
2006 JavaOneSM Conference | Session TS-3714 |

Flashgridding with Java:
Using Project GlassFishSM,
JavaSpaces™ and Groovy
in an Open Source Supercomputer
Van Simmons, Sean Merritt and Jim Gammill
Project Leaders
ComputeCycles Project
http://computecycles.dev.java.net

TS-3714
Copyright © 2006, Sun Microsystems Inc., All rights reserved.

2006 JavaOneSM Conference | Session TS-3714 | 2

Provide information and examples on
using the ComputeCycles project, Project
GlassFishSM, Jini™ network technology,
and Groovy to create a self-assembling
supercomputer

Goal of This Talk

2006 JavaOneSM Conference | Session TS-3714 | 3

Agenda

What Problems Are We Trying to Solve?
What Are the Goals of the
ComputeCycles Project?
What are the Components of the
ComputeCycles Project?
How Does the ComputeCycles Project Work?

2006 JavaOneSM Conference | Session TS-3714 | 4

Agenda

What Problems Are We Trying to Solve?
What Are the Goals of the
ComputeCycles Project?
What are the Components of the
ComputeCycles Project?
How Does the ComputeCycles Project Work?

2006 JavaOneSM Conference | Session TS-3714 | 5

Grid-Based Computation Is Too Hard
● Too hard to deploy

● How do you deploy your code to 6K machines you don’t control
and whose architecture you can’t specify?

● Too hard to secure
● How do you control access to your data and your code in a public,

shared environment?
● Too hard to manage

● How do you stop a runaway process on 6K machines?
● Too hard to debug

● Whose debugger works on 6K processors at once?
● Too hard to write

● What parallel programming model do you use in a grid?

2006 JavaOneSM Conference | Session TS-3714 | 6

Flashgridding

● Addressing the hard problems means that you
can dispense with a lot of grid infrastructure

● We’ve tried to imagine what a grid with NO
permanent infrastructure would look like
● But we can’t get all the way there

● If we can make it easy to deploy, secure,
manage, et al., the software in the grid then you
can assemble a grid “in a flash”

● The idea behind Flashgridding is to reduce the
need for infrastructure to a bare minimum, while
using it if it's there

What do we mean by that term?

2006 JavaOneSM Conference | Session TS-3714 | 7

Some Implications of “Flashgridding”
When It’s Done with Java Technology
● Reduces infrastructure requirements by

● Allowing heterogeneous hardware
● Allowing heterogeneous operating systems

● Can provide easy, fast deployment
● Java technology is everywhere, after all
● No native code enables write once, run everywhere
● Eases deployment by loading code from the network

● Requires creative use of URLClassLoader
● Is able to utilize remote grid resources over the

Internet and still be secure
● Managed code is critical for flashgridding

2006 JavaOneSM Conference | Session TS-3714 | 8

Why Not Other Open Source or
Commercial Grid Products?

● Most open source projects are, understandably,
focused on reusing native code implementations
● Native code is a huge barrier to flashgridding, because

it makes an infrastructure assumption
● Many commercial products are difficult to

evaluate or pilot or deploy freely
● Who signs the license for a commercial product on a

 machine that just joined your grid across the Net?
● One vendor required an NDA just to see their API

● Pure web service-based approaches deliberately
ignore the possibilities inherent in mobile code

Or just WebServices for that matter?

2006 JavaOneSM Conference | Session TS-3714 | 9

Agenda

What Problems Are We Trying To Solve?
What Are the Goals of the
ComputeCycles Project?
What Are Its Components?
How Does the ComputeCycles
Project Work?

2006 JavaOneSM Conference | Session TS-3714 | 10

Peter Deutsch’s Canonical 7 Fallacies

● The network is reliable
● Latency is zero
● Bandwidth is infinite
● The network is secure
● Topology doesn’t change
● There is one administrator
● Transport cost is zero

2006 JavaOneSM Conference | Session TS-3714 | 11

ComputeCycles Goals
● Disallow single-point-of-failure components
● Be secure (especially with downloaded code)
● Be largely self-administering
● Be dynamically configured
● Facilitate use of Master/Worker programming

model (and eventually workflow)
● Run through firewalls and across the net
● Deploy to broad array of compute platforms
● In short, seek to avoid most of Deutsch’s fallacies

and address the “too hard” aspects of the grid

Build a minimal infrastructure compute grid

2006 JavaOneSM Conference | Session TS-3714 | 12

Agenda

What Problems Are We Trying To Solve?
What Are the Goals of the
ComputeCycles Project?
What Are Its Components?
How Does the ComputeCycles
Project Work?

2006 JavaOneSM Conference | Session TS-3714 | 13

What Sort of Components
Are Needed To Meet the Goals?

● Need to provide hosting for processes which
● Are long-lived
● Require an auditable security model
● Can be remotely managed using readily available

tools (think web browsers)
● Need to provide a good base for Master/Worker

programming model
● Need to provide support for dynamic

reconfiguration
● Preferably would be standards-based
● Must be open source

2006 JavaOneSM Conference | Session TS-3714 | 14

Components of ComputeCycles
● The infrastructure elements used to achieve our goals:

● Project GlassFish (Application and Web Server)
● Jini network technology (Tuple space implementation

for M/W pattern)
● Groovy (Configuration Language)
● Java™ technology (Security model, universal

deployment platform)
● ComputeCycles is a relatively thin layer of Jini network

technology services, Project GlassFish webapps and
Groovy config files wrapped around these base
components

● N.B. We can’t use these components “stock”

We’re standing on the shoulders of giants

2006 JavaOneSM Conference | Session TS-3714 | 15

Project GlassFish
● Using Project GlassFish for

● Java Naming and Directory Interface™ API
and Lookup Service Discovery

● Security configuration webapp hosting
● Service configuration webapp hosting
● Jini service hosting (services run in Project GlassFish Java VM)
● Gridapp configuration hosting
● Hosting EJB™ beans related to service state

● Why Project GlassFish?
● Primarily for Integration w/NetBeans™ software

● What changes did we need?
● Incorporate our own URLStreamHandlerFactory

2006 JavaOneSM Conference | Session TS-3714 | 16

Jini Network Technology

● Using Jini network technology for
● Jini Extensible Remote Invocation (ERI)
● JavaSpaces™ Technology Kit-provided services

(Lookup Service, Transaction Manager)
● The tuplespace implementation, i.e., JavaSpaces
● Our own ComputeCycles services

● Why Jini network technology?
● Secure, downloadable code

● What changes did we need?
● Dynamic truststore specification

“Jini is all about remote execution and downloadable code”,
Brian Murphy, 2003–2006

2006 JavaOneSM Conference | Session TS-3714 | 17

Groovy

● Using Groovy for
● Configuration (in place of XML and Jini based

configuration files)
● To drive our standalone UI when services run outside

of an App Server
● Why Groovy?

● Closure implementation ideal as a substitute for Jini
based config components

● What changes did we need?
● None yet, but may require changes for timing

of closure evaluation

“Groovy killed the XML File”, Michael Henderson, 2004

2006 JavaOneSM Conference | Session TS-3714 | 18

Java Technology

● Using Java technology for
● Universal deployment platform
● Security model

● Problems we’ve encountered that are
Java SE-related
● Inappropriate use of system properties

● javax.net.ssl.trustStore should not necessarily be a singleton
● Inappropriate lack of use of system properties

● URLStreamHandlerFactory is a singleton and must be
coded rather than supplied dynamically

2006 JavaOneSM Conference | Session TS-3714 | 19

Agenda

What Problems Are We Trying To Solve?
What Are the Goals of the
ComputeCycles Project?
What Are Its Components?
How Does the ComputeCycles
Project Work?

2006 JavaOneSM Conference | Session TS-3714 | 20

Security

● Authentication
● Authorization
● Encryption
● Separation of security domains

2006 JavaOneSM Conference | Session TS-3714 | 21

Authentication

● “Keyring” based authentication
● Secret key to gain access to keyring of key pairs

● Currently based on using keytool files
● Keytool files are located at configured URLs

● Special webapp provided to vend keytool and Java
Authentication and Authorization Service (JAAS)
files (keystore, truststore, login and password)

● Security configuration is provided to services via
a webapp running in a secured environment
● Https
● Policy files

2006 JavaOneSM Conference | Session TS-3714 | 22

Authorization

● Policy based
● All services run either inside of Project GlassFish

or standalone
● Never run without a SecurityManager in place

● Uses dynamic permission grants like those found
in Jini network technology

● Grants are logged and visible to end user
● We’ve created a special version of the Jini based

DebugPolicyProvider to help make this more
transparent (and debuggable)

2006 JavaOneSM Conference | Session TS-3714 | 23

Encryption

● SSL used to access keyring
● SSL used during service execution for all

intra-grid communication
● Enables use of geographically spread resources

and the internet

2006 JavaOneSM Conference | Session TS-3714 | 24

Separation of Security Domains

● Concerned about DoS attacks
● If spaces are shared across tasks, how do we

prevent even accidental DoS?
● Concerned about unauthorized access to data

contained in a tuplespace
● JavaSpace interface does not contemplate restricting

access based on templates
● Solution: separate spaces for each

Master/Worker session
● Each space to use a separate security domain
● Like a distributed ProtectionDomain

2006 JavaOneSM Conference | Session TS-3714 | 25

Dynamic Configuration
● Is what the “Flash” in Flashgridding means
● All services are “bootstrapped” via

configuration URLs
● Services can be remotely rebooted if necessary

● Variety of configuration languages can be used
● We’ve put Groovy in our Jini based ConfigurationProvider
● Jini based ConfigurationProvider using groovy included

as part of ComputeCycles project
● Worker services are configured in two phases

● First as a worker service
● Secondly when they participate in a grid session

2006 JavaOneSM Conference | Session TS-3714 | 26

Dynamic Allocation via Global
Sessions as Leased Resources
● Biggest problem we face is resource allocation

and reclamation
● Copied idea of sessions from servlet containers
● There is a single leased resource in the grid:

the session
● Sessions are managed by a special service:

the GridManager
● Sessions reside in JavaSpaces and are visible to authorized

services (such as available workers)
● Workers participating in a session allocate themselves to

that session dynamically and independently; they are only
loosely coupled to the Master and are not directly under
outside control

2006 JavaOneSM Conference | Session TS-3714 | 27

Master/Worker Pattern Usage

● Enhancing this pattern is the basis
for ComputeCycles’ contribution

● Key enhancements to remember
● Global Sessions
● Loose, dynamic coupling between masters

and workers
● Masters can be WebServices
● Will eventually move to a workflow model
● Following diagrams show the actual evolution

of the design (sadly)

2006 JavaOneSM Conference | Session TS-3714 | 28

ComputeCyles and
the Master/Worker Pattern
Turn away now if complication scares you…

2006 JavaOneSM Conference | Session TS-3714|

Bootstrapping Deployment

2006 JavaOneSM Conference | Session TS-3714 | 30

Single Sign-on Security

2006 JavaOneSM Conference | Session TS-3714 | 31

Service Registration

2006 JavaOneSM Conference | Session TS-3714 | 32

Grid Management

2006 JavaOneSM Conference | Session TS-3714 | 33

Session Allocation

2006 JavaOneSM Conference | Session TS-3714 | 34

Application Deployment

2006 JavaOneSM Conference | Session TS-3714 | 35

Zero Single-Point-of-Failure
Architecture
● Puts the “Grid” in Flashgridding
● Requires the concept of a global, shared session

and hence multiple tuple spaces
● Sessions are leased resources which must be visible

to workers
● They must persist in multiple locations to avoid

single-point-of-failure problems
● Tuplespaces are ideal for this usage

● Replicating session entries across tuple spaces
leads to a requirement for a transaction manager
● Sessions are written to at least two locations while inside

a transaction

2006 JavaOneSM Conference | Session TS-3714 | 36

Zero Single-Point-of-Failure
Architecture (Cont.)
● Standard M/W pattern has this feature only

on the workers, not the Masters
● GridManagers subject to same constraint

● Teams of GridManager services renew leases
● Any GridManager can fail and sessions that it originated

can still be renewed by other members of the team

2006 JavaOneSM Conference | Session TS-3714 | 37

Zero Single-Point-of-Failure
Requirements

2006 JavaOneSM Conference | Session TS-3714 | 38

Services

● Reggie (Lookup)
● Outrigger (JavaSpace)
● Mahalo (TxnManager)
● Trinity (Worker)
● Edison (GridManager)
● SpaceGhost (SpaceStarter)
● Pharoah (MasterDelegate)

2006 JavaOneSM Conference | Session TS-3714 | 39

Accessing the
Flashgrid via WebServices
● Masters cannot be required to reside in a Java VM

● WebService has been created to allow a master service to
be started via remote invocation

● Jini Lookup Discovery cannot be performed through
a firewall
● Another WebService has been created to vend lookup

proxies to remotely located services (e.g., workers)
● Easiest mechanism is to store bootstrapped lookup service

proxies in J.N.D.I. API and vend them over the webservice
● Vended lookup proxies must use https w/o callbacks in

order to go through firewalls

2006 JavaOneSM Conference | Session TS-3714 | 40

JavaSpace Usage
● JavaSpaces are used for all shared memory needs
● Types of spaces used

● Session
● Work (requires use of JavaSpace05 interface)
● Scoreboarding
● Master

● Session spaces are “infrastructural”, others are
forked per session

● Each space must have a different LoginContext
● Dynamic configuration of spaces is hard
● We use our configuration webapp extensively here

2006 JavaOneSM Conference | Session TS-3714 | 41

Example: Simulation on Wall Street
● Fact: homeowners refinance fixed rate mortgages

when rates drop
● Problem: how to value and hedge a pool of such

mortgages
● Conventional solution

● Simulate
● Changes in rates
● Refinancing behavior given rates

● Calculate
● Present value of cashflows along each simulation path
● Hedge ratios (i.e., change in value per change in model parameter)

by re-running simulation with slight change in initial parameters

2006 JavaOneSM Conference | Session TS-3714 | 42

Using a Grid for this Example

● Scale requirements:
● 600 mortgage securities x 360 monthly cashflows x

2000 simulation paths x 20 scenarios = 8.64 Billion
present values to calculate

● This problem is “embarrassingly” parallel
● Example workflow

● In the master create the simulation path parameters
and place in space

● In the worker, compute the paths from the params
● In the master, repeatedly write (security,scenario)

tuples into the space and wait for results
● In the worker, repeatedly read, compute, write

2006 JavaOneSM Conference | Session TS-3714 | 43

Code Samples: What the
Client Uses To Access the Flashgrid
public interface GridManager
{
 public ClientSession createSession(
 String gridAppURL,
 String gridAppUserName,
 String gridAppPassword,
 long sessionTimeout,
 long waitTimeout)
 throws RemoteException,
 GridAppNotFoundException,
 NoSessionSpaceAvailableException,
 NoWorkSpaceAvailableException;
 public GridSessionStatus getSessionStatus(
 GridSession gs)
 throws RemoteException;
}

2006 JavaOneSM Conference | Session TS-3714 | 44

Code Samples: What a Worker
Looks Like to the Rest of the Grid
public interface Worker
 extends Remote
{
 // This has turned into a marker
 // interface as workers have become
 // independent agents
}

2006 JavaOneSM Conference | Session TS-3714 | 45

Code Samples: the Code That a
GridApp Deploys into Each Worker
public interface Worklet
{
 public void destroy()
 throws WorkletException;
...
 public void init(WorkletDescriptor descriptor,

WorkletContext context)
 throws WorkletException;
 public boolean isDispatchable()
 throws WorkletException;
 public void service(WorkletRequest req,

WorkletResponse res)
 throws WorkletException;
}

2006 JavaOneSM Conference | Session TS-3714 | 46

Summary of ComputeCycles Project

● Open source
● Uses an infrastructure based on other open

source projects
● Avoids single points of failure
● Uses the Java Security model (via Jini

technology and Project GlassFish) throughout
● Is designed to be easy to deploy
● Wants to be a grid-based workflow engine

when it grows up

2006 JavaOneSM Conference | Session TS-3714 | 47

For More Information

 http//:computeserver.dev.java.net

 http//:computecycles.dev.java.net

2006 JavaOneSM Conference | Session TS-3714 | 48

Q&A

2006 JavaOneSM Conference | Session TS-3714 |

Flashgridding with Java:
Using Project GlassFishSM,
JavaSpaces™ and Groovy
in an Open Source Supercomputer
Van Simmons, Sean Merritt and Jim Gammill
Project Leaders
ComputeCycles Project
http://computecycles.dev.java.net

TS-3714

