@ Sun

B Power

l AVA Lombardi

Writing a Sony PlayStation
Emulator Using Java™
Technology

Graham Sanderson

Matt Howitt

Lombardi Software
www.lombardisoftware.com

1S-5547

2006 JavaOne®™ Conference | Session TS-5547 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

N

High Performance Java™ Technology

I'll share some of the performance tricks |
used to implement a fast PlayStation

emulator in the Java programming
language, and talk about some cool Java
technology stuff | got to mess with in the

Process

2006 JavaOneSM Conference | Session TS-5547 | 2]ava .sun.com/iavaone/sf

Agenda

Introduction

Enough Already, Let's See It!

Performance Tricks

Cool Stuff—Java HotSpot™ VM for R30007?

Q&A and Another Demo

2006 JavaOne®™ Conference | Session TS-5547 | 3 java .sun.com/iavaone/sf

Agenda

Introduction

Enough Already, Let's See It!
Performance Tricks

Cool Stuff—Java HotSpot VM for R30007?
Q&A and Another Demo

2006 JavaOne®™ Conference | Session TS-5547 | 4 iava .sun.com/iavaone/sf

Technical Requirements

* Sony PlayStation Specs
+ 32 bit RISC CPU @ 33.9MHz
* Geometry co-processor
* 500k lighted triangles per sec
Graphics co-processor @ 33.9MHz
* 360000 triangles per sec
* Thousands of 2d sprites with rotation/scaling
* Alpha transparency and Gouraud shading
* Resolutions up to 640x512 at 30fps
Decompression co-processor for video
24 channel sound @ 44kHz

”%:”fSZﬂ’l 2006 JavaOne® Conference | Session TS-5547 | 5

java.sun.com/javaone/sf

Architecture Goals

Obiject oriented

“Machine” should be assembled from loosely-coupled
component classes representing:

Physical hardware

Processor instructions

Memory mapped code/data

Internal emulator components e.g. byte code generators

Written entirely in the Java language

If it physically can be done entirely in the Java
language, then do so

Implemented with clear maintainable code

”%:”’SMTZ 2006 JavaOne®™ Conference | Session TS-5547 | 6 iava.sun.com/iavaone/sf

Java

>,

How Did It Turn Out?

Emulation machine is assembled from arbitrary
components

Except: address space and some execution flow
Internals

Uses well known connection points

Entirely Java technnology (you do need to use a
Java Native Interface (JNI) based media
component to run directly off CD)

Code is clear(ish)

2006 JavaOne®™ Conference | Session TS-5547 | 7 iava.sun.com/iavaone/sf

DEMO

The Emulator in Action!

2006 JavaOne®™ Conference | Session TS-5547 | 8 jaua.sun.com)"ji':IUEIOI'IE."(Sf

Agenda

Introduction
Enough Already, Let's See It!

Performance Tricks
Cool Stuff—Java HotSpot VM for R30007?

Q&A and Another Demo

2006 JavaOne®™ Conference | Session TS-5547 | 9 iava .sun.com/iavaone/sf

Handler Functions

// Instruction decoding in the interpreter:
// Calling different handler functions
// for different op-codes

// simplified instruction interface
interface Instruction {
public void execute (int opCode) ;

}

class CPU {
// simplified interpreter loop
public void execute () {
while (true) {
int opCode = memory[ip++];
instructions[opCode&0x3f] .execute (opCode) ;

2006 JavaOne®M Conference | Session TS-5547 | 10 iava .sun.com/iavaone/sf

@ Sun

Handler Functions

// Memory Mapped I/O
// similar, but address range is big and sparsely filled

// Possible Solution 1: Map
Handler handler =

(Handler) handlerMap.get (new Integer (address)) ;
handler.write (data) ;

// Possible Solution 2: Switch with non static method
switch (address) {

case 20: handler20.write(data); break;

case 100: handlerl00.write(data); break;

}

// Possible Solution 3: Switch with static method
switch (address) {

case 20: Handler20.write(data),; break;

case 100: Handlerl00.write(data), break;

2006 JavaOne®™ Conference | Session TS-5547 | 11 iava .sun.com/iavaone/sf

Handler Functions Test

Map/Object Call m J2SE 1.4.2 Client

m Java SE 6 Client (Beta)

Array/Interface Call W Java SE 6 Server (Beta)

Array/Object Call

Switch/Object Call

Switch/Static Call

Binary Tree/Static Call

0 50 100 150

Million Calls Per Second

Source: Average of 5 runs after warm up on my Windows XP laptop

@SM?} 2006 JavaOne® Conference | Session TS-5547 | 12 iava .sun.com/iavaone/sf

Handler Functions Summary

Picked method for fastest execution
Binary Tree of “if” statements
Calls to a static member function of a particular
Implementation class

Still needed run time configurability

Instructions/Handlers registered in Array/Map during
start up

Utility class uses BCEL to build optimal method to
dispatch calls

@Sun 2006 JavaOnes" Conference | Session TS-5547 | 13 java.sun.com/javaone/sf

Costly IFs

// Generic class which handles 4 possible
// rendering combinations
public class Renderer {
public void render(boolean alpha, boolean paletted) {
// simplified pixel loop
for all pixels {
int color;
if ('paletted)
color = texture[src];
else
color = palette[texture[src] &0xf];
if (alpha)
color = alpha*color + (l-alpha) *background;
screen[dest] = color;

@SM?} 2006 JavaOnes™ Conference | Session TS-5547 | 14 java.sun.com/javaone/sf

Costly IFs

// Specialized class which handles just one combination
// no-alpha, no-palette
public class NoAlphaNoPaletteRenderer {
public void render () {
// simplified pixel loop
for all pixels {
screen[dest] = texture|[src];

}

@Sun 2006 JavaOne®M Conference | Session TS-5547 | 15 iava .sun.com/iavaone/sf

sssssssssss

Costly IFs

// Using JAVAC to specialize the class for us

public class NoAlphaNoPaletteRenderer {
public static final boolean alpha = false;
public static final boolean paletted = false;

public void render () {
// simplified pixel loop
for all pixels {
int color;

color = texture[src];

screen[dest] = color;

@Sun } 2006 JavaOne® Conference | Session TS-5547 | 16 iava .sun.com/iavaone/sf

sssssssssss

Costly IFs

// Another generic class which handles all 4 combinations

public class TemplateRenderer {
public static final boolean alpha = isAlpha() ;
public static final boolean paletted = isPalette();

public void render () {
// simplified pixel loop
for all pixels {
int color;
if (!'paletted)
color = texture[src];
else
color = palette[texture[src] &0xf];
if (alpha)
color = alpha*color + (l-alpha) *background;
screen[dest] = color;

‘%%SM?} } 2006 JavaOne®" Conference | Session TS-5547 | 17 java.sun.com/javaone/sf

Costly IFs

// as compiled by HotSpot if alpha and palette
// are set to false during static initialization
public class TemplateRenderer {
public static final boolean alpha = getFalse();
public static final boolean paletted = getFalse()

public void render () {
// simplified pixel loop

for all pixels {
int color;

color = palette[texture[src]&0xf];

screen[dest] = color;

@Sun } 2006 JavaOne® Conference | Session TS-5547 | 18 iava .sun.com/iavaone/sf

sssssssssssss

Costly IFs

* Using code generation
* | clone and rename my generic class, and change the
bytecode for the static member initializers
* Without using code generation

+ Set static final variables based on immutable
configuration properties

* Factory alternate implementations of the same class
In separate class loaders

* Or...

2006 JavaOne®M Conference | Session TS-5547 | 19 java .sun.com/javaone/sf

Costly IFs

// hybrid case!

public static final boolean xIsMutable = ..;
public static final boolean xInitialValue = ..;
boolean xValue = xInitialValue;

public boolean getX () {
return xIsMutable ? xValue : xInitialValue;

}

if xIsMutable == true, simplifies to xValue;

if xIsMutable == false, simplifies to xInitialValue,
and hence statically either true or false,

In either case it will likely be inlined

2006 JavaOne®™ Conference | Session TS-5547 | 20 iava .sun.com/iavaone/sf

1ms Timer Resolution

| want to...
Have a main CPU thread

Have a separate background thread for
asynchronous hardware

Which means | need to...
Measure time to 1ms accuracy
Add callbacks at arbitrary but accurate frequencies

But how entirely in the Java language?

On some platforms System.currentTimeMillis() has
poor resolution

And Thread.sleep()?

@Sun 2006 JavaOnes™ Conference | Session TS-5547 | 21 java.sun.com/javaone/sf

Poor Man’s 1ms Resolution Timer

// TimeKeeper thread running at Thread.MAX PRIORITY
while (true) {

// repeated calls to Thread.sleep(l) actually
// keep the delay accurate on Windows!'!
Thread.sleep(1l) ;
synchronized (this) {
// provide rough estimate of time (can be behind)
time++;
// schedule notification to event worker thread
// running at Thread.NORM PRIORITY+2
if (time>nextScheduledEventTime) {
notify () ;
}

2006 JavaOne®™ Conference | Session TS-5547 | 22 iava .sun.com/iavaone/sf

@ Sun

Agenda

Introduction
Enough Already, Let's See It!

Performance Tricks
Cool Stuff—Java HotSpot VM for R3000?

Q&A and Another Demo

2006 JavaOne®™ Conference | Session TS-5547 | 23 iava .sun.com/iavaone/sf

>,

Two-Stage Compiler

* Converts units of R3000 code into Java classes
* 1st stage

* Used in preference to interpreter

* Simple translation of code

* Gathers data to help second stage
© 2" stage

* Used for “hot” methods

* Does flow analysis and constant propagation

* Uses information from the first stage for some key
optimizations

2006 JavaOnes" Conference | Session TS-5547 | 24 java.sun.com/javaone/sf

What Is a Code Unit?

* Starts at the target address of any call, or any
jump to a dynamic address

* Includes all instructions which can be
determined to be reached; i.e. it stops at a
branch to another dynamic address.

* It turns out that this is often a single C function

@Sun 2006 JavaOnes" Conference | Session TS-5547 | 25 java.sun.com/javaone/sf

g microsystems

Stage 1 Unit Class

public class 1XXXXXXXX implements Executable {
// holder of runtime state for this code unit
public static CodeUnit unit;

// static method to execute the unit
public static int s (int retAddr, boolean jump) {
// 1) forward to stage 2 if this is hot
if (unit.useStage2())
return 2XXXXXXXX.s (retAddr, Jjump) ;
// 2) simple state machine
if (unit.count>0) unit.count--;
else unit.countComplete() ;
// 3) implementation of R3000 code (omitted)

2006 JavaOne®M Conference | Session TS-5547 | 26 iava .sun.com/iavaone/sf

Code Units Call Each-other Directly

0x80103020 addiu r2, r0, #4 ; load register 2 with 4

0x80103024 jal 0x80104088 ; call function at 80104088

; saving return address in r31l
0x80103028 nop ; delay slot
0x8010302c .. ; next instruction

public class 180103020 implements Executable {
public static int s(int retAddr, boolean jump) ({
// preceding code omitted
Compiler.reg 2 = 4;
Compiler.reg 31 = 0x8010302c;
- 180104088.s(0x8010302¢c, false) ;
// following code omitted

2006 JavaOne®™ Conference | Session TS-5547 | 27 iava .sun.com/iavaone/sf

@ Sun

R3000 Calls Are Java Language Calls

public class 180103020 implements Executable {

}

* @param retAddr the expected return address of

* the current R3000 frame
* @param Jjump true we’'re here by jump not call
* @return the next execution address

public static int s (int retAddr, boolean jump) {
// (omitted all but the last instruction)

// code for “jr r31l” (basically “return”)
int target = Compiler.reg 31;
while (true) {
if (target == retAddr || Jjump)
return target;
else
target = Compiler.jump(target, retAddr);

2006 JavaOne®™ Conference | Session TS-5547 | 28 iava .sun.com/iavaone/sf

Compiler Architecture

CPU execution thread (normal priority)
Runs interpreter loop, calls into stage 1 classes for any JAL
ClassLoader does stage 1 compilation as necessary

Schedules for background stage 2 compilation any code units
which have become “hot”

Background compilation thread 1 (low priority)
Does stage 1 compilation

Background compilation thread 2 (low priority)
Does stage 2 compilation

Stage 1 compilation

Includes scheduling for background compilation any referenced
(by JAL) but currently missing stage 1 classes

%%Sun 2006 JavaOne®M Conference | Session TS-5547 | 29 iava.sun.com/iavaone/sf

Stage 2 Unit Class

// 80131000 lui r2, 0x8001 ; load r2 with 0x80010000
// 80131004 1w r2, r2[0x1234] ; load r2 from 0x80011234

public class 280131000 implements Executable {

public static int s (int retAddr, boolean jump)

{
if (replaced) return 380131000 (retAddr, Jjump);
// (stage 1 version is)
// Compiler.reg 2 = 0x80010000
// Compiler.reg 2 =
// AddressSpace.read32 (Compiler.reg 2);
Compiler.reg 2 = AddressSpace.ram[0x11234/4];
// remaining R3000 code omitted

@Sun 2006 JavaOne® Conference | Session TS-5547 | 30 iava .sun.com/iavaone/sf

sssssssssss

ArrayindexOutOfBoundsException
Is Our Friend!

// 80131004 1w r2, r6[0]

public class 2XXXXXXXX implements Executable {
public static int s(int retAddr, boolean jump)

{

®Sun

if (replaced) return 3XXXXXXXX (retAddr, Jjump);
// (stage 1 version is)
// AddressSpace.tagRead(0x80131004,Compiler.reg 6) ;
// Compiler.reg 2 =
// AddressSpace.read32 (Compiler.reg 6);
Compiler.reg 2 =

AddressSpace.ram[(Compiler.reg 6&RAM MASK) /4];
// remaining R3000 code omitted

2006 JavaOne®™ Conference | Session TS-5547 | 31 iava .sun.com/javaone/sf

>,

Other Interesting Tidbits

Oops—R3000 code in RAM is over-writable!

We have to throw away our class loader on
instruction cache flush

There are bugs in the R3000 code too!

The compiler is just a component too—
you can replace it if you like

We detect and avoid busy-wait, so we have
time for our background threads, and don’t hog
the CPU

2006 JavaOne®™ Conference | Session TS-5547 | 32 iava.sun.com/iavaone/sf

Q&A and
Another Demo

2006 JavaOne®M Conference | Session TS-5547 | 33 jaua.sun.com /"IEIUEIOI'IE."(Sf

>,

Summary

Java technology is fast enough to run a
PlayStation emulator on modern hardware

Byte-code generation is cool, but you can do a
bunch of stuff without it

You don'’t have to sacrifice code maintainability

| plan to open source, so people can start
adding stuff (e.g., Java 3D™ API), SPU rewrite
with latest Java Sound API, etc.

2006 JavaOnes" Conference | Session TS-5547 | 34 java.sun.com/javaone/sf

@ Sun

B Power

l AVA Lombardi

Writing a Sony PlayStation
Emulator Using Java
Technology

Graham Sanderson
Matt Howitt

Lombardi Software
www.lombardisoftware.com

1S-5547

2006 JavaOne®™ Conference | Session TS-5547 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

