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Provide information and examples on 
using the ComputeCycles project, Project 
GlassFishSM, Jini™ network technology, 
and Groovy to create a self-assembling 
supercomputer

Goal of This Talk



2006 JavaOneSM Conference   |   Session TS-3714   | 3

Agenda

What Problems Are We Trying to Solve?
What Are the Goals of the 
ComputeCycles Project?
What are the Components of the 
ComputeCycles Project?
How Does the ComputeCycles Project Work?
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Grid-Based Computation Is Too Hard
● Too hard to deploy

● How do you deploy your code to 6K machines you don’t control 
and whose architecture you can’t specify?

● Too hard to secure
● How do you control access to your data and your code in a public, 

shared environment?
● Too hard to manage

● How do you stop a runaway process on 6K machines?
● Too hard to debug

● Whose debugger works on 6K processors at once?
● Too hard to write

● What parallel programming model do you use in a grid?



2006 JavaOneSM Conference   |   Session TS-3714   | 6

Flashgridding

● Addressing the hard problems means that you 
can dispense with a lot of grid infrastructure

● We’ve tried to imagine what a grid with NO 
permanent infrastructure would look like
● But we can’t get all the way there

● If we can make it easy to deploy, secure, 
manage, et al., the software in the grid then you 
can assemble a grid “in a flash”  

● The idea behind Flashgridding is to reduce the 
need for infrastructure to a bare minimum, while 
using it if it's there

What do we mean by that term?
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Some Implications of “Flashgridding” 
When It’s Done with Java Technology
● Reduces infrastructure requirements by

● Allowing heterogeneous hardware
● Allowing heterogeneous operating systems

● Can provide easy, fast deployment
● Java technology is everywhere, after all
● No native code enables write once, run everywhere
● Eases deployment by loading code from the network

● Requires creative use of URLClassLoader
● Is able to utilize remote grid resources over the 

Internet and still be secure
● Managed code is critical for flashgridding
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Why Not Other Open Source or 
Commercial Grid Products?

● Most open source projects are, understandably, 
focused on reusing native code implementations
● Native code is a huge barrier to flashgridding, because 

it makes an infrastructure assumption
● Many commercial products are difficult to 

evaluate or pilot or deploy freely
● Who signs the license for a commercial product on a

 machine that just joined your grid across the Net? 
● One vendor required an NDA just to see their API

● Pure web service-based approaches deliberately 
ignore the possibilities inherent in mobile code

Or just WebServices for that matter?
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Agenda

What Problems Are We Trying To Solve?
What Are the Goals of the 
ComputeCycles Project?
What Are Its Components?
How Does the ComputeCycles 
Project Work?
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Peter Deutsch’s Canonical 7 Fallacies

● The network is reliable
● Latency is zero
● Bandwidth is infinite
● The network is secure
● Topology doesn’t change
● There is one administrator
● Transport cost is zero
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ComputeCycles Goals
● Disallow single-point-of-failure components
● Be secure (especially with downloaded code)
● Be largely self-administering
● Be dynamically configured
● Facilitate use of Master/Worker programming 

model (and eventually workflow)
● Run through firewalls and across the net
● Deploy to broad array of compute platforms
● In short, seek to avoid most of Deutsch’s fallacies 

and address the “too hard” aspects of the grid

Build a minimal infrastructure compute grid
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What Sort of Components 
Are Needed To Meet the Goals?

● Need to provide hosting for processes which
● Are long-lived 
● Require an auditable security model
● Can be remotely managed using readily available 

tools (think web browsers)
● Need to provide a good base for Master/Worker 

programming model
● Need to provide support for dynamic 

reconfiguration
● Preferably would be standards-based
● Must be open source
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Components of ComputeCycles
● The infrastructure elements used to achieve our goals:

● Project GlassFish (Application and Web Server)
● Jini network technology (Tuple space implementation 

for M/W pattern)
● Groovy (Configuration Language)
● Java™ technology (Security model, universal 

deployment platform)
● ComputeCycles is a relatively thin layer of Jini network 

technology services, Project GlassFish webapps and 
Groovy config files wrapped around these base 
components

● N.B.  We can’t use these components “stock”

We’re standing on the shoulders of giants
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Project GlassFish
● Using Project GlassFish for

● Java Naming and Directory Interface™ API 
and Lookup Service Discovery

● Security configuration webapp hosting
● Service configuration webapp hosting
● Jini service hosting (services run in Project GlassFish Java VM)
● Gridapp configuration hosting
● Hosting EJB™ beans related to service state

● Why Project GlassFish?
● Primarily for Integration w/NetBeans™ software

● What changes did we need?
● Incorporate our own URLStreamHandlerFactory
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Jini Network Technology

● Using Jini network technology for
● Jini Extensible Remote Invocation (ERI)
● JavaSpaces™ Technology Kit-provided services 

(Lookup Service, Transaction Manager)
● The tuplespace implementation, i.e., JavaSpaces
● Our own ComputeCycles services

● Why Jini network technology?
● Secure, downloadable code

● What changes did we need?
● Dynamic truststore specification

“Jini is all about remote execution and downloadable code”, 
Brian Murphy, 2003–2006
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Groovy

● Using Groovy for
● Configuration (in place of XML and Jini based 

configuration files)
● To drive our standalone UI when services run outside 

of an App Server
● Why Groovy?

● Closure implementation ideal as a substitute for Jini 
based config components 

● What changes did we need?
● None yet, but may require changes for timing 

of closure evaluation

“Groovy killed the XML File”, Michael Henderson, 2004
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Java Technology

● Using Java technology for
● Universal deployment platform
● Security model

● Problems we’ve encountered that are 
Java SE-related
● Inappropriate use of system properties

● javax.net.ssl.trustStore should not necessarily be a singleton
● Inappropriate lack of use of system properties

● URLStreamHandlerFactory is a singleton and must be 
coded rather than supplied dynamically
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Security

● Authentication
● Authorization
● Encryption
● Separation of security domains
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Authentication

● “Keyring” based authentication
● Secret key to gain access to keyring of key pairs

● Currently based on using keytool files
● Keytool files are located at configured URLs

● Special webapp provided to vend keytool and Java 
Authentication and Authorization Service (JAAS) 
files (keystore, truststore, login and password)

● Security configuration is provided to services via 
a webapp running in a secured environment
● Https
● Policy files
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Authorization

● Policy based
● All services run either inside of Project GlassFish 

or standalone
● Never run without a SecurityManager in place

● Uses dynamic permission grants like those found 
in Jini network technology

● Grants are logged and visible to end user
● We’ve created a special version of the Jini based 

DebugPolicyProvider to help make this more 
transparent (and debuggable)
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Encryption

● SSL used to access keyring
● SSL used during service execution for all 

intra-grid communication
● Enables use of geographically spread resources 

and the internet
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Separation of Security Domains

● Concerned about DoS attacks
● If spaces are shared across tasks, how do we 

prevent even accidental DoS?
● Concerned about unauthorized access to data 

contained in a tuplespace
● JavaSpace interface does not contemplate restricting 

access based on templates
● Solution: separate spaces for each 

Master/Worker session 
● Each space to use a separate security domain
● Like a distributed ProtectionDomain
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Dynamic Configuration
● Is what the “Flash” in Flashgridding means
● All services are “bootstrapped” via 

configuration URLs
● Services can be remotely rebooted if necessary

● Variety of configuration languages can be used
● We’ve put Groovy in our Jini based ConfigurationProvider
● Jini based ConfigurationProvider using groovy included 

as part of ComputeCycles project 
● Worker services are configured in two phases

● First as a worker service
● Secondly when they participate in a grid session
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Dynamic Allocation via Global 
Sessions as Leased Resources
● Biggest problem we face is resource allocation 

and reclamation
● Copied idea of sessions from servlet containers
● There is a single leased resource in the grid: 

the session
● Sessions are managed by a special service: 

the GridManager
● Sessions reside in JavaSpaces and are visible to authorized 

services (such as available workers)
● Workers participating in a session allocate themselves to 

that session dynamically and independently; they are only 
loosely coupled to the Master and are not directly under 
outside control
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Master/Worker Pattern Usage

● Enhancing this pattern is the basis 
for ComputeCycles’ contribution

● Key enhancements to remember
● Global Sessions
● Loose, dynamic coupling between masters 

and workers
● Masters can be WebServices
● Will eventually move to a workflow model
● Following diagrams show the actual evolution 

of the design (sadly)
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ComputeCyles and 
the Master/Worker Pattern
Turn away now if complication scares you…
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Bootstrapping Deployment
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Single Sign-on Security
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Service Registration
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Grid Management
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Session Allocation
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Application Deployment
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Zero Single-Point-of-Failure 
Architecture
● Puts the “Grid” in Flashgridding
● Requires the concept of a global, shared session 

and hence multiple tuple spaces
● Sessions are leased resources which must be visible 

to workers
● They must persist in multiple locations to avoid 

single-point-of-failure problems
● Tuplespaces are ideal for this usage

● Replicating session entries across tuple spaces 
leads to a requirement for a transaction manager
● Sessions are written to at least two locations while inside 

a transaction
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Zero Single-Point-of-Failure 
Architecture (Cont.)
● Standard M/W pattern has this feature only 

on the workers, not the Masters
● GridManagers subject to same constraint

● Teams of GridManager services renew leases
● Any GridManager can fail and sessions that it originated 

can still be renewed by other members of the team
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Zero Single-Point-of-Failure 
Requirements
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Services

● Reggie (Lookup)
● Outrigger (JavaSpace)
● Mahalo (TxnManager)
● Trinity (Worker)
● Edison (GridManager)
● SpaceGhost (SpaceStarter)
● Pharoah (MasterDelegate)
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Accessing the 
Flashgrid via WebServices
● Masters cannot be required to reside in a Java VM

● WebService has been created to allow a master service to 
be started via remote invocation

● Jini Lookup Discovery cannot be performed through 
a firewall
● Another WebService has been created to vend lookup 

proxies to remotely located services (e.g., workers)
● Easiest mechanism is to store bootstrapped lookup service 

proxies in J.N.D.I. API and vend them over the webservice
● Vended lookup proxies must use https w/o callbacks in 

order to go through firewalls
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JavaSpace Usage
● JavaSpaces are used for all shared memory needs
● Types of spaces used

● Session
● Work (requires use of JavaSpace05 interface)
● Scoreboarding
● Master

● Session spaces are “infrastructural”, others are 
forked per session

● Each space must have a different LoginContext
● Dynamic configuration of spaces is hard
● We use our configuration webapp extensively here
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Example: Simulation on Wall Street
● Fact: homeowners refinance fixed rate mortgages 

when rates drop
● Problem: how to value and hedge a pool of such 

mortgages
● Conventional solution

● Simulate 
● Changes in rates
● Refinancing behavior given rates

● Calculate
● Present value of cashflows along each simulation path
● Hedge ratios (i.e., change in value per change in model parameter) 

by re-running simulation with slight change in initial parameters
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Using a Grid for this Example

● Scale requirements:
● 600 mortgage securities x 360 monthly cashflows x 

2000 simulation paths x 20 scenarios = 8.64 Billion 
present values to calculate

● This problem is “embarrassingly” parallel
● Example workflow

● In the master create the simulation path parameters 
and place in space

● In the worker, compute the paths from the params
● In the master, repeatedly write (security,scenario) 

tuples into the space and wait for results
● In the worker, repeatedly read, compute, write 
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Code Samples: What the 
Client Uses To Access the Flashgrid
public interface GridManager
{
    public ClientSession createSession(
                    String gridAppURL,
                    String gridAppUserName,
                    String gridAppPassword, 
                    long sessionTimeout, 
                    long waitTimeout)
        throws RemoteException,
               GridAppNotFoundException,
               NoSessionSpaceAvailableException,
               NoWorkSpaceAvailableException;
    public GridSessionStatus getSessionStatus(
                    GridSession gs)
        throws RemoteException;
}
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Code Samples: What a Worker 
Looks Like to the Rest of the Grid
public interface Worker
    extends Remote
{
    // This has turned into a marker 
    // interface as workers have become 
    // independent agents
}
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Code Samples: the Code That a 
GridApp Deploys into Each Worker
public interface Worklet
{
    public void destroy()
        throws WorkletException;
...
    public void init(WorkletDescriptor descriptor, 

WorkletContext context)
        throws WorkletException;
    public boolean isDispatchable()
        throws WorkletException;
    public void service(WorkletRequest req, 

WorkletResponse res)
        throws WorkletException;
}
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Summary of ComputeCycles Project

● Open source
● Uses an infrastructure based on other open 

source projects
● Avoids single points of failure
● Uses the Java Security model (via Jini 

technology and Project GlassFish) throughout
● Is designed to be easy to deploy
● Wants to be a grid-based workflow engine 

when it grows up
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For More Information

   http//:computeserver.dev.java.net

   http//:computecycles.dev.java.net
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Q&A
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