
1. Compiling JavaFX classes to Java classes
Ideally, we could map each JavaFX class to a corresponding Java class, and use the
corresponding Java mechanisms to implement access control, inheritance, declaration of
fields, declaration of methods, abstract methods, final fields, etc. However, there are a
number of differences that prevent us from simply mapping FX classes to Java classes,
the most significant of which is multiple inheritance. JavaFX supports multiple
implementation inheritance; Java does not. However, Java does support multiple
inheritance of types via interfaces, and we use this mechanism extensively. Further, in
order to implement the dependency management required for binding and triggers, reads
and writes to JavaFX attributes must be intercepted by the runtime.

1.1. Mapping FX classes
Compiliation of a JavaFX class produces two class files, an interface and a concrete class.
For an FX class Foo, the interface is named Foo$Intf and the concrete class named
Foo$Impl. For the following JavaFX classes:

class A { ... }

class B extends A { ... }

The compiler produces the following Java classes:
public interface A$Intf1 extends FXObject { ... }

public interface B$Intf extends A$Intf, FXObject { ... }

public class A$Impl implements A$Intf { ... }

public class B$Impl implements B$Intf { ... }

Note that B$Impl does not extend A$Impl. Because Java does not support multiple
implementation inheritance, we cannot (in the general case) rely on inheritance to gain
access to superclass members.

All JavaFX interfaces extend the marker interface FXObject (in package
com.sun.javafx.runtime), so that the compiler can distinguish between a JavaFX class and
a Java class when reading a class file. This is necessary because interfaces cannot
capture method modifiers such as public, private, protected, or final, so we must use an
alternate means (annotations) of recording that information.

FX classes may extend Java interfaces, in which case the FX interface is made to extend
the Java interface. A different approach is required to make FX classes extend Java
classes.

1 Methods or classes with $ in their name are generated by the compiler, and consumed by compiler-added
code only. In particular, Java classes that want to interoperate with JavaFX classes should not access
symbols with $ in their name.

1.2. Mapping FX attributes
JavaFX classes have attributes, which are data members analogous to fields in Java
classes. JavaFX attributes are managed by an abstraction called Location; each JavaFX
attribute is represented internally by a subtype of Location. Location provides methods
to read a variable’s value (recalculating if necessary), modify a variable’s value (if
permitted, and notifying dependencies as necessary), and to represent dependencies
between variables. (Dependencies are created by binding and triggers.)

For each attribute in a JavaFX class, there are two methods in the corresponding
interface, a getter and an initializer. The getter retrieves a reference to the Location
representing that attribute; the initializer creates the Location representing that attribute.
The initializer should only be called when the object is being constructed. Once
initialized, locations are not replaced, so clients may cache the result of location getters if
they like. The following table maps JavaFX types to their corresponding Location types:

Type Representation
Integer IntLocation
Number DoubleLocation
Boolean BooleanLocation
String ObjectLocation<String>
Other class type T ObjectLocation<T>
T[] SequenceLocation<T>

Table 1. Java types corresponding to FX Locations

For this JavaFX class:
class A {
 attribute a : Integer;
}

class B extends A {
 attribute b : Integer;
}

The corresponding interface for A contains two methods:
public interface A$Intf extends FXObject {
 public IntLocation get$a();
 public void init$a(IntLocation a);
}

Similarly, the interface for B extends A$Intf and adds two methods for attribute b. When
code references attribute a of A, whether from code inside of A or out, it must be
converted to use methods on the corresponding Location. It must first obtain the
Location by calling get$a() on the instance of A. It can then read the value by calling
XxxLocation.get(), or modify the value by calling XxxLocation.set(). (Some locations
are not modifiable, such as unidirectionally bound expressions, and this will cause a
runtime error.)

In the concrete class, for each attribute of this class or any superclass, there is a private
field of the appropriate Location type, a getter implementation that simply returns the
Location, and an initializer implementation that sets it up. The initializer enforces that an

attribute is initialized no more than once. The role of the InitHelper will be covered in
section ____.

Because of the need to implement multiple inheritance, and the fact that Java cannot
express multiple implementation inheritance, subclasses must “roll up” all members from
superclasses into their implementation, and do not need to explicitly extend their
superclass implementation. Therefore the getter and initializer methods can be made
final2.

public class B$Impl implements B$Intf {
 private IntLocation a;
 private intLocation b;

 public final IntLocation get$a() { return a; }
 public final IntLocation get$b() { return b; }

 public final void init$a(IntLocation location) {
 InitHelper.assertNonNull(a, "B.a");
 initHelper.add(this.a = location);
 }

 public final void init$b(IntLocation location) {
 InitHelper.assertNonNull(b, "B.b");
 initHelper.add(this.b = location);
 }
}

1.2.1. Static attributes
Static attributes are mapped to static fields of the implementation class. Subclasses do
not roll up static fields from superclasses, so in order to compile a class X, the compiler
must load the .class files for all the classes superclasses in order to find the static
attributes. Static attributes are tagged with the @Static annotation to facilitate easier
recognition. The compiler must maintain not only the list of static fields for a class, but
also in what class they are declared.

If class A declares a static attribute a, then A$Impl will have a static field called a.
Accesses to static attributes may be implemented as direct field accesses; if B extends A,
then code in the method bodies for B will refer to a by directly accessing A$Impl.a.

1.3. Mapping FX methods
Just as attributes for all the superclasses are “rolled up” into subclasses, the same is true
with method implementations – a concrete class must provide implementations for all the
methods in its interface, whether those methods are defined or overridden in the current
class or not.

2 HotSpot can devirtualize and inline through monomorphic nonfinal methods, and therefore the use of
final methods should in general be reserved for cases where you actually want to prohibit overriding, but
less sophisticated VMs may not be able to make such optimizations. Marking the method as final provides
a hint to less sophisticated VMs that the method is monomorphic and can therefore be devirtualized and
potentially inlined, which can dramatically improve performance.

Formatted: Bullets and Numbering

Deleted: <#>Static attributes¶
Static attributes are mapped to static
fields of the implementation class.
Subclasses do not roll up static fields
from superclasses, so in order to ¶

1.3.1. Generated methods
For each member function, the compiler generates two separate methods in the interface
and implementation classes, one for use in bind contexts, and one for use not in bind
contexts. For an FX method foo(), the non-bound version is called foo(), and the bound
version is called foo$bound(). It is intended that Java code be able to call the unbound
version but not the bound version.

For each generated method in the interface, the compiler generates two methods in the
concrete class: an instance method and a static method. The static method takes an extra
parameter, whose type is the generated interface type (Foo$Intf) of the declaring class.

1.3.2. Parameter type mapping
The type of the arguments and return value in the unbound implementation is obtained by
simply mapping the FX types to Java types:

Type Representation
Integer int
Number double
Boolean boolean
String String
Other class type T T
T[] Unmodifiable List<T>

Table 2. Java types corresponding to raw Java types

The type of the arguments and return value in the bound implementation is obtained by
mapping the FX types to their corresponding Location type shown in Table 1. Java types
corresponding to FX LocationsTable 1.

For the following classes:
class Base {
 function foo(a : Integer) : Integer { a+1 }
 function moo(a : Integer) : Integer { a+2 }
}

class Subclass extends Base {
 function foo(a : Integer) : Integer { a+5 }
}

For Base, the compiler generates the following interface and concrete class:

interface Base$Intf extends FXObject {
 public int foo(int a);
 public int moo(int a);

 public IntLocation foo$bound(IntLocation a);
 public IntLocation moo$bound(IntLocation a);
}

public class Base$Impl implements Base$Intf {
 protected static int foo(Base$Intf receiver, int a) {
 return a + 1;
 }
 public static int moo(Base$Intf receiver, int a) {
 return a + 2;
 }

 public static IntLocation foo$bound(final Base$Intf receiver,
 final IntLocation a) {
 return IntExpression.make(new IntBindingExpression() {
 public int get() {
 return a.get() + 1;
 }
 }, a);
 }

 public static IntLocation moo$bound(final Base$Intf receiver,
 final IntLocation a) {
 return IntExpression.make(new IntBindingExpression() {
 public int get() {
 return a.get() + 2;
 }
 }, a);
 }

 public int foo(int a) { return foo(this, a); }
 public int moo(int a) { return moo(this, a); }

 public IntLocation foo$bound(IntLocation a) {
 return foo$bound(this, a);
 }
 public IntLocation moo$bound(IntLocation a) {
 return moo$bound(this, a); }
 }
}

The interface specifies unbound methods foo() and moo(), and bound methods
foo$bound() and moo$bound(). The concrete class implements these, and dispatches
each to a static method with the same name and with a receiver variable of the interface
type (Base$Intf) prepended to the front of the argument list. The body of the bound
version is, in effect, the result of binding to the block expression which defines the
function body.

The use of the static methods allow classes to inherit superclass method implementations
without the class actually extending the superclass. The class knows, at compile time,
which is the nearest superclass that actually implements the method. This is used both

for dispatching to superclass methods (e.g., super.foo()) and for generating the
implementation for inherited methods which are not overridden.

The receiver parameter on the static methods takes the role of the implicit “this” variable
in Java classes – it is required so that the method bodies can access class attributes or call
class methods. To access attribute foo, the method body would invoke the get$foo()
method on the receiver.

For the derived class Subclass, the compiler generates the following interface and
concrete class, which has static method bodies only for the methods that the subclass
implements, and instance methods for all the methods. The instance methods dispatch to
the static method of the nearest class that implements the method, which may be the
subclass or may be one of the superclasses.

interface Subclass$Intf extends Base$Intf { }

public class Dispatch$Impl implements Dispatch$Intf {
 public static int foo(Dispatch$Intf receiver, int a) {
 return a + 5;
 }

 public static IntLocation foo$bound(
 final Subclass$Intf receiver,
 final IntLocation a) {
 return IntExpression.make(new IntBindingExpression() {
 public int get() {
 return a.get()+ 5;
 }
 }, a);
 }

 public int foo(int a) { return foo(this, a); }
 public int moo(int a) { return Base$Impl.moo(this, a); }

 public IntLocation foo$bound(IntLocation a) {
 return foo$bound(this, a);
 }
 public IntLocation moo$bound(IntLocation a) {
 return Base$Impl.moo$bound(this, a);
 }
}

1.3.3. Inherited functions
If a class overrides a superclass method, both the static method and the instance wrapper
are generated. If a class inherits a method, it just still generate the instance wrapper
(because the class must implement the interface), but the instance wrapper delegates to
the static method in the class in the closest superclass in which the method is
implemented3.

3 This effectively encodes the vtables for method dispatch in the classes. This has the downside that if A
extends B and B extends C, and A overrides a method defined in C and not overridden by B, and if B is

1.3.4. Dispatch to superclass functions
Just as in Java, an implementation of a function can call it’s superclasses version of the
function by using the “super” pseudo-reference, as in “super.foo()”. To resolve a
superclass method, the inheritance tree is searched for the closest implementation of the
named method, and the corresponding static method is called (passing “this” as the
receiver parameter.)

1.3.5. Static functions
Like static fields, static functions can be implemented as static methods on the
implementation class in which they are declared, tagged with the @Static annotation.
When compiling a class, the compiler needs to process the .class files for all the classes
superclasses to find the static functions. The compiler should generate both a bound and
unbound implementation for static functions.

1.3.6. Overriding methods from Object
All JavaFX classes implicitly extends java.lang.Object, and JavaFX classes should be
able to override methods from Object such as toString(), hashCode(), and equals().
Overriding methods from Object should be handled just as any other method – generate a
static implementation method and an instance wrapper method.

1.3.7. Abstract classes
For abstract classes, the compiler generates the interface just as for instantiable classes.
The concrete class should be generated as abstract, and need only generate the static
methods corresponding to instance methods; it need not generate any instance methods as
the class will never be instantiated. Abstract classes, therefore, exist only as repositories
for inherited implementations that can be dispatched to by instance methods of
subclasses.

1.4. Overriding Java classes
JavaFX classes can extend any number of JavaFX classes and Java interfaces. They can
also extend a single Java class, provided that class has a no-arg constructor.

1.4.1. Interface generation
Each nonprivate method from the underlying Java class must be added to the FX
interface. For methods not overridden by the JavaFX class, only the unbound version of
the method need be propagated into the interface, not the bound version. For superclass
methods that are called via the super pseudo-reference (see below), the interface class
must also contain a bridge method to call the (Java) superclass implementation.

recompiled and A is not, then A will still delegate to the C implementation and not the B implementation.
To fix this, we’d have to generate a static method for each function in each class, and have trivial
implementations just delegate to the superclass implementation, which means that override resolution is
done on the call stack at runtime.

Formatted: Heading 2, Don't adjust
space between Latin and Asian text

Formatted: Heading 3, Don't adjust
space between Latin and Asian text

1.4.2. Concrete class generation
Ordinarily, JavaFX concrete classes extend Object (and roll up all state from their
superclasses). JavaFX implementation classes that extend Java classes must actually
extend the Java base class, as must subclasses of a JavaFX class that extends a Java class.
The no-arg constructor implicitly generated by the Java compiler will implicitly call the
no-arg constructor from the Java base class.

1.4.3. Field access
Because implementation classes that extend Java classes (and their subclasses) actually
extend the base class, they can freely reference Java fields from the base class directly.
No Location needs to be generated for these fields; JavaFX classes can not express
dependencies on or bind Java fields.

1.4.4. Calling superclass methods via super
When overriding Java methods, the implementation may want to dispatch to the
superclass implementation via super.method(). In that case, the JavaFX class (and all its
subclasses) must generate a bridge method, super$methodName(), to call the superclass
method, and place the bridge method in the interface.

1.4.5. Overriding superclass methods
JavaFX classes that override methods from their superclass need to generate the instance
and static method as usual, in bound and unbound versions. These methods are annotated
with @OverridesJava so the compiler knows to propagate superclass access bridge
methods into any subclasses.

1.4.6. Example
In this example, a JavaFX class extends Button and overrides getText():

class But extends JButton {
 public function getText(): String {
 super.getText();
 }
}

class SubBut extends But { }

The interfaces for But and SubBut are straightforward. But$Intf includes a superclass
bridge method for getText().

interface But$Intf {
 public String getText();
 public String super$getText();
}

interface SubBut$Intf extends But$Intf { }

The implementation classes include the instance and static methods for getText(), plus a
bridge method.

Formatted: Heading 3, Don't adjust
space between Latin and Asian text

Formatted: Heading 3, Don't adjust
space between Latin and Asian text

Formatted: Bullets and Numbering

Formatted: Heading 3, Don't adjust
space between Latin and Asian text

Formatted: Heading 3, Don't adjust
space between Latin and Asian text

Formatted: Code Box (FX)

Formatted: Code Box (Java)

class But extends JButton implements But$Intf {
 // Usual initialization code

 @OverridesJava
 public String getText() { return getText(this); }

 // bridge method
 public String super$getText() {
 return super.getText();
 }

 public static String getText(But$Intf receiver) {
 return receiver.super$getText();
 }
}

class SubBut extends JButton implements But$Intf {
 // Usual initialization code

 @OverridesJava
 public String getText() {
 return But.getText(this);
 }

 // bridge method repeated in subclass
 public String super$getText() {
 return super.getText();
 }
}

1.5. Object initialization
Unlike Java classes, JavaFX classes do not have constructors (other than the default no-
arg constructor.) Java constructors are responsible for initializing the object in a known
consistent state, and not allowing clients to use the object unless it is able to do so;
JavaFX classes, by contrast, are initialized by allowing clients to specify an arbitrary
subset of the classes attributes through object literals. (This often requires classes to
expose more of their attributes to clients.)

Object literals take the form:
var v = Foo { a: 3, b : 4 }

Compiler-generated client code is responsible for managing the lifecycle of object
allocation and initialization. The steps are:

o Instantiate an empty object with the no-arg constructor

o Call the initializer method to set any attributes that have been specified in the
object literal

o Call the initialize$() method on the newly initialized object to complete
initialization

For the above object literal, the compiler would generate the following client code:

Formatted: Code Box (Java)

Formatted: Code Box (Java)

Formatted: Code Box (Java)

Formatted: Heading 2, Don't adjust
space between Latin and Asian text

Deleted: ¶

Foo$Impl tmp = new Foo$Impl();
tmp.init$a(IntVar.make(3));
tmp.init$b(IntVar.make(4));
tmp.initialize$();
ObjectLocation<Foo$Impl> v = ObjectLocation<Foo$Impl>.make(tmp);

1.5.1. Bound attributes
Object literals may specify bindings as well as concrete values:

var n = 1;
var v = Foo { a: 3, b : bind n+1 }

In this case, the only difference is that instead of creating variable locations (XxxVar),
the generated code creates expression locations (XxxExpression), just as if the binding
was being used in a variable initializer:

final IntLocation n = IntVar.make(1);
Foo$Impl tmp = new Foo$Impl();
tmp.init$a(IntVar.make(3));
tmp.init$b(IntExpression.make(new IntBindingExpression() {
 public int get() { return n.get() + 1; }
 }, n));
tmp.initialize$();
ObjectLocation<Foo$Impl> v = ObjectLocation<Foo$Impl>.make(tmp);

1.5.2. Default attribute values
Attribute declarations may include an optional initializer expression, which provides the
default value for the attribute only in the event that the attribute is not initialized by the
object literal.

For each concrete class Foo$Impl, the compiler must generate a static
setDefaults$(Foo$Intf) method that initializes attributes with their default value. This is
called from the initialize$() method, after the object literal values have been set, so this
method can inspect the attribute location to see if it is null (not already set by the object
literal) and conditionally initialize the attribute. For the following class:

class Foo {
 attribute a : Integer = 3;
}

The compiler would generate a setDefaults$() method to conditionally initialize a:
class Foo$Impl implements Foo$Intf {
 ...
 public static void setDefaults$(final Foo$Intf receiver) {
 if (receiver.get$a() == null)
 receiver.init$a(IntVar.make(3));
 }
 ...
}

1.5.3. Class initializers
Constructors in Java classes have a chance to inspect, validate, and reject the constructor
arguments, and to initialize private state based on the provided arguments. Constructors

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Comment [BG1]: These locations
may not yet be available; the
addDependencies() call should come
between the call to setDefaults$() and the
initial firing of change triggers.

in JavaFX classes run before the object literal values are applied to the object, so these
tasks cannot be performed from constructors. JavaFX classes have initializer blocks,
which are blocks of code that are executed during initialization, after object literal values
and default values have been applied.

class Foo {
 attribute size : Integer = 3;
 private attribute map : HashMap;

 init {
 map = new HashMap(size);
 System.out.println("Initialized Foo!");
 }
}

For each class, the compiler generates a static userInit$() method, which contains the
code corresponding to the init block. If there is no init block, the compiler must generate
an empty userInit$() method.

class Foo$Impl implements Foo$Intf {
 ...
 public static void userInit$(final Foo$Intf receiver) {
 receiver.init$map(ObjectVar<Map>.make(
 new HashMap(receiver.get$a().get()));
 System.out.println("Initialized Foo!");
 }
 ...
}

1.5.4. The initialize$() method and the initialization helper
Every class must have an initialize$() method, which performs the following steps:

o Sets default values for attributes not initialized by the object literal

o Run the class initializers

o Fire the change triggers for any attribute set via either the object literal or the
default value

The compiler should also generate an initialization helper object as part of the class, and
initialize it, and call its initialize() method at the end of initialize$(). This will cause the
change triggers to be fired, firing for object-literal-provided attributes before default-
provided values. (This is important in cases where attributes have change triggers that
overwrite other attributes.) The initialize$() method should always look as follows:

Formatted: Bullets and Numbering

class Foo$Impl implements Foo$Intf {
 private static final int NUM$FIELDS = 2;
 private InitHelper initHelper = new InitHelper(NUM$FIELDS);
 ...
 public void initialize$() {
 setDefaults$(this);
 userInit$(this);
 initHelper.initialize();
 initHelper = null;
 }
}

The initialization of InitHelper requires knowing how many attributes there are in the
class; the compiler should generate the static final field NUM$FIELDS and a getter
called getNumFields$() to indicate this. For classes with superclasses, this should be
generated by adding the number of fields declared in this class to the NUM$FIELDS
value from each superclass:

 private static final int NUM$FIELDS = 2
 + Super$Impl.getNumFields$();

1.5.5. Object initialization and inheritance
In the presence of inheritance, the userInit$() and setDefaults$ methods must call the
corresponding method for all superclasses. For the following classes:

class A {
 attribute a : Integer = 1;
 init { System.out.println("A"); }
}
class B {
 attribute b : Integer = 1;
 init { System.out.println("B"); }
}
class C extends A, B {
 attribute c : Integer = 1;
 init { System.out.println("C"); }
}

The compiler would generate the userInit$() and setDefaults$() method for C$Impl as
follows:

Formatted: Bullets and Numbering

class C$Impl implements C$Intf {
 ...
 public static void userInit$(final C$Intf receiver) {
 A.userInit$(receiver);
 B.userInit$(receiver);
 System.out.println("C");
 }

 public static void setDefaults$(final C$Intf receiver) {
 if (receiver.get$c() == null)
 receiver.init$c(IntVar.make(1));
 A.setDefaults$(receiver);
 B.setDefaults$(receiver);
 }
 ...
}

The rationale for separating the implementation of setting defaults and class initialization
is that we want all the defaults to be set before any of the class initializations to execute;
if there was one initialize method that did both, superclass class initializers could run
before the subclass had a chance to set default values.

1.5.6. Change listeners
Class attributes may have change listeners, specified by the “on replace”, “on insert”, or
“on delete” clauses on the attribute declaration. For each change listener declared, the
compiler must generate a change listener and add it to the attribute’s Location. This can
be done in the setDefaults$ method, after all default values have been applied.

class Foo {
 attribute size : Integer = 3
 on replace { System.out.println("a={a}"); };
}

The compiler would generate the setDefaults$ method as follows:
protected static void setDefaults$(final Foo$Intf receiver) {
 if (receiver.get$a() == null)
 receiver.init$a(IntVar.make(3));

 receiver.get$a().addChangeListener(new ChangeListener() {
 public boolean onChange(Location location) {
 System.out.println("a=" + receiver.get$a().get());
 return true;
 }
 });
 }

1.6. Method invocation and return values
The mechanics of parameter passing varies depending on whether or not the function
application appears in a bind context. There are several parameter-passing protocols that
may be used both for parameters and return values: by value, by unmodifiable location,
or by reference.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

All JavaFX local variables and object attributes are represented by a Location. Location
has methods for retrieving the current value, modifying the current value, and registering
dependencies on the value. Some Locations are modifiable (e.g., those that correspond to
non-final variables), and some are unmodifiable (e.g., those that correspond to computed
values or to final variables.)

1.6.1. Pass-by-value
All values in JavaFX – primitives, object references, sequences – are immutable. In pass-
by-value, the argument expression or function block is evaluated, and the resulting value
passed using the types in Table 2.

1.6.2. Pass-by-reference
In pass-by-reference, the Location representing the actual argument (if the actual is an
lvalue) is passed to the method implementation. This allows the method body to modify
the value, and to register dependencies or change triggers on the variable being passed.

1.6.3. Pass-by-unmodifiable-location
In pass-by-unmodifiable-location, a wrapped Location is passed to the method body. The
wrapper allows the method body to register dependencies or change triggers on the
underlying Location, but not to modify its value. Pass-by-unmodifiable-location is used
when the function is invoked in a bind context, or explicit binding is requested by the
caller.

1.6.4. Unbound function invocation
For functions that are invoked not in a bind context:

var v = object.foo(a, b, c+d);

The unbound version of the function is invoked, and parameters are passed by value. The
actual parameters are evaluated by the caller and the values are passed to the unbound
implementation of foo(). The return value is returned by value.

1.6.5. Bound function invocation
For functions that are invoked in a bind context:

var v = bind object.foo(a, b, c+d);

The bound version of the function is invoked, and parameters are passed by unmodifiable
location. If one of the actual parameters is a constant expression or an expression derived
from other variables, the client creates a temporary unmodifiable location to describe it,
and passes that. The return value from the bound version of the function is passed by
unmodifiable location as well.

1.6.6. Bound parameters
There may be cases where the return value of a function is not bound (the function is not
evaluated in a bind context) but the client wishes to pass one or more of the parameters
by location. In this case, the client can specify the bind keyword on the actual parameter:

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

var v = object.foo(bind a, b, c+d);

In this case, the bound version of the method is called, using temporary locations for the
unbound parameters, and the return value is unboxed from the returned location, and the
returned location is discarded.

1.6.7. Return value binding
Function bodies are defined by block expressions. The unbound version of the function
simply evaluates the block expression in the function’s closure. The bound version of the
function evaluates

var t = bind { function-block-expression }

in the function’s closure. The result of the bind expression is a Location, which is
returned to the caller.

1.7. Multiple inheritance and duplicate names
If a class extends multiple classes, it is possible that some members (attributes or
methods) will be present in more than one superclass. Duplicate members are allowable
so long as their signatures are compatible.4 When there is a duplicated member, the
subclass has only one member corresponding to the duplicated member. When there are
duplicate but compatible attributes, the compiler should emit a warning; when the
superclass members are incompatible, the compiler should emit an error.

1.7.1. Attribute conflicts
Warnings related to attribute conflicts are serious, because they indicate that multiple
implementations unknowingly share a variable that they each think they own exclusively.
This is almost always a problem, unless both superclasses themselves inherit from a
common superclass (the so-called “diamond of derivation”).

This problem is made worse by the fact that private attributes are not truly private; they
still appear in interfaces, and therefore it is quite likely that there will be inadvertent
name collisions in multiple inheritance. Further, because these names are part of
interfaces, it is not possible to “rename” them in subclasses. Classes designed for
multiple inheritance (such as “mixin” classes) should choose names that are unlikely to
conflict.

1.7.2. Initializer conflicts
One possible conflict is when multiple superclasses provide a default value for a
duplicated attribute. In this case, the class that appears first in the list of superclasses
wins, because the setDefaults$() methods are called on superclasses in the order they are
defined in the source code.

4 A detailed definition of compatibility is required.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Comment [BG2]: This is going to
have to be fixed. One way to fix this is to
include the superclass name in the
getter/initializer method (i.e.,
getFoofoo() instead of get$Foo()).

1.7.3. Method conflicts
Another possible conflict is when multiple superclasses provide an implementation of a
method. In this case, the subclass can disambiguate which method it wants to call by
explicitly specifying A.super.foo() or B.super.foo() (where A and B are the superclass
names.) Just as for initializer conflicts, method conflicts are resolved in favor of the class
that appears first in the list of superclasses. (The subclass can override the method and
dispatch to the losing superclass method if this default isn’t the desired choice.)

1.7.4. Diamond-shaped inheritance graphs
It is possible, with multiple inheritance, to have diamond-shaped inheritance graphs:

class A { ... }

class B extends A { ... }

class C extends A { ... }

Class D extends B, C { ... }

In this case, all the members of A are duplicated through B and C. In the simple case,
where B and C do not override any of the members of A (or attempt to provide default
initial values for A’s attributes), then the duplicate-resolution approach from the previous
section yields the same result as if A were a virtual base class in C++; D inherits one
copy of each of the members of A.

In the case where B and C override some of the members of A, then conflicts are resolved
according to the same mechanism as for duplicated members.

1.8. Access control
Methods on interfaces are implicitly public. This means we cannot piggyback on Java’s
access control mechanisms. Instead, all members are public in the generated Java
classes. Access control is enforced instead by the JavaFX compiler.

For each visibility or other modifier that can appear on class members (e.g., public,
private, protected, abstract, final), there is a corresponding annotation in
com.sun.javafx.runtime. For each private attribute or method, the JavaFX compiler
applies the @Private attribute to the interface methods related to that member. When the
compiler loads a class that extends FXObject, it should look for these annotations and
build visibility and other modifier information into its symbol table.

1.9. Inner classes

1.9.1. Inner class attributes

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Heading 3, Don't adjust
space between Latin and Asian text

Formatted: Bullets and Numbering

	1. Compiling JavaFX classes to Java classes
	1.1. Mapping FX classes
	1.2. Mapping FX attributes
	1.3. Mapping FX methods
	1.3.1. Generated methods
	1.3.2. Parameter type mapping
	1.3.3. Inherited functions
	1.3.4. Dispatch to superclass functions
	1.3.5. Static functions
	1.3.6. Overriding methods from Object
	1.3.7. Abstract classes

	1.4. Overriding Java classes
	1.4.1. Interface generation
	1.4.2. Concrete class generation
	1.4.3. Field access
	1.4.4. Calling superclass methods via super
	1.4.5. Overriding superclass methods
	1.4.6. Example

	1.5. Object initialization
	1.5.1. Bound attributes
	1.5.2. Default attribute values
	1.5.3. Class initializers
	1.5.4. The initialize$() method and the initialization helper
	1.5.5. Object initialization and inheritance
	1.5.6. Change listeners

	1.6. Method invocation and return values
	1.6.1. Pass-by-value
	1.6.2. Pass-by-reference
	1.6.3. Pass-by-unmodifiable-location
	1.6.4. Unbound function invocation
	1.6.5. Bound function invocation
	1.6.6. Bound parameters
	1.6.7. Return value binding

	1.7. Multiple inheritance and duplicate names
	1.7.1. Attribute conflicts
	1.7.2. Initializer conflicts
	1.7.3. Method conflicts
	1.7.4. Diamond-shaped inheritance graphs

	1.8. Access control
	1.9. Inner classes
	1.9.1. Inner class attributes

