Building The Internet of Things with DDS

Angelo CORSARO, Ph.D.

Chief Technology Officer OMG DDS Sig Co-Chair PrismTech

angelo.corsaro@prismtech.com

Coincidences?

The Internet of Things (IoT)

"The Internet of Things allows people and things to share information Anytime, Anyplace, with Anything and Anyone"

The Data Distribution Service (DDS)

DDS is a standard technology for **ubiquitous**, **interoperable**, **secure**, **platform independent**, **time and space efficient data sharing** across network connected devices

Is this a Coincidence?

Fasten Your Seatbelt

We are about to take off...

Welcome to Nice, France. The smartest city on the planet!

Nice Use Case Video

http://www.youtube.com/watch?v=neVyOTXB4el

Architecture of Nice's Think Global

The City Operating System

Collect | Store | Analyze | Share

Collect Store Analyze Share

Collect | Store | Analyze | Share

City OS Architecture

OpenSplice | DDS

OpenSplice | DDS

EzPark App

About Opensplice DDS

■ Filtering and reading a ContentFilteredTopic an hundred time is faster than requesting once on DB

Started with OpenSplice DDS for sensor data, now using OpenSplice everywhere, even as cloud messaging on Amazon Cloud!

Smart-Grids

U.S. Army Corps of EngineersGrand Coulee Dam

- The Grand Coulee Dam is the largest hydroelectric power plant in the United States
- The dam network connects a 40,000-point SCADA system controlling 30 generators and the transmission switchyard
- PrismTech actively participated in the application development of the GDACS system which will be deployed at the Grand Coulee dam.
- OpenSplice DDS is part of a two vendor development implementation maintained at the Hydroelectric Design Center in Portland, OR.
- OpenSplice DDS is a candidate technology viable for deployment of the GDACS (Generic Data Acquisition and Controls System) program in dams nationwide.

Smart-Farming

Agricultural Vehicle Systems

- GPS data correction to improve accuracy enabling automated steering, precision ploughing, seeding, fertilizing and spraying
- Tethered control between combine harvester and grain cart enabling unloading on-the-go
- OpenSplice DDS is used to distribute data between the components inside the Combine system
- OpenSplice DDS handles communication between the Combine and the Grain Carts using regular an ad-hoc wireless networks

SESAR: Single European Sky

Traffic Growth Projections

- The estimated traffic growth projections are forcing a more efficient and integrated approach Air Traffic Control and Management
- On ground systems, most of the inefficiencies derive from stove-piped systems which are unable to effectively exchange relevant informations

European Flight Data Processor

Large program to replace existing Flight Data Processors (FDPs)

- 5 Centers in France
- 4 Centers in Italy
- 2 Centers in Switzerland

FDP Core

- OpenSplice DDS glues together the most critical components of the CoFlight FDP running at a SWAL-2 (similar to DO-178B Level B) assurance level
- In this context
 OpenSplice DDS
 distributes flights data
 plans of redundant LANs

Controller Working Positions and Tower

- OpenSplice DDS is used within CoFlight to distribute the "external" Flight Data Plan to Controller Working Positions
- OpenSplice DDS is also used to send FDP data to Towers over narrow band links

Inter-Center Connectivity

- OpenSplice DDS is used to integrate CoFlight-based Centers
- OpenSplice DDS is used to provide interoperability with other Interoperable Centers (as per EUROCAE ICOG-2)

Defense and Aerospace

Integrated Modular Vetronics

Training & Simulation Systems

Naval Combat Systems

Air Traffic Control & Management

Unmanned Air Vehicles

Aerospace Applications

Commercial Applications

Agricultural Vehicle Systems

Large Scale SCADA Systems

Smart Cities

Train Control Systems

Complex Medical Devices

High Frequency Auto-Trading

Why IoT Applications Choose DDS?

Data-Centricity

IoT Applications are Data Centric

Collect | Store | Analyze | Share

Communication Patterns

IoT Applications Require different Communication Patterns

Machine to Machine

Machine to Cloud/ Data-Centre

Inter Data-Centre

Machine to Machine

Machine to Machine

- Peer-to-Peer Communication between devices with potentially very different hardware and networking capabilities
- In some use cases, e.g. inside the data center, low latency / high throughput are relevant
- To enable Open and Interoperable loT, Machine- Machine communication has to rely on standard protocols

Open<mark>Splice | DD</mark>9

Machine to Cloud/Data-Centre

- Characteristic of the communication depends on the kind of application
 - Sporadic data updates vs. Real-Time data updates
 - Potentially Constrained Bandwidth
 - Intermittent Connectivity
 - Variable Latency Links
 - □ NAT, Firewalls
 - Security
- To enable Open and Interoperable IoT, Machine- to-Cloud/Data-Centre communication has to rely on standard protocols

A Short DDS Intro

Data Distribution Service

For Real-Time Systems

- Introduced in 2004 to address the Data Distribution challenges faced by a wide class of Defense and Aerospace Applications
- Key requirement for the standard were to deliver very high and predictable performance while scaling from embedded to ultralarge-scale deployments

O Pinch + 2004 Driver A NI Direkter D

Data Distribution Service

For Real-Time Systems

- Recommended by key administration worldwide, e.g. DoD, MoD, EUROCAE, etc.
- Widely adopted across several different domains, e.g., Smart Cities, Smart Grids, Automated Trading, Simulations, SCADA, Telemetry, etc.

Data Distribution Service (DDS)

- DDS provides a Global Data Space abstraction that allow applications to autonomously, anonymously securely and efficiently share data.
- DDS' Global Data Space is fully distributed, highly efficient and scalable

Data Distribution Service (DDS)

- DataWriters and
 DataReaders are
 automatically and
 dynamically matched by
 the DDS Discovery
- A rich set of QoS allows to control existential, temporal, and spatial properties of data

Fully Distributed Data Space

Conceptual Model

Actual Implementation

Key DDS Highlights [1/2]

- Elegant and High Level Data Sharing Abstraction
- Polyglot and platform independent
 - Java, Scala, C, C++, C#, JavaScript, CoffeeScript etc.
 - Android, Windows, Linux, VxWorks, etc.
- Peer-to-Peer by nature, Brokered when useful
- Time and Space Efficient. Run efficiently over small bandwidth links and is provides minimal latency

Key DDS Highlights [2/2]

- Content and Temporal Filtering (both sender and receiver filtering supported)
- Queries
- 20+ QoS to control control existential, temporal, and spatial properties of data
- High Performance and Scalable
 - □ ~50 usec latency
 - 7M msgs/sec node-to-node throughput

Your First DDS App

C++ Example

Writing Data

```
auto dp = DomainParticipant(domainId);
// Create a Publisher
auto pub = Publisher(dp);
// Create a Topic
auto tts = Topic<TempSensor>(dp, "TTempSensor");
// Create a DataWriter
auto dw = DataWriter<TempSensor>(pub, tts);
// Write Data
dw.write(TempSensor(101, 23.5F, 0.55F));
// But you can also write like this...
dw << TempSensor(102, 24.5F, 0.65F);</pre>
```

Reading Data

```
auto dp = DomainParticipant(domainId);
// Create a Subscriber
auto sub = Subscriber(dp);
// Create a Topic
auto tts = Topic<TempSensor>(dp, "TTemSensor");
auto dr = DataReader<TempSensor>(sub, tts);
auto data = reader.read();
```

OpenSplice | DD9

Scala Example

Writing Data

```
val tts = Topic[TempSensor]("TTempSensor")
val dw = DataWriter(ts)
w.write(val TempSensor())
```

Reading Data

```
val tts = Topic[TempSensor]("TTempSensor")
val dr = DataReader(ts)
dr read() foreach(println(_))
```

DDS Everywhere

DDS Everywhere Platform

- A DDS-based, interoperable product family addressing systems needs from Embedded and Mobile to Enterprise and Cloud
- An Open Source core providing free access to the OpenSplice Ecosystem, security of supply and a vibrant, innovative community

DDS Everywhere Platform

Consumer Platforms

- **Browser / HTML5**
- i0S
- Android
- Cloud
- □ No-SQL
- Mobile/WiFi IP Transp.
- □ **OS** (Linux, Windows, etc)
- Cloud
- □ No-SQL
- InfiniBand + IPTransports

IT Platforms

DDS Everywhere!

Concluding Remarks

- An increasing number of domains, such as medical, energy, infrastructure and fleet management, are seeing the emergence of IoT requirements
- For IoT is key to have available open and standardized data sharing protocols
- The DDS standard provides the ideal end-to-end solution for the IoT

Open

:: Connect with Us ::

OpenSplice DDS

- opensplice.com
- opensplice.org

- forums.opensplice.org
- opensplicedds@prismtech.com

<u>oyoutube.com/opensplicetube</u>

slideshare.net/angelo.corsaro

- crc@prismtech.com
- <u>sales@prismtech.com</u>