Accessing Contracts and References

Accessing WSDL and references
for clients or servers

230

These APIs can be used by both clients and servers. For example, typically,
Java clients use the resolveInitialEndpointReference () method and
servers use the getservicewsnL () method. However, both application types
can use either of these methods. The same applies to their C++
equivalents.

For example, a Java client could also use the getservicewspL () method to
locate a WDSL file.

Accessing WSDL Contracts

Accessing WSDL Contracts

Overview

Accessing WSDL at runtime

Configuring WSDL on the
command line

When your application calls the Artix bus to access a WSDL contract for a
service, the Artix bus uses several available options to access the requested
WSDL. Artix tries each resolver mechanism in turn until it finds an
appropriate contract, and returns the first result. If one of these is configured
with a bad contract URL, no others are called.

Accessing WSDL is a two-step process:

1. You must first use the C++ or Java API to resolve the WSDL (see
“Enabling servers to access WSDL"” on page 227).

2. You must then use one of the resolvers to configure the WSDL at
runtime. These are explained in this section.

The possible ways of accessing WSDL at runtime are as follows:
1. Command line.

2. Artix configuration file.

3. Well-known directory.

4. Stub WSDL shared library.

These resolver mechanisms are listed in order of priority, which means that
if you configure more than one, those higher up in the list override those
lower down. See “Order of precedence for accessing WSDL” on page 235.

You can configure WSDL by passing URLs as parameters to your application
at startup. WSDL URLs passed at application startup take precedence over
settings in a configuration file. The syntax for passing in WSDL to any Artix
application is:

-BUSservice contract url

For example, assuming your application is using the
get _service contract () method, you can avoid configuration files by
starting your application as follows:

./server -BUSservice contract ../../etc/hello.wsdl

231

CHAPTER 12 | Accessing Contracts and References

This means that the Artix bus parses the URLs that you pass into it on
startup. It finds any services that are in this WSDL, and caches them for any
users that want WSDL for any of those services.

Parsing WSDL on demand

If you do not want the Artix bus to parse the document until it is needed,
you can specify what services are contained in the WSDL, which results in
the URL being parsed only on demand. The syntax for this is:

-BUSservice contract {namespace}localpart@url
For example, the application would be started as follows:

./server -BUSservice contract
{http://www.iona.com/demos}HelloWorldService@../../etc/hello.wsdl

Specifying the WSDL URL on startup enables the Artix bus to avoid parsing
the WSDL until it is requested.

Configuring WSDL in a You can also configure the location of your WSDL in an Artix configuration
configuration file file, using the following syntax.
bus:gname alias:service-name = "{namespace}localpart";
bus:initial contract:url:service-name = "url";

These configuration variables are described as follows:

® Dbus:gname alias:service-name enables you to assign an alias or
shorthand version of a service QName. You can then use the short
version of the service name in other configuration variables. The syntax
for the service Qname is " {namespace} localpart".

bus:initial contract:url:service-name USeS the alias defined
using bus:qname_alias to configure the location of the WSDL contract.
The WSDL location syntax is "ur1". This can be any valid URL, it does
not need to be a local file.

The following example configures a service named SimpleService, defined
in the nttp://www.iona.com/bus/tests namespace:

bus:gname alias:simple service = "{http://www.iona.com/bus/tests}SimpleService";
bus:initial contract:url:simple service = "../../etc/simple service.wsdl";

232

Configuring WSDL in a
well-known directory

Accessing WSDL Contracts

You can also configure an Artix application to search in a well-known
directory when it needs to access WSDL. This enables you to configure
multiple documents without explicitly configuring every document on the
command line, or in configuration. If you specify a well-known directory, you
only need to copy the WSDL documents into this directory before the
application uses them.

You can configure the directory location in a configuration file or by passing
a command-line parameters to your C++ or Java application.

Configuring a WSDL directory in a configuration file

To set the directory in configuration, use the following variable:

bus:initial contract dir=["."];

The value "." means use the directory from where the application was
started. The specified value is a list of directories, which enables you to
specify multiple directories.

Configuring a WSDL directory using command-line parameters

If you do not wish to use a configuration file, you can configure the WSDL
directory using command line parameters. The command line overrides any
settings in a file. The syntax is as follows:

-BUSservice contract dir directory

For example, to configure Artix to look in the current directory, and in the
"../../etc" directory, use the following command:

server -BUSservice contract dir . -BUSservice contract dir ../../etc/

Configuring multiple WSDL directories

You can configure multiple well-known directories for your application to
search. However, it is not recommended that you put too many files in the
directory.

The more files you put in the directory, the longer it may take to find the
contract that you are looking for. The directory search is optimized to first do
a quick file scan to see if any of the files potentially contain the target
service requested. The documents are not properly parsed unless a match
has been found.

233

CHAPTER 12 | Accessing Contracts and References

Configuring a stub WSDL shared
library

234

If you use multiple directories, the ordering makes a difference if both
directories contain the same service definitions. The WSDL resolvers search
the directories in the order that they are configured in.

You can add WSDL documents to the well-known directories after the

application has started. The file must only be present in the directory before
the application requests it.

It is also possible to encode a WSDL document inside a C++ shared library.
Just like in Java, where resources are added to a .7ar file, Artix can embed
a WSDL document inside a shared library. This enables you to resolve
WSDL contracts for Artix services without using a file system or any remote
calls.

When a WSDL document is encoded inside a shared library, this is called a
stub WSDL shared library. Artix provides stub WSDL shared libraries for the
following Artix services:

® Jlocator

® session manager

® peer manager

® container

This means that you can deploy these services into environments without
using any other resources like WSDL documents. Artix does not provide
APIs to enable you to encode your own documents into stub libraries.

Stub WSDL shared libraries are the last resolver mechanisms to be called. If
you configure any others, the stub WSDL shared library is not used.

All the Artix stub WSDL libraries contain WSDL endpoints with SOAP HTTP
port addresses of 0. This means that if these versions are used to activate a
service, the endpoint is instantiated on a dynamic port. This is the
recommended approach for internal services like the container and peer
manager.

Order of precedence for accessing
WSDL

Accessing WSDL Contracts

Because there are several available options for accessing WSDL, Artix
searches each resolver in turn for a suitable document. It returns the first
successful result to the user.

The order of precedence for accessing WSDL is as follows:
Contract passed on the command line.

2. Contract specified in a configuration file.

3. Well-known directory passed on the command line.
4. Well-known directory specified in a configuration file.
5. Stub WSDL shared library.

Example

You have four WSDL contracts that contain a definition for a service named

SimpleService:

one/simple.wsdl
two/simple.wsdl
three/simple.wsdl
four/simple.wsdl

1. Configure the following in your configuration file:

bus:gname alias:simple service =
"{http://www.iona.com/bus/tests}SimpleService";

bus:initial contract:url:simple service = "two/simple.wsdl";

bus:initial contract dir=["four"];

2. Start your server as follows:

server -BUSservice contract dir three -BUSservice contract one/simple.wsdl

The contract in one/simple.wsdl is returned to the application because
WSDL configured using -Busservice contract takes precedence over all
other sources.

235

CHAPTER 12 | Accessing Contracts and References

Accessing standard Artix services

236

If you start your server as follows:
server

The contract in two/simple.wsdl is returned to the application because the
order that the resolvers are called means that the contract specified in a
configuration file is the first successful one.

For details of accessing WSDL for standard Artix services such as the locator
or session manager, see “Accessing Artix Services” on page 243.

Accessing Endpoint References

Accessing Endpoint References

Overview

Endpoint reference resolver
mechanisms

An endpoint reference is an object that encapsulates the endpoint and
contract information for a particular WSDL service. A serialized reference is
an XML document that refers to a running service instance, and contains a
URL pointer to where the service WSDL can be retrieved. You can serialize a
reference to any service by deploying it into the Artix container and calling
it _container admin -publishreference. Alternatively, you can use APIs
to publish an endpoint reference directly.

For example, when your client application uses the Artix bus to look up a
endpoint reference using the service QName, it calls the
resolveInitialEndpointReference () method. Accessing endpoint
references works the same way as accessing WSDL, and you have several
options for configuring the reference that the client uses. Like with WSDL
contracts, Artix tries each resolver in turn until it gets a successful result or
an error. If any of these return null, the core tries the next one. If you have a
badly configured reference, the resolver returns an error or exception.

Accessing endpoint references is a two-step process:

1. You must first use the C++ or Java API to resolve the reference (see
“Enabling clients to access endpoint references” on page 228).

2. You must then use one of the resolvers to configure the reference at
runtime. This is explained in this section.

For details of how to use the Artix container to publish endpoint references
for a client, see Chapter 6.

The possible ways of configuring endpoint references at runtime are as
follows:

1. Colocated service.

C++ programmatic configuration.
Command line

Configuration file.

WDSL contract.

ok W

237

CHAPTER 12 | Accessing Contracts and References

Using a colocated service

Specifying endpoint references in
C++ code

238

These are listed in order of precedence, so if you configure more than one,
those higher up in the list override those lower down. Artix searches each in
turn for a suitable match and returns the first successful result.

The most convenient place to find a endpoint reference to a service that a
client has requested is in the local Artix bus. When the activated service is
colocated (available locally in the same process), the client can easily find a
local reference to invoke. In this case, the client’s

resolve initial reference() method returns a reference to the colocated
service.

This is the first resolver that the runtime checks. You can expect resolution
to always succeed for services that are activated locally.

In C++, you can register an initial reference programmatically using the
Artix bus. You can register an reference in one C++ plug-in that would
enable another plug-in (Java or C++) to resolve that reference using the
bus API.

Artix checks the bus for local services, so it would be unusual for an
application to require the programmatic configuration unless it uses multiple
buses. You can not programmatically configure a reference in one bus and
have it resolved in another.

In addition, you can not activate a service in one bus, and have it resolved in
another. If you wish a client in one bus to use a reference from an active
service in another bus you should programmatically register the reference
from one bus to the next.

Accessing Endpoint References

For example:

\\ C++
QOName service gname ("", "SOAPService",
http://www.iona.com/hello world soap http);

// Activate the service on bus one
HelloWorldImpl servant (bus_one) ;

WSDLService* contract = bus one->get service contract (service gname);
bus one->register servant (
*contract,

servant

)i
Service var service = bus_one->get_service (service gname) ;

// Register the service reference on bus two
bus_two->register initial reference (service->get endpoint reference()) ;

Specifying endpoint referenceson You can also pass in reference URLs as parameters to the application on

the command line

startup. Endpoint reference URLs passed to the application on startup take
precedence over settings in an Artix configuration file. The syntax for passing
in a reference to any Artix application is:

-BUSinitial reference url

For example, assuming your application is using
resolve initial reference (), you could avoid configuration files by
starting your application as follows:

./client -BUSinitial reference ../../etc/hello.xml

This means that the Artix bus parses the URLs passed into it on startup. It
caches them for any users that request references of this type at runtime.

239

CHAPTER 12 | Accessing Contracts and References

Specifying endpoint references in
a configuration file

240

Parsing endpoint references on demand

If you do not want to parse the reference XML until it is needed, you can
specify the service name that the reference maps to. This means that the
XML is not parsed until it is first requested. The syntax for this is

-BUSinitial reference {namespace}localpart@url

For example, the application is started as follows:

./client -BUSinitial reference

{http://www.iona.com/demos}HelloWorldService@../../etc/hello.xml

You can also specify an endpoint reference in a configuration file. The
reference must be serialized in an XML format (for example, output to a file
using itcontainer -publishreference).

You can use configuration variable syntax to configure a URL or the contents
of a serialized reference.

Specifying serialized reference URLs

You can configure the location of your WSDL in an Artix configuration file,
using the following configuration variable syntax.

bus:gname alias:service-name = "{namespace}localpart";
bus:initial references:url:service-name = "url";

These variables are described as follows:

® Dbus:gname alias:service-name enables you to assign an alias or

shorthand version of a service QName. You can then use the short
version of the service name in other configuration variables. The syntax
for the service Qname is " {namespace} localpart".

bus:initial contract:url:service-name USeS the alias defined
using bus:gname_alias to configure the location of the endpoint
reference. The XML location syntax is "ur1". The URL value can be any
valid URL, it does not have to be a local file, but under most
circumstances the endpoint reference is local.

Accessing Endpoint References

The following example configures a service named simpleService, defined
in the http://www.1iona.com/bus/tests hamespace:

bus:gname alias:simple service = "{http://www.iona.com/bus/tests}SimpleService";
bus:initial contract:url:simple service = "../../etc/simple service.xml";

Specifying inline references

Instead of configuring a URL, you can also inline the endpoint reference
XML in a configuration file. This is similar to configuring CORBA initial
references in Orbix, and it effectively hard codes the addressing. This should
only be used for static services where you do not expect anything to change
(for example, details such as the endpoint address and transport
information).

The following is an example inline endpoint reference:

bus:gname alias:simple service = "{http://www.iona.com/bus/tests}SimpleService";
bus:initial references:inline:simple service = "<?xml version='1l.0' encoding='utf-8'?>";

Specifying endpoint references
using WSDL

The endpoint reference appears on one line in an XML document.

How Artix finds endpoint references is built on how it finds WSDL. When
configuring a reference, you can use all the options available for configuring
WSDL. When you locate a WSDL document that contains the wsdl:service
you are looking for, you can convert it to a reference and return it to the
client.

If Artix fails to find a suitable reference using the reference resolver
mechanismes, it falls back to those used for WSDL. This is useful in certain
scenarios. For example, when you only want to configure well-known Artix
services (such as the locator). If you configure the WSDL, both the service
and the client can benefit from a single configuration source.

241

CHAPTER 12 | Accessing Contracts and References

Implications of resolving references using WSDL

When no references are found, Artix calls the WSDL resolver mechanisms.
This means that you can rely on WSDL to configure client references.

However, the default WSDL contracts for well-known Artix services have
SOAP/HTTP endpoints with a port of zero. For example:

<service name="LocatorService">
<port binding="1ls:LocatorServiceBinding" name="LocatorServicePort">
<soap:address location="http://localhost:0/services/locator/LocatorService"/>
</port>
</service>

If you resolve a reference with a port of zero, you get an error when you try
to invoke the proxy created from the reference. The exception says that the
address is invalid.

These contracts with ports of zero are intended for use by servers rather
than clients, and enable servers to run on a dynamic port. Therefore, in
general, your client should not rely these contracts. If the server is using this
type of contract, you should publish the activated form of the contract,
which contains the port assigned dynamically at startup. Your client can
then access this activated version of the contract instead.

Further information For more detailed information on endpoint references, see Developing Artix
Applications in C++, or Developing Artix Applications in Java.

242

http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm

Accessing Artix Services

Accessing Artix Services

Overview

Pre-configured WSDL

Artix includes WSDL contracts for all of the services that it ships (for
example, the locator and session manager). This section shows the default
configuration provided for these services.

Artix provides pre-configured aliases and WSDL locations for all of its
services. By default, the Artix configuration file (artix.cfg) includes the
following entries:

Well known Services QName aliases

bus
bus
bus
bus
bus

bus
bus
bus

bus
bus
bus
bus

bus

bus

bus
bus

:gname_alias:
:gqname_alias:
:peermanager = "{http://ws.iona.com/peer manager}PeerManagerService";
:gname_alias:
:gqname_alias:

:gqname_alias

container = "{http://ws.iona.com/container}ContainerService";
locator = "{http://ws.iona.com/locator}LocatorService";

sessionmanager = "{http://ws.iona.com/sessionmanager}SessionManagerService";
sessionendpointmanager =

"{http://ws.1iona.com/sessionmanager}SessionEndpointManagerService";

:gname_alias:
:gqname_alias:
:gqname_alias:

uddi_inquire = "{http://www.iona.com/uddi over artix}UDDI InquireService";
uddi_publish = "{http://www.iona.com/uddi_over artix}UDDI_PublishService";
login service = "{http://ws.iona.com/login service}LoginService";

:initial contract:url:container = "install root/artix/Version/wsdl/container.wsdl";
:initial contract:url:locator = "install root/artix/Version/wsdl/locator.wsdl";

:initial contract:url:peermanager = "install root/artix/Version/wsdl/peer-manager.wsdl";
:initial contract:url:sessionmanager =

"install root/artix/Version/wsdl/session-manager.wsdl";

:initial contract:url:sessionendpointmanager =

"install root/artix/Version/wsdl/session-manager.wsdl";

:initial contract:url:uddi inquire = "install root/artix/Version/wsdl/uddi/uddi v2.wsdl";
:initial contract:url:uddi publish = "install root/artix/Version/wsdl/uddi/uddi v2.wsdl";
:initial contract:url:login service =

"install root/artix/Version/wsdl/login service.wsdl";

In your application, if you resolve the WSDL or an endpoint reference for any
of these services, by default, the WSDL from these values is used. Most of
these services are configured to use a port of zero. If you do not want to use
the default WSDL for any of these services, you must override the default.

243

CHAPTER 12 | Accessing Contracts and References

Further information For more details on the configuration variables for accessing WSDL
contracts and endpoint references, see the Artix Configuration Reference.

For more examples of accessing WSDL and references in Artix applications,
see the following demos:

b . .demos\basic\bootstrap

. .demos\advanced\container\deploy plugin
. .demos\advanced\container\deploy routes
. .demos\advanced\locator

. .demos\advanced\locator list endpoints

244

../config_ref/index.htm

In this chapter

CHAPTER 13

Accessing Services
with UDDI

Artix provides support for Universal Description, Discovery and
Integration (UDDI). This chapter explains the basics, and
shows how to configure UDDI proxy support in Artix
applications. It also shows how to configure jUDDI repository
settings.

This chapter includes the following sections:

Introduction to UDDI page 246
Configuring UDDI Proxy page 249
Configuring a jUDDI Repository page 250

245

CHAPTER 13 | Accessing Services with UDDI

Introduction to UDDI

Overview

Publishing WSDL to UDDI

Artix UDDI URL format

246

A Universal Description, Discovery and Integration (UDDI) registry is a form
of database that enables you to store and retrieve Web services endpoints. It
is particularly useful as a means of making Web services available on the
Internet.

Instead of making your WSDL contract available to clients in the form of a
file, you can publish the WSDL contract to a UDDI registry. Clients can then
query the UDDI registry and retrieve the WSDL contract at runtime.

You can publish your WSDL contract either to a local UDDI registry or to a
public UDDI registry, such as http://uddi.ibm.com or
http://uddi.microsoft.com.

To publish your WSDL contract, navigate to one of the public UDDI Web
sites and follow the instructions there.

A list of public UDDI registries is available from WSINDEX
(http://www.wsindex.org/UDDI/Registries/index.html)

Artix uses UDDI query strings that take the form of a URL. The syntax for a

UDDI URL is as follows:

uddi : UDDIRegistryEndpointURL?QueryString

The UDDI URL is built from the following components:

® UDDIRegistryEndpointURI—the endpoint address of a UDDI registry.
This could either be a local UDDI registry (for example,
http://localhost:9000/services/uddi/inquiry) or a public UDDI
registry on the Internet (for example,
http://uddi.ibm.com/ubr/inquiryapi for IBM’s UDDI registry).

http://www.wsindex.org/UDDI/Registries/index.html
http://www.wsindex.org/UDDI/Registries/index.html
http://uddi.microsoft.com
http://uddi.ibm.com

Introduction to UDDI

® oueryString—a combination of attributes used to query the UDDI
database for the Web service endpoint data. Currently, Artix only
supports the tmodelname attribute. An example of a query string is:

tmodelname=helloworld

Within a query component, the characters ;, /, 2, :, @, & =, +, ,,and $
are reserved.

Examples of valid UDDI URLs

uddi:http://localhost:9000/services/uddi/inquiry?tmodelname=helloworld
uddi :http://uddi.ibm.com/ubr/inquiryapi?tmodelname=helloworld

Initializing a client proxy with To initialize a client proxy with UDDI, simply pass a valid UDDI URL string
uDDI to the proxy constructor.

For example, if you have a local UDDI registry,
http://localhost:9000/services/uddi/inquiry, where you have
registered the WSDL contract from the HelloWorid demonstration, you can
initialize the Greeterclient proxy as follows:

C++
// C++
IT Bus::Bus var bus = IT Bus::init(argc, argv);

// Instantiate an instance of the proxy
GreeterClient hw("uddi:http://localhost:9000/services/uddi/inquiry?tmodelname=helloworld") ;

String string out;

// Invoke sayHi operation
hw.sayHi (string out);

247

CHAPTER 13 | Accessing Services with UDDI

248

Java

//Java
String wsdlPath = "uddi:http://localhost:9000/services/uddi/inquiry?tmodelname=helloworld";
Bus bus = Bus.init ((String[])orbArgs.toArray(new String[orbArgs.size()]));
QOName name = new QName ("http://www.iona.com/hello world soap http","SOAPService");
QName portName = new QName ("","SoapPort") ;
URL wsdlLocation null;
try {
wsdlLocation = new URL(wsdlPath) ;
} catch (java.net.MalformedURLException ex) {
wsdlLocation = new File (wsdlPath) .toURL() ;

ServiceFactory factory = ServiceFactory.newlnstance();
Service service = factory.createService (wsdlLocation, name) ;
Soap impl = (Soap)service.getPort (portName, Soap.class);

Configuring UDDI Proxy

Configuring UDDI Proxy

Overview

C+ + configuration

Java configuration

Artix UDDI proxy service can be used by applications to query endpoint
information from a UDDI repository. This section explains how to configure
UDDI proxy support for both C++ and Java client applications.

To configure an Artix C++ application for UDDI proxy support, add
uddi_proxy to the application’s orb plugins list. For example:

Artix configuration file

my application scope {
orb plugins = [..., "uddi proxy"];

To configure an Artix Java application for UDDI proxy support, perform the
following steps:

1. Add java to the application’s orb_plugins list.

2. Add java uddi proxy to the application’s java plugins list. For
example:

Artix Configuration File

my application scope {
orb plugins = [..., "java", ...];

java_plugins=["java uddi_proxy"];

249

CHAPTER 13 | Accessing Services with UDDI

Configuring a jJUDDI Repository

Overview

Setting jUDDI properties

Further information

250

The Artix demos use an open source UDDI repository implementation
named jUDDI. These demos use the HSQLDB database to store UDDI
information. For convenience, this is configured to run in file (embedded)
mode by default.

You can configure jUDDI properties, such as your database settings, in your
juddi.properties file. This file is located in the following directory:

InstallDir\artix\Version\demos\integration\juddi\artix server\etc

For example, the HSQLDB database settings in the default
juddi.properties file are as follows:

hsqgldb

juddi.useConnectionPool=true
juddi.jdbcDriver=org.hsgldb. jdbcDriver
juddi.jdbcURL=jdbc:hsgldb:etc/juddi db
juddi.jdbcUser=sa

juddi.jdbcPassword=

juddi . jdbcMaxActive=10
juddi.jdbcMaxIdle=10

If you want change your database to MySQL, uncomment all the mysql
settings, and use the following instead:

mysql

juddi.useConnectionPool=true
juddi.jdbcDriver=com.mysql.jdbc.Driver
juddi.jdbcURL=jdbc:mysgl://10.129.9.101:3306/juddi
juddi.jdbcUser=root

juddi.jdbcPassword=

juddi . jdbcMaxActive=10

juddi.jdbcMaxIdle=10

For more details, see: http://ws.apache.org/juddi/.

http://ws.apache.org/juddi/

CHAPTER 14

Embedding Artix
In a BEA Tuxedo

Container

Artix can be run and managed by BEA Tuxedo like a native
Tuxedo application.

In this chapter This chapter includes the following sections:

Embedding an Artix Process in a Tuxedo Container page 252

251

CHAPTER 14 | Embedding Artix in a BEA Tuxedo Container

Embedding an Artix Process in a Tuxedo

Container

Overview

Procedure

252

To enable Artix to interact with native BEA Tuxedo applications, you must
embed Artix in the Tuxedo container.

At a minimum, this involves adding information about Artix in your Tuxedo
configuration file, and registering your Artix processes with the Tuxedo
bulletin board.

In addition, you can also enable to Tuxedo bring up your Artix process as a
Tuxedo server when running tmboot.

This section explains these steps in detail.

Note: A Tuxedo administrator is required to complete a Tuxedo
distributed architecture. When deploying Artix in a distributed architecture
with other middleware, please also see the documentation for those
middleware products.

To embed an Artix process in a Tuxedo container, complete the following
steps:

1. Ensure that your environment is correctly configured for Tuxedo.

2. You can add the Tuxedo plug-in, tuxedo, to your Artix process’s
orb plugins list.

orb plugins=[... "tuxedo"];

However, the tuxedo plug-in is loaded transparently when the process
parses the WSDL file.

3. Set plugins:tuxedo:server to true in your Artix configuration scope.

4. Ensure that the executable for your Artix process is placed in the
directory specified in the apppIR entry of your Tuxedo configuration.

5. Edit your Tuxedo configuration's SERVERS section to include an entry for
your Artix process.

Embedding an Artix Process in a Tuxedo Container

For example, if the executable of your Artix process is ringo, add the
following entry in the SERVERS section:

ringo SVRGRP=BEATLES SVRID=1

This associates ringo with the Tuxedo group called BEATLES in your
configuration and assigns ringo a server ID of 1. You can modify the
server's properties as needed.

6. Edit your Tuxedo configuration’s sErvIcES section to include an entry
for your Artix process.

While standard Tuxedo servers only require a SERVICES entry if you are
setting optional runtime properties, Artix servers in the Tuxedo
container require an entry, even if no optional runtime properties are
being set. The name entered for the Artix process is the name specified
in the serviceName attribute of the Tuxedo port defined in the Artix
contract for the process.

For example, given the port definition shown in Example 23, the
SERVICES entry would be personalInfoService.

Example 23: Sample Service Entry

<service name="personalInfoService">
<port name="tuxInfoPort" binding="tns:personalInfoBinding">
<tuxedo:server>
<tuxedo:service name="personalInfoService"/>
</tuxedo:server>
</port>
</service>

7. If you made the Tuxedo configuration changes in the ASCII version of
the configuration, UBBCONFIG, reload the TuxconFIG with tmload.

When you have configured Tuxedo, it manages your Artix process as if it
were a regular Tuxedo server.

253

CHAPTER 14 | Embedding Artix in a BEA Tuxedo Container

254

Index

A

acknowledgement endpoint URI 197
acknowledgement interval 201

Adaptive Runtime architecture 28
anonymous URI 193, 197

ANSI C strftime() function 44

application source 191

arbitrary symbols 35

ART 28

Artix 212

artix.cfg 110

artix:endpoint 153
artix:endpoint:endpoint_list 153
artix:endpoint:endpoint_name:wsdl_location 153
artix:endpoint:endpoint_name:wsd|_port 154
artix:interceptors:message_snoop:enabled 60
artix:interceptors:message_snoop:log_level 60
Artix bus pre-filter 53

Artix chain builder 162

Artix container 117

artix_env 145

artix_env script 18

Artix high availability 170

Artix transformer 150

Artix WSDL publishing service 212

ASCII 92

asynchronous acknowledgements 201
auto-demotion of masters 171

avg 87

B
base retransmission interval 199
Berkeley DB 169
binding

artix:client_message_interceptor list 110
binding:artix:server_message_interceptor_list 110
binding:artix:server_request_interceptor_list 175
browser 215, 218
bus:initial_contract:url:service 165
bus:initial_contract:url:service-name 232
bus:initial_contract_dir 233
bus:initial_references:url:service-name 240
bus:gname_alias:service 165

bus:gname_alias:service-name 232, 240

-BUSCONFIG_ 37, 38
-BUSconfig_dir 21, 143
-BUSconfig_domains_dir 22, 38
-BUSdomain_name 22, 143
-BUSinitial_reference 38, 239
-BUSlicense_file 21, 143
BusLogger 55

-BUSname 30, 143

-BUSname parameter 30
-BUSproduct_dir 21
bus_response_monitor 78
-BUSservice_contract 38, 231
-BUSservice contract_dir 38, 233

C
C++ debugging 145
canonical 216
chain builder 152, 156, 161
character encoding schema 92
CLASSPATH 141
client ID, configuring 79
cluster 171
codeset 92
CODESET _INCOMPATIBLE 98
codeset negotiation 96, 97
Collector 77
colocated service 238
command line configuration 37
-compiler ve71 18
configuration

command line 37

data type 32

domain 28

namespace 31

scope 28

symbols 35

variables 31
configuration context 195, 204
constructed types 32
-container 132
container 117, 234

administration client 121

255

INDEX

persistent deployment 136 ERROR 42

server 120 EUC-JP 93

service 120 event_log:filters 40, 46, 110, 177

Windows service 140 event_log:filters:artix:pre_filter 53
ContainerService.url 128, 129 event_log:log_service_names:active 54
content-based routing 159 event_log:log_service_names:services 54
context 195, 204 ExactlyOnceConcurrent 192, 203
ContextContainer 106 ExactlyOncelnOrder 191, 203
contracts 223 ExactlyOnceReceivedOrder 192, 203
Conversion codeset 97 exponential backoff for retransmission 200
count 87 exponential backoff interval 191
CreateSequence 191 Extended Binary Coded Decimal Interchange
CreateSequenceResponse 191 Code 102

Extensible Stylesheet Language

D Transformations 150
-d 126
-daemon 128 F
date format, rolling log file 44 FATAL_ERROR 42
db dump 173 -file 126, 131
db_recover 173 filters 47
db stat 173 fixed:binding 99
db_verify 173 fixed:body 99
debugging 145 four-byte Unicode 98
delivery assurances 191
dependencies file 123, 124 G

-deploy 129, 131, 133

-deployable 124 -getlogginglevel 56, 132

-deployfolder 137, 142 ;

. get service_contract() 227, 231
depl_oyment descriptor 120, 123 getServiceWSDL() 228
destination 190

-displayname 142

get_logging_config() 55

double-byte Unicode 98 H
dynamic logging 56, 132 ha_conf 179, 183
dynamic read/write deployment 137 hard coded WSDL 224
-help 126, 129
E high availalbillity 170
EBCDIC 102 clients 18
String 99 locator 178
echoString high water mark 205
echoVoid 99 -
Ecli 146 host 132
lclp_se 171 hostname format 216
E&%log]EerQCO . HSQLDB database 250
encoamfg;”g'g” HTML menu 219
endpoint references 212, 223, 227, 237 HITP GET 221
! HTTP POST 221
Enterprise Management Systems 72 ;
Enterprise Obiect Identifier 70 HTTP trace logging 46
nterprise Object Identifier HTTP transport 221

environment variables 140

256

|

i18n-context.xsd 103, 106
i18n_interceptor 110
IANA 70, 93

IBM Tivoli integration 72

IBM WebSphere MQ, internationalization 102

ideograms 92
InboundCodeSet 102
include statement 33
INFO_ALL 42
INFO_HIGH 42
INFO_LOW 42
INFO_MEDIUM 42
initial sender 190
initial_threads 205
inline references 241
int 88
intercept_dispatch() 106
intercept_invoke() 106
internationalization

CORBA 96

MQ 102

SOAP 95
Internet Assigned Number Authority 93
Internet Assigned Numbers Authority 70
IONA Tivoli Provider 72
ipaddress 216
ISO-2022-JP 94
ISO 8859 92
ISO-8859-1 93
it 131
ITArtixContainer 140
IT_ARTIXENV 24
IT_ATLI2_IOP 51
IT_ATLI2_IP 51
IT_ATLI2_IP_TUNNEL 51
IT_ATLI_TLS 51
IT_BUS 47
IT_BUS.BINDING 47
IT_BUS.BINDING.COLOC 47
IT_BUS.BINDING.CORBA 47
IT_BUS.BINDING.CORBA.CONTEXT 47
IT_BUS.BINDING.FIXED 47
IT_BUS.BINDING.HTTP 47
IT_BUS.BINDING.SOAP 47
IT_BUS.BINDING.SOAP_COMMON 47
IT_BUS.BINDING.TAGGED 48
IT_ BUS.CORE 48
IT_BUS.CORE.CONFIG 48

INDEX

IT_BUS.CORE.CONTEXT 48
IT_BUS.CORE.INITIAL_REFERENCE 48
IT_BUS.CORE.PLUGIN 48
IT_BUS.CORE.RESOURCE_RESOLVER 48
IT_BUS.FOUNDATION.AFC 48
IT_BUS.FOUNDATION.CONTEXT_LIBRARY 48
IT_BUS.I18N.INTERCEPTOR 48
IT_BUS.INTEGRATION.AP_NANO_AGENT 48
IT_BUS.INTEGRATION.CA_WSDM_OBSERVER 48
IT_BUS.JNI.GENERIC_PLUGIN 48
IT_BUS.JNI.JBUS 48
IT_BUS.JNI.JBUS.TRANSACTION 48
IT_BUS.JNIINI_UTIL 48
IT_BUS.JNI.TRANSACTION 48
IT_BUS.JVM_MANAGER 48
IT_BUS.LOGGING 48
IT_BUS.LOGGING.LOG4J 48
IT_BUS.LOGGING.RESPONSE_TIME 48
IT_BUS.LOGGING.SNMP 49
IT_BUS.MANAGEMENT 49
IT_BUS.MESSAGING_PORT 49
IT_BUS.SERVICE 49
IT_BUS.SERVICE.ACTIVATOR.REGISTRY 49
IT_BUS.SERVICE.CHAIN 49
IT_BUS.SERVICE.CONTAINER 49
IT_BUS.SERVICE.DB 49
IT_BUS.SERVICE.DB.ENV 49
IT_BUS.SERVICE.DB.REPLICA.IMPL 49
IT_BUS.SERVICE.DB.REPLICA.MGR 49
IT_BUS.SERVICE.DB.REPLICA.MONITOR 49
IT_BUS.SERVICE.DB.REPLICA.SYNC 49
IT_BUS.SERVICE.LOCATOR 49
IT_BUS.SERVICE.PEER_MGR 49
IT_BUS.SERVICE.ROUTING 49
IT_BUS.SERVICE.SECURITY 49
IT_BUS.SERVICE.SECURITY.CERT_VALIDATOR 49
IT_BUS.SERVICE.SECURITY.LOGIN_SERVICE.CLIE
NT 49
IT_BUS.SERVICE.SECURITY.LOGIN_SERVICE.SERV
ICE 49
IT_BUS.SERVICE.SECURITY.SECURITY_INTERCEP
TOR 49
IT_BUS.SERVICE.SECURITY.WSS 50
IT_BUS.SERVICE.SESSION_MGR 50
IT_BUS.SERVICE.WSDL_PUBLISH 50
IT_BUS.SERVICE.XSLT 50
IT_BUS.TRANSACTIONS.OTS 50
IT_BUS.TRANSACTIONS.WSAT 50
IT_BUS.TRANSACTIONS.XA 50

257

INDEX

IT_BUS.TRANSPORT.HTTP 50
IT_BUS.TRANSPORT.MQ 50
IT_BUS.TRANSPORT.STUB_TRANSPORT 50
IT_BUS.TRANSPORT.TIBRV 50
IT_BUS.TRANSPORT.TUNNELL 50
IT_BUS.TRANSPORT.TUXEDO 50
IT_BUS.VERSION 50
IT_BUS.WSRM 50

IT_ BUS.WSRM_DB 50

IT_ BUS.XA_SWITC 50
IT_Bus::Exception 201
IT_Bus::init() 30, 37, 43
IT_COBOL_PLI 51

IT_ CODESET 51
IT_CONFIG_DIR 21
IT_CONFIG_DOMAINS DIR 22
IT_ CONNECTION_FILTER 51
it_container 120, 128
it_container_admin 56, 121, 131, 237
IT CORE 51

IT_CSI 51

IT_ DOMAIN_NAME 22
IT_GenericSecurityToolkit 51
IT_GIOP 51

IT_GSP 51

IT_ HTTP 51

IT_ HTTPS 51
IT_IDL_CONFIG_FILE 22
IT_lIOP 51

IT_IIOP_TLS 51

IT_INIT_BUS LOGGER_MEM 55
IT_LICENSE_FILE 21
IT_LICENSING 51
IT_Logging::LogStream 70
IT_MESSAGING 51

IT_ MGMT_LOGGING 52
IT_OBJECT_KEY_REPLACER 52
IT_OTS 52

IT_OTS_LITE 52

IT_POA 52

IT_POA_LOCATOR 52
IT_PRODUCT DIR 21, 141
IT_REQUEST_LOGGER 52
IT_SCHANNEL 52
IT_SECURITY 52

IT_TLS 52

IT_ WORKQUEUE 52

IT_ WSRM 50

IT_ XA 52

258

J

Japanese EUC 92
Japanese ISO 2022 92
Java configuration 78
Java debugging 146
JAVA_ HOME 20

Java logging 62

Java Platform Debugging Architecture 146
java_plugins 249
java_uddi_proxy 249
JDK 141

JPDA 146

JRE 141

jubDI 250
juddi.properties 250
JVM options 146
jvm_options 146

L
Latin-1 92
life cycle message formats 89
-listservices 131, 134
LocalCodeSet 102
local_log_stream 40
locator 234
locator, load balancing 178
log4J logging 62
log4j_log_stream 62
LogConfig.properties 62
log date format 44
log file, rolling 44
log file interpreter 72
logging 177
APl 55
inheritance 59
message severity levels 41
per bus 55
service-based 54
set filters for subsystems 47
silent 59
LoggingConfig 55
logging levels
getting 55, 56, 132
setting 40, 55, 57, 132
logging message formats 87
LOG_INHERIT 59
LOG_SILENT 59
low water mark 205

M

mark_as_write_operations() 186

master-slave replication 170

max 88

maximum messages in RM sequence 202

maximum unacknowledged messages
threshold 200

max queue size 206

MEP 193

Message Exchange Pattern 193

message part element 159

MESSAGE_SNOOP 52

message snoop 60

MIB, definition 65

Microsoft Visual C++ 18, 145

min 88

minority master 177

MQ, internationalization 102

MySQL 250

N

namespace 87

naming conventions 138
native codeset 96

NCS 96

o

oneway calls 207

operation 87

oph 88

orb_plugins 78, 153, 157, 164, 208
OSF CodeSet Registry 94
OutboundCodeSet 102

P

part element 159

PATH 141

peer manager 234
performance logging 72
persistence 207

persistent database 173
persistent deployment 136
PersistentMap 173
per-thread RM session 204
-pluginDir 126

-pluginlmpl 126
-pluginName 126
plugins:artix:db:allow_minority_master 177

INDEX

plugins:artix:db:home 208
plugins:artix:db:iiop:port 176
plugins:artix:db:priority 176
plugins:artix:db:replicas 174
plugins:bus_response_monitor:type 78
plugins:chain:endpoint:operation:service_chain 166
plugins:chain:endpoint:operation_list 165
plugins:chain:endpoint_name:operation_name:servic
e chain 157
plugins:chain:init_on_first call 167
plugins:chain:servant_list 165
plugins:codeset:char:ccs 97
plugins:codeset:char:ncs 96
plugins:codeset:wchar:ccs 97
plugins:codeset:wchar:ncs 96
plugins:container:deployfolder 137
plugins:container:deployfolder:readonly 138
plugins:ha_conf:random:selection 186
plugins:ha_conf:strategy 186
plugins:it_response_time_collector:filename 78
plugins:it_response_time_collector:server-id 79
plugins:local_log_stream:buffer file 45
plugins:local_log_stream:filename_date format 44
plugins:local_log_stream:rolling_file 45
plugins:locator:persist_data 178
plugins:locator:selection_method 178
plugins:messaging_port:base_replyto_url 195
plugins:messaging_port:supports_wsa_2005_mep
194
plugins:messaging_port:supports_wsa_mep 194
plugins:messaging_port:wsrm_enabled 196
plugins:snmp_log_stream:community 70
plugins:snmp_log_stream:oid 70
plugins:snmp_log_stream:port 70
plugins:snmp_log_stream:server 70
plugins:snmp_log_stream:trap_type 70
plugins:soap:encoding 95
plugins:wsdl_publish:hostname 216
plugins:wsdl_publish:processor 217
plugins:wsdl_publish:publish_port 215
plugins:wsrm:acknowledgement_interval 202
plugins:wsrm:acknowledgement_uri 197
plugins:wsrm:base_retransmission_interval 199
plugins:wsrm:delivery_assurance_policy 203
plugins:wsrm:disable_exponential_backoff_retransmi
ssion_interval 200
plugins:wsrm:enable_per thread _sequence _scope 2
04
plugins:wsrm:max_messages_per_sequence 202

259

INDEX

plugins:wsrm:max_retransmission_attempts 201
plugins:wsrm:max_unacknowledged messages_thre
shold 200
plugins:wsrm:thread_pool:high_water_mark 205
plugins:wsrm:thread_pool:initial_threads 205
plugins:wsrm:thread_pool:low_water_mark 205
plugins:wsrm:thread_pool:max_queue_size 206
plugins:wsrm:thread_pool:stack_size 206
plugins:xmlfile_log_stream:buffer_file 45
plugins:xmlfile_log_stream:filename 43
plugins:xmlfile_log_stream:filename_date format 4

plugins:xmlfile_log_stream:rolling_file 45

plugins:xmlfile_log_stream:use_pid 43

plugins:xslt:endpoint_name:operation_map 154

plugins:xslt:endpoint_name:trace_filter 159

plugins:xslt:endpoint_name:use_element_name 159

plugins:xslt:servant_list 154

-pluginType 126

policies:at_http:server_address_mode_policy:publish
_hostname 216

policies:http:trace_requests:enabled 46

policies:https:trace_requests:enabled 46

policies:soap:server_address_mode_policy:publish_h
ostname 216

-port 128, 132, 142

port 87

precedence, finding references 238

precedence, finding WSDL 235

pre-filter 53

preprocessing 217

-preserve 19

primitive types 32

programmatic configuration 238

-propagate 57

-provider 126

proxy 195

-publish 128

-publishreference 131, 133, 240

-publishurl 132, 133, 134

-publishwsdl 132, 133

Q

QName 227
QueryString 247
-quiet 127

260

R

random endpoint selection 186
read-only deployment 137

references 212, 223

-removeservice 131, 139

replica group 181

replica priorities 175

replicas, minimum number 171, 177
replicated services 170

reply-to endpoint 195
request_forwarder 172
resolvelnitialEndpointReference() 229, 237
resolve_initial_reference() 228, 238
Response monitor 77

retransmission 200

rolling log file 44

running 89

S

SequenceAcknowledgement 191
serialized reference 240
servant registration 218
server ID 87, 89
server-id 79
server ID, configuring 79
-service 126, 131
service 87
-service install 142
Services dialog 143
-service uninstall 144
session manager 234
setinboundCodeSet 106
setLocalCodeSet 106
setlocale() 96
-setlogginglevel 56, 132
setOutboundCodeSet 106
Shift JIS 92
Shift_JIS 93
-shutdown 132, 135
shutting_down 89
SNMP

definition 65

Management Information Base 65
snmp_log_stream 69
source 190
stack size 206
starting_up 89
-startservice 131

stateless servers 185

status 89

-stopservice 131, 134
strftime() 44

stub WSDL shared library 234
-svcName 142

symbols 35

T
TCS 97

thread pool 205

Tivoli integration 72

Tivoli Task Library 72
tmodelname 247

trace logging 46
transformer 150
transmission codeset 96, 97

U

UCS-2 98

UCS-4 98

UDDI 245

uddi_proxy 249
UDDIRegistryEndpointURL 246
ultimate receiver 190
unacknowledged messages 200
Unicode 93

unqualified 216

US-ASCII 93

UTF-16 93, 95

UTF-8 93

Vv

-verbose 19, 127

-version 127, 129

Visual C++ 145

Visual Studio .NET 2003 18

W
WARNING 42
web browser 215, 218

Web service chain builder 152, 156, 162
Web Services Inspection Language 220
Web Services Reliable Messaging 189
WebSphere MQ, internationalization 102

Windows service 140
wsa:replyTo 199
WS-Addressing 193

INDEX

WS-Addressing Message Exchange Pattern 193

ws_chain 164

wsdd 125

WSDL contracts 223, 227
WSDL preprocessing 217
wsdl_publish 212

WSDL publishing service 212
wsdltocpp 123

wsdltojava 124

-wsdlurl 126

WSIL 220
WS-ReliableMessaging 190
WS-RM 189

wsrm 196, 208
wsrm:AckRequested 200

wsrm:AcksTo 191, 197, 199, 201

wsrm:SequenceTerminated 201

WS-RM acknowledgement endpoint URI 197

wsrm_db 208
WS-RM persistence 207
WS-RM threading 205

X

xmlfile_log_stream 40
XSLT service 149

261

INDEX

262

	List of Tables
	List of Figures
	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	The Artix Documentation Library

	Part I
	Getting Started
	Setting your Artix Environment
	Artix Environment Variables
	Customizing your Environment Script

	Artix Configuration
	Artix Configuration Concepts
	Configuration Data Types
	Artix Configuration Files
	Command-Line Configuration

	Artix Logging
	Configuring Artix Logging
	Logging for Subsystems and Services
	Dynamic Artix Logging
	Configuring Message Snoop
	Configuring Log4J Logging
	Configuring SNMP Logging

	Enterprise Performance Logging
	Enterprise Management Integration
	Remote Performance Logging
	Configuring Performance Logging
	Configuring Remote Performance Logging
	Configuring the Remote Logger Daemon
	Configuring a Deployed Application on the Source Host

	Performance Logging Message Formats

	Using Artix with International Codesets
	Introduction to International Codesets
	Working with Codesets using SOAP
	Working with Codesets using CORBA
	Working with Codesets using Fixed Length Records
	Working with Codesets using Message Interceptors
	Routing with International Codesets

	Part II
	Deploying Services in an Artix Container
	Introduction to the Artix Container
	Generating a Plug-in and Deployment Descriptor
	Running an Artix Container Server
	Running an Artix Container Administration Client
	Deploying Services on Restart
	Running an Artix Container as a Windows Service
	Debugging Plug-ins Deployed in a Container

	Deploying an Artix Transformer
	The Artix Transformer
	Standalone Deployment
	Deployment as Part of a Chain
	Optional Configuration

	Deploying a Service Chain
	The Artix Chain Builder
	Configuring the Artix Chain Builder

	Deploying High Availability
	Introduction
	Setting up a Persistent Database
	Configuring Persistent Services for High Availability
	Configuring Locator High Availability
	Configuring Client-Side High Availability

	Deploying Reliable Messaging
	Introduction
	Configuring a WS-A Message Exchange Pattern
	Enabling WS-RM
	Configuring WS-RM Attributes
	Configuring WS-RM Threading
	Configuring WS-RM Persistence

	Part III
	Publishing WSDL Contracts
	Artix WSDL Publishing Service
	Configuring the WSDL Publishing Service
	Querying the WSDL Publishing Service

	Accessing Contracts and References
	Introduction
	Enabling Server and Client Applications
	Accessing WSDL Contracts
	Accessing Endpoint References
	Accessing Artix Services

	Accessing Services with UDDI
	Introduction to UDDI
	Configuring UDDI Proxy
	Configuring a jUDDI Repository

	Embedding Artix in a BEA Tuxedo Container
	Embedding an Artix Process in a Tuxedo Container

	Index

