@ Sun

New Compiler Optimizations
in the Java HotSpot™
Virtual Machine

Steve Dever

Steve Goldman
Kenneth Russell

Sun Microsystems, Inc.

1S-3412

Copyright © 2006, Sun Microsystems Inc., All rights reserved.
2006 JavaOne®M Conference | Session TS-3412 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

¢ JavaOne

Goal of This Talk

2006 JavaOnesM Conference | Session TS-3412 | 2 iava.sun.com/javaone/sf

Agenda

Background

Synchronization Optimizations

Escape Analysis

Tiered Compilation and Other Optimizations
Future Plans

Conclusion

2006 JavaOne®M Conference | Session TS-3412 | 3 iava .sun.com/javaone/sf

Agenda

Background

Synchronization Optimizations

Escape Analysis

Tiered Compilation and Other Optimizations
Future Plans

Conclusion

2006 JavaOne®M Conference | Session TS-3412 | 4 iava .sun.com/iavaone/sf

>,

Brief Introduction to the
Java HotSpot VM

Sun Microsystems’ flagship Java " Virtual
Machine implementation (JVM) for the desktop

Roots in Smalltalk and Self

Focus on object-oriented optimizations
Deep inlining
Class Hierarchy Analysis
Virtual call inlining

Aggressive optimization
Dynamic deoptimization

2006 JavaOne® Conference | Session TS-3412 | iava .sun.com/iavaone/sf

>,

Brief Introduction to the
Java HotSpot VM

Two flavors: client and server
Same infrastructure

Java HotSpot client compiler focuses on
compile speed

Java HotSpot server compiler focuses on
peak performance

More later on eliminating this distinction

2006 JavaOne® Conference | Session TS-3412 | java .sun.com/javaone/sf

Brief Introduction to the
Java HotSpot VM

Rest of this talk focuses on new optimizations
being done by the client and server compilers

Should largely be unnoticeable to the
Java programmer

May still be useful to understand more of inner
workings of underlying Java virtual
machine implementation

@%’SM?’I 2006 JavaOne® Conference | Session TS-3412 | iava .sun.com/iavaone/sf

Agenda

Background

Synchronization Optimizations

Escape Analysis

Tiered Compilation and Other Optimizations
Future Plans

Conclusion

2006 JavaOne®M Conference | Session TS-3412 | 8 iava .sun.com/javaone/sf

>,

Locking in the Java
Programming Language

In Java language, every object is potentially
a monitor

synchronized keyword

All modern Java VMs incorporate
lightweight locking

Avoid associating an OS-level mutex/condition variable
pair with each Java-based object

Use atomic operations to enter and exit monitor
Fall back to heavyweight OS locks if contended

Differences in encodings and protocols
Effective because most locking is uncontended

2006 JavaOne® Conference | Session TS-3412 | iava .sun.com/iavaone/sf

Locking in the Java
Programming Language

- InJava SE 5.0, java.util.concurrent
locks introduced

* New locks and primitives for building new locks
* These optimizations do not apply to this class of locks

é’f@SMﬂ 2006 JavaOnes™ Conference | Session TS-3412 | 10 java .sun.com/javaone/sf

Java

>,

Overview of Lightweight
Locking in Java HotSpot VM

First word of every object is the mark word

Used for synchronization and garbage collection
Also holds identity hash code if computed

Low two bits of mark word indicate
synchronization state

01 > unlocked

00 > lightweight locked

10 > inflated (heavyweight locked)
11 > marked for GC

2006 JavaOne® Conference | Session TS-3412 | iava .sun.com/iavaone/sf

>,

Overview of Lightweight
Locking in Java HotSpot VM

When object locked, mark word copied to stack
into lock record

Displaced mark

Atomic compare-and-swap (CAS) instruction
used to make object point to on-stack lock record

If CAS succeeds, thread owns lock
If fails, lock inflated—contention

Lock records track which objects locked by the
currently-executing method

Can walk stack of a thread to iterate locked objects

2006 JavaOne® Conference | Session TS-3412 | iava .sun.com/iavaone/sf

Locking Diagram

Execution T
stack Object
mark word
Method hash | age | 01 -
activation

Lock record

@Sun 2006 JavaOne®™ Conference | Session TS-3412 | 13 iava .sun.com/iavaone/sf

sssssssssss

Locking Diagram

Execution T
stack Object
Method stack pointer
activation /

hash | age | 01

@Sun 2006 JavaOne® Conference | Session TS-3412 | 14 iava .sun.com/iavaone/sf

sssssssssss

Overview of Lightweight
Locking in Java HotSpot VM

* When object unlocked, CAS used to put
displaced mark back in object

- |If fails, contention occurred
* Notify waiting threads that monitor has exited

@f@SMﬂ 2006 JavaOnes" Conference | Session TS-3412 | 15 java .sun.com/javaone/sf

Java

>,

Observations

Even atomic instructions can be relatively
expensive on multiprocessors

Most locking not only uncontended, but also
performed by the same thread repeatedly

cf. Kawachiya et al, “Lock Reservation”, OOPSLA 2002

Make it cheaper for a single thread to reacquire
a lock

Trade-off of making it more expensive for another
thread to acquire the same lock

2006 JavaOne® Conference | Session TS-3412 | iava .sun.com/iavaone/sf

Biased Locking

First lock of an object biases it toward the thread
which locked it

New encoding in mark word of object

Subsequent locks and unlocks by same thread
are very cheap
No atomic operations

L oad-and-test to make sure still biased toward
current thread

Bias revoked if another thread locks same object
Expensive for individual objects

”%:”fSZﬂ’l 2006 JavaOne® Conference | Session TS-3412 | java .sun.com/javaone/sf

Bias Revocation

Stop thread owning the object’s bias
Walk stack enumerating lock records
Fill in lock records for object, if any

Update object’s mark word
Point at highest lock record if currently locked
Write in unlocked value if not currently locked

Continue with normal CAS-based locking
Obviously fairly expensive

2006 JavaOne® Conference | Session TS-3412 | java .sun.com/iavaone/sf

>,

Bulk Rebiasing and Revocation

Detect if many revocations occurring for a given
data type

Try invalidating all biases for objects of that type
Allows them to rebias themselves to a new thread
Amortizes cost of individual revocations
Multiple such bulk rebias operations permitted

If individual revocations persist, disable biased
locking for that data type

Minimize the downside of the optimization while
retaining the benefits

2006 JavaOne® Conference | Session TS-3412 | iava .sun.com/iavaone/sf

Results
Percentage Increase/Decrease in Benchmark Scores

60 M 2xP4
B 2xAMD
50 4xAMD
40 - I 2xUS-I
W 1xXUS-T1
308 i
20-00-°0 00 T
N ||||I|I|I |
0. - - - I Ill - N IIII IIII L)
|
-10 o B
'20 I I I I I I I I
DB Jack Javac Jess MTRT JVM98 Scimark JBB2000 JBB2005 Volano

Source: Sun Microsystems, Inc.

@Sun 2006 JavaOneS" Conference | Session TS-3412 | 20 iava .sun.com/iavaone/sf

sssssssssss

Results
Percentage Increase/Decrease in Benchmark Scores

275 M 2xP4

250 | W 2xAMD
4xAMD
W 2xUs-Il
B 1xUS-T1
I .—

225
Monte

200 -
175+
150 -
125+
100
75-
50 -
25-

0-

Source: Sun Microsystems, Inc.

@Sun 2006 JavaOneS" Conference | Session TS-3412 | 21 iava .sun.com/iavaone/sf

sssssssssss

Summary

- Biased locking improves uncontended
synchronization performance

- Still a fairly aggressive optimization

- Have attempted to minimize any performance
penalties of biased locking

+ =XX:-UseBiasedLocking to disable completely

- Please provide feedback on Mustang forums
e http://mustang.dev.java.net/

@%Sun 2006 JavaOnes" Conference | Session TS-3412 | 22 java .sun.com/javaone/sf

Summary

» Additional optimizations in Java Platform,
Standard Edition 6 (Java SE 6) to improve
contended synchronization performance

- Escape analysis and lock coarsening further
Improve synchronization speed

* More later

é’f@SMﬂ 2006 JavaOnes™ Conference | Session TS-3412 | 23 java .sun.com/javaone/sf

Agenda

Background

Synchronization Optimizations

Escape Analysis

Tiered Compilation and Other Optimizations
Future Plans

Conclusion

2006 JavaOne®M Conference | Session TS-3412 | 24 iava .sun.com/iavaone/sf

Escape Analysis

* Problem: In general, when compiling and
optimizing a method, we must assume that other

threads and methods called can make arbitrary
changes to any Java-based object

2006 JavaOne®M™ Conference | Session TS-3412 | 25

java.sun.com/javaone/sf

Escape Analysis

* Problem: In general, when compiling and
optimizing a method, we must assume that other
threads and methods called can make arbitrary
changes to any Java-based object

* For objects allocated in a method these
assumptions can be relaxed if we can prove that
it does not ESCAPE the code being compiled

@f@Sun 2006 JavaOneSM Conference | Session TS-3412 | 26 java .sun.com/javaone/sf

>,

Non-Escaping Objects

Allocated in the method being compiled
Are not a subclass of Thread
Do not have a finalizer

Are not stored to a static field or a field of an
escaped object

Are not passed as an argument to a method call
unless we know that the called method does not
cause it to escape

2006 JavaOne® Conference | Session TS-3412 | java .sun.com/iavaone/sf

Escape Example

class Escapel {

Integer val;

Escapel next;

Escapel (Integer v) { val = v;}

void example () ({

Integer
Integer
Integer
Escapel
Escapel
Escapel

el .next = e2;
e2;

next =
e2.next

@ Sun

il
i2
i3
el
e2
e3

e3;

new
new
new
new
new
new

//

Integer (1) ;
Integer (2) ;
Integer (3) ;
Escapel (il) ;
Escapel (i2) ;
Escapel (i3) ;

e2 and i2 escape via “this”

// e3 and i3 escape

2006 JavaOne®M™ Conference | Session TS-3412 | 28

java.sun.com/javaone/sf

Optimization Possibilities

- Eliminate locking on the object
» Optimize field references

* |n some cases can allocate object on the stack
frame instead of the heap

@@Sun 2006 JavaOneSM Conference | Session TS-3412 | 29 java .sun.com/iavaone/sf

Common Occurrences of
Non-escaping Objects

* Autoboxing of method arguments (if called
method is inlined.)

» lterators over Collections

-+ StringBuilder objects created for
String concatenation

2006 JavaOnes Conference | Session TS-3412 | 30 java.sun.com/javaone/sf

Tracking Object Stores

- The analysis in the server compiler is based on:

* J. Choi, M. Gupta, M. Serrano, V Sreedhar, S. Midkiff,
Escape Analysis for Java, OOPSLA99, 1999

of’f@SZﬂ’l 2006 JavaOneSM Conference | Session TS-3412 | 31 iava .sun.com/iavaone/sf

>,

Tracking Object Stores

For all ptr.
of objects

Initialize a
pointer va

Mark anyt

values in a method, computes the set
that it could point to

locations to non-escaping and all other
ues as escaping

ning a ptr. value could point to as

escaping when it is:
Stored into a field of an escaped object

Passed as an argument to a method which causes the
argument to escape

2006 JavaOne® Conference | Session TS-3412 | iava .sun.com/iavaone/sf

Tracking Object Stores

» The paper describes 2 algorithms:

* Flow-insensitive—identifies objects which do not
escape over the entire method

* Flow-sensitive—identifies objects which do not escape
over regions of a method

» The flow-sensitive algorithm requires more
memory and may interact with other
compiler optimizations

”%:%S’M?’l 2006 JavaOnes" Conference | Session TS-3412 | 33 java .sun.com/javaone/sf

Tracking Object Stores

» The server compiler currently implements the
flow-insensitive algorithm

- We have a prototype of the flow-sensitive version
and are evaluating whether the extra complexity
give sufficiently better code

2006 JavaOnes Conference | Session TS-3412 | 34 java.sun.com/javaone/sf

>,

Tracking Method Arguments

If a called method is not inlined, we must track
whether it causes any of its arguments to escape

Without this tracking, we must make the
pessimistic assumption that all arguments
escape. This eliminated most of the optimization
opportunities from escape analysis

2006 JavaOne® Conference | Session TS-3412 | java .sun.com/iavaone/sf

Tracking Method Arguments

» Since a called method may not have been
compiled yet, we can not rely on the compiler

‘%%SM?} 2006 JavaOne®™ Conference | Session TS-3412 | 36 java.sun.com/javaone/sf

>,

Tracking Method Arguments

We have a bytecode escape estimator which was
implemented by two researchers from the
Johannes Kepler University Linz as part of their
work described in:
T. Kotzmann, H. Mossenbock, Escape analysis in the
context of dynamic compilation and deoptimization,
Proceedings of the 1st ACM/USENIX International

Conference on Virtual Execution Environments, 2005
http://portal.acm.org/citation.cfm?

doid=1064979.1064996

2006 JavaOne® Conference | Session TS-3412 | iava .sun.com/iavaone/sf

>,

Tracking Method Arguments

The escape estimator scans the bytecodes of a
method and produces a conservative estimate of
which arguments escape

It also tracks whether the return value of the
scanned method is an unescaped object

Records the results of the scan for later use

2006 JavaOne® Conference | Session TS-3412 | java .sun.com/iavaone/sf

Field Optimization Without
Escape Analysis

class Escape2 {
int £1d1, £14d2;

Escape2 (int v1, int v2) { £f1d1 = vl1; £f14d2 = v2; }

static void bigMethod() ({

// a large method too big to inline
}

static int example (int vl, int v2) ({
Escape2 el = new Escape2(vl, 10);
Escape2 e2 = new Escape2(v2, 5 - vl);

bigMethod () ;// must assume fields of el & e2 can change

return el.fldl + e2.f1dl; // need to reload wvalues
}
}

2006 JavaOne®M Conference | Session TS-3412 | 39 java .sun.com/javaone/sf

Field Optimization with
Escape Analysis

class Escape2 {
int £1d1, £14d2;

Escape2 (int v1, int v2) { £f1d1 = vl1; £f14d2 = v2; }

static void bigMethod() ({

// a large method too big to inline
}

static int example (int vl, int v2) ({
Escape2 el = new Escape2(vl, 10);
Escape2 e2 = new Escape2(v2, 5 - vl);

bigMethod(); // cannot change fields of el & e2

return el.fldl + e2.£f1d2; // returns vl + (5 - vl) = 5

@f@Sun 2006 JavaOneSM Conference | Session TS-3412 | 40 java .sun.com/javaone/sf

Performance Results

» Lock elision provided no significant performance
benefit over and above biased locking and lock
coarsening (described later)

» Performance benefit of other optimizations made
possible by escape analysis is continuing

@%Sun 2006 JavaOnes" Conference | Session TS-3412 | 41 java .sun.com/javaone/sf

Implementation Status

Java SE 6 has escape analysis and lock elision in
the server compiler

It is off by default, it can be enabled with the
-XX:+UseEscapeAnalysis flag

Java SE 7 will have further optimizations

There are currently no plans to release a client
compiler with escape analysis

@%SZH’Z 2006 JavaOne® Conference | Session TS-3412 | java .sun.com/iavaone/sf

@ Sun

Agenda

Background
Synchronization Optimizations
Escape Analysis

Tiered Compilation and Other
Optimizations

Future Plans
Conclusion

2006 JavaOne®M™ Conference | Session TS-3412 | 43

java.sun.com/javaone/sf

>,

Lock Coarsening

Dynamically we often see a lock being released
and immediately acquired

|ldea is to eliminate the closely separated release
and acquire

Doing this in non-loop code does not
impact fairness

Not obvious at source level as the locks are either
synchronized methods or locks within the
called method

Inlining exposes the closely paired locks

2006 JavaOne® Conference | Session TS-3412 | iava .sun.com/iavaone/sf

>,

» Release from first call can

Lock Coarsening

- Assume p is simple S()
predicate (no exception e
possible) and S is a olse
synchronized method S();

S();

be removed if acquire is
removed from then and
else path

* Release in then/else can

be removed if acquire is
removed from final call

2006 JavaOnes™ Conference | Session TS-3412 | 45

java.sun.com/javaone/sf

Lock Coarsening

* Release from first call can S():
be removed if it (g)()_

acquire/release is removed ()
from then path

» Acquire is removed from
final call

%‘“@Sun 2006 JavaOnes™ Conference | Session TS-3412 | 46

java.sun.com/javaone/sf

Lock Coarsening

+ Acquire/release could be SO
removed from then path if 4 (g)().
we moved the release from ’
initial call to after the then
join point

» This case is not currently
handled

2006 JavaOne®M™ Conference | Session TS-3412 | 47

java.sun.com/javaone/sf

Lock Coarsening—Results

* Removes 20% of all dynamic locks in single
warehouse run of specjbb2000

* Improves score on specjbb2000 by 2%

- Scimark Monte Carlo subtest score improved
by 60%!

Source: Sun Microsystems, Inc.
é’f@SMﬂ 2006 JavaOnes™ Conference | Session TS-3412 | 48 java.sun.com/iavaone/sf

Array Copy Stubs

- System.arraycopy is heavily used in the JDK™
libraries as well as application code

- Compilers inlined System.arraycopy but they
tended to be pessimistic about aliasing and
alignment

* As a result performance was okay but not great

2006 JavaOnes Conference | Session TS-3412 | 49 java.sun.com/javaone/sf

Array Copy Stubs

* In Mustang (and backported to 5.0u5) hand
coded assembly stubs written for each type size

assuming no overlap
- Compiler generates one simple test to decide

- Qverlap? Same code as previously
* No Overlap? Call stub

2006 JavaOnes Conference | Session TS-3412 | 50 java.sun.com/javaone/sf

Array Copy Stubs—Results

» System.arraycopy microbenchmarks
+ Slight degradation for small (1—4 elements)

+ >100% improvement for modest number of
elements (20+)

* 4% increase of specjbb2000 score on
SPARC® hardware

* 1+% increase of specjbb2000 score on AMDG64

Source: Sun Microsystems, Inc.

”%:%S’M?’l 2006 JavaOnes" Conference | Session TS-3412 | 51 java .sun.com/javaone/sf

Tiered Compilation

Client compiler is good at startup and short apps
* Inferior performance for longer running apps

- Server compiler is good at long apps
« Inferior startup performance

Single JVM with both compilers

- Like an automatic transmission—
- Startup with client compiler
* Cruise with server compiler

”%:%S’M?’l 2006 JavaOnes" Conference | Session TS-3412 | 52 java .sun.com/javaone/sf

Tiered Compilation—Issues

- Different calling conventions

- A method compiled by client compiler can’t call method
created by server compiler or vice versa

» Different runtime interfaces
+ OopMaps were incompatible

@f@Sun 2006 JavaOneSM Conference | Session TS-3412 | 53 java .sun.com/javaone/sf

Tiered Compilation

Different calling conventions
Each compiler had separate code to describe calling

conventions
In Mustang shared code maps a signature into a
description of the registers and/or stack slots
used to pass parameters

As a result methods generated by different
compilers can call each other

2006 JavaOne® Conference | Session TS-3412 | java .sun.com/iavaone/sf

>,

>,

Tiered Compilation

Adapters convert from interpreter calling
convention to compiled convention (i2c) and
vice versa (c2i)

Server compiler compiled adapters as separate
code objects

Server compiler used a separate thread for
adapter compilation

Client compiler built the code into the compiled
Java method

2006 JavaOne® Conference | Session TS-3412 | java .sun.com/iavaone/sf

Tiered Compilation

In Mustang adapter code is generated by
shared code

A single adapter code object contains the i2c and
c2i for each signature seen

Reduction in generated code compared to client
style of adapters

Reduction in server compiler code and one less
JVM thread

2006 JavaOne® Conference | Session TS-3412 | java .sun.com/iavaone/sf

Java

>,

Tiered Compilation

Each compiler had distinct code for generating
wrapper code for Java native methods

Transition from Java code to native and return requires
precisely ordered thread state changes

Client compiler code was straight forward and
easy to modify

Server code was difficult to understand and hard
to get correct

2006 JavaOne® Conference | Session TS-3412 | java .sun.com/iavaone/sf

Tiered Compilation

In Mustang Java native method wrappers are
produced by shared code

Simple to modify
Easy to experiment with new state transitions
Better generated code

2006 JavaOne®M Conference | Session TS-3412 | 58 java .sun.com/javaone/sf

Tiered Compilation
JNI Micro Benchmark

M50
M 6.0-B27
6.0-B69

1.2
1.1
1 I -
0.9 — —
0.8 — — —
0.7 — — —
0.6 — —
0.5 —
04— —
0.3 — —
0.2 — —
0.1 —
0+ —
SPARC- SPARC- X86-client X86-server AMDG64-

client server de4

Relative time

Source: Sun Microsystems, Inc.

g microsystems

2006 JavaOne®M Conference | Session TS-3412 | 59 iava .sun.com/iavaone/sf

Tiered Compilation
JNI Micro Benchmark

W 1.4.2

M50
6.0-B27

" 6.0-B69

5.5
577 [
45— ——
4,7 e

_

SPARC SPARC X86 -client X86 -server AMDG64
-client -server -d64

w
W O,
| |

N
(&)
|

Relative time

o N
ol =~ N
R I R

Source: Sun Microsystems, Inc.

@Sun 2006 JavaOne®™ Conference | Session TS-3412 | 60 iava .sun.com/iavaone/sf

sssssssssss

Tiered Compilation—Remaining Work

» Merging runtime stubs
* |1C miss handler
« Deoptimization
* Exception handling
* Policy decisions
* When to deopt/recompile
* When to collect profile data

» Client compiler for 64bit platforms

”%’SMW 2006 JavaOne®™ Conference | Session TS-3412 | 61

java.sun.com/javaone/sf

Conclusion

* More performance improvements coming
* Finish tiered compilation
* More use of escape analysis results
- Faster call out to JNI

* Try it out
 http://mustang.dev.java.net/

@SM?} 2006 JavaOne® Conference | Session TS-3412 | 62 java.sun.com/javaone/sf

For More Information

BOF-0197 Java HotSpot VM Q&A
» Thursday 7:30 PM North Meeting Room 121/124/125

@SM?} 2006 JavaOne®™ Conference | Session TS-3412 | 63 java.sun.com/javaone/sf

2006 JavaOne®™ Conference | Session TS-3412 | 64 jaua.sun.comfjauaone{sf

@ Sun

New Compiler Optimiztions
in the Java HotSpot™
Virtual Machine

Steve Dever

Steve Goldman
Kenneth Russell

Sun Microsystems, Inc.

1S-3412

2006 JavaOne®M Conference | Session TS-3412 | jaua.sun.com)"ji':IUEIOI'IE!(Sf

