
2006 JavaOneSM Conference | Session TS-3412 |

TS-3412

New Compiler Optimizations
in the Java HotSpot™
Virtual Machine
Steve Dever
Steve Goldman
Kenneth Russell
Sun Microsystems, Inc.

Copyright © 2006, Sun Microsystems Inc., All rights reserved.

2006 JavaOneSM Conference | Session TS-3412 | 2

Goal of This Talk

Learn how new dynamic compiler
optimizations make Java-based
programs run faster

2006 JavaOneSM Conference | Session TS-3412 | 3

Agenda

Background
Synchronization Optimizations
Escape Analysis
Tiered Compilation and Other Optimizations
Future Plans
Conclusion

2006 JavaOneSM Conference | Session TS-3412 | 4

Agenda

Background
Synchronization Optimizations
Escape Analysis
Tiered Compilation and Other Optimizations
Future Plans
Conclusion

2006 JavaOneSM Conference | Session TS-3412 | 5

Brief Introduction to the
Java HotSpot VM

● Sun Microsystems’ flagship Java™ Virtual
Machine implementation (JVM) for the desktop

● Roots in Smalltalk and Self
● Focus on object-oriented optimizations

● Deep inlining
● Class Hierarchy Analysis
● Virtual call inlining

● Aggressive optimization
● Dynamic deoptimization

2006 JavaOneSM Conference | Session TS-3412 | 6

Brief Introduction to the
Java HotSpot VM

● Two flavors: client and server
● Same infrastructure
● Java HotSpot client compiler focuses on

compile speed
● Java HotSpot server compiler focuses on

peak performance
● More later on eliminating this distinction

2006 JavaOneSM Conference | Session TS-3412 | 7

Brief Introduction to the
Java HotSpot VM

● Rest of this talk focuses on new optimizations
being done by the client and server compilers

● Should largely be unnoticeable to the
Java programmer

● May still be useful to understand more of inner
workings of underlying Java virtual
machine implementation

2006 JavaOneSM Conference | Session TS-3412 | 8

Agenda

Background
Synchronization Optimizations
Escape Analysis
Tiered Compilation and Other Optimizations
Future Plans
Conclusion

2006 JavaOneSM Conference | Session TS-3412 | 9

Locking in the Java
Programming Language
● In Java language, every object is potentially

a monitor
● synchronized keyword

● All modern Java VMs incorporate
lightweight locking
● Avoid associating an OS-level mutex/condition variable

pair with each Java-based object
● Use atomic operations to enter and exit monitor
● Fall back to heavyweight OS locks if contended

● Differences in encodings and protocols
● Effective because most locking is uncontended

2006 JavaOneSM Conference | Session TS-3412 | 10

Locking in the Java
Programming Language

● In Java SE 5.0, java.util.concurrent
locks introduced
● New locks and primitives for building new locks
● These optimizations do not apply to this class of locks

2006 JavaOneSM Conference | Session TS-3412 | 11

Overview of Lightweight
Locking in Java HotSpot VM

● First word of every object is the mark word
● Used for synchronization and garbage collection

● Also holds identity hash code if computed
● Low two bits of mark word indicate

synchronization state
● 01 > unlocked
● 00 > lightweight locked
● 10 > inflated (heavyweight locked)
● 11 > marked for GC

2006 JavaOneSM Conference | Session TS-3412 | 12

Overview of Lightweight
Locking in Java HotSpot VM

● When object locked, mark word copied to stack
into lock record
● Displaced mark

● Atomic compare-and-swap (CAS) instruction
used to make object point to on-stack lock record

● If CAS succeeds, thread owns lock
● If fails, lock inflated–contention

● Lock records track which objects locked by the
currently-executing method
● Can walk stack of a thread to iterate locked objects

2006 JavaOneSM Conference | Session TS-3412 | 13

Locking Diagram

2006 JavaOneSM Conference | Session TS-3412 | 14

Locking Diagram

2006 JavaOneSM Conference | Session TS-3412 | 15

Overview of Lightweight
Locking in Java HotSpot VM

● When object unlocked, CAS used to put
displaced mark back in object
● If fails, contention occurred
● Notify waiting threads that monitor has exited

2006 JavaOneSM Conference | Session TS-3412 | 16

Observations

● Even atomic instructions can be relatively
expensive on multiprocessors

● Most locking not only uncontended, but also
performed by the same thread repeatedly
● cf. Kawachiya et al, “Lock Reservation”, OOPSLA 2002

● Make it cheaper for a single thread to reacquire
a lock
● Trade-off of making it more expensive for another

thread to acquire the same lock

2006 JavaOneSM Conference | Session TS-3412 | 17

Biased Locking

● First lock of an object biases it toward the thread
which locked it
● New encoding in mark word of object

● Subsequent locks and unlocks by same thread
are very cheap
● No atomic operations
● Load-and-test to make sure still biased toward

current thread
● Bias revoked if another thread locks same object

● Expensive for individual objects

2006 JavaOneSM Conference | Session TS-3412 | 18

Bias Revocation

● Stop thread owning the object’s bias
● Walk stack enumerating lock records
● Fill in lock records for object, if any
● Update object’s mark word

● Point at highest lock record if currently locked
● Write in unlocked value if not currently locked

● Continue with normal CAS-based locking
● Obviously fairly expensive

2006 JavaOneSM Conference | Session TS-3412 | 19

Bulk Rebiasing and Revocation

● Detect if many revocations occurring for a given
data type

● Try invalidating all biases for objects of that type
● Allows them to rebias themselves to a new thread
● Amortizes cost of individual revocations
● Multiple such bulk rebias operations permitted

● If individual revocations persist, disable biased
locking for that data type

● Minimize the downside of the optimization while
retaining the benefits

2006 JavaOneSM Conference | Session TS-3412 | 20

Results

Source: Sun Microsystems, Inc.

Percentage Increase/Decrease in Benchmark Scores

DB Jack Javac Jess MTRT JVM98 Scimark JBB2000 JBB2005 Volano
-20

-10

0

10

20

30

40

50

60 2xP4
2xAMD
4xAMD
2xUS-III
1xUS-T1

2006 JavaOneSM Conference | Session TS-3412 | 21

Results

Source: Sun Microsystems, Inc.

Monte
0

25

50

75

100

125

150

175

200

225

250

275 2xP4
2xAMD
4xAMD
2xUS-III
1xUS-T1

Percentage Increase/Decrease in Benchmark Scores

2006 JavaOneSM Conference | Session TS-3412 | 22

Summary

● Biased locking improves uncontended
synchronization performance
● Still a fairly aggressive optimization

● Have attempted to minimize any performance
penalties of biased locking
● -XX:-UseBiasedLocking to disable completely

● Please provide feedback on Mustang forums
● http://mustang.dev.java.net/

2006 JavaOneSM Conference | Session TS-3412 | 23

Summary

● Additional optimizations in Java Platform,
Standard Edition 6 (Java SE 6) to improve
contended synchronization performance

● Escape analysis and lock coarsening further
improve synchronization speed
● More later

2006 JavaOneSM Conference | Session TS-3412 | 24

Agenda

Background
Synchronization Optimizations
Escape Analysis
Tiered Compilation and Other Optimizations
Future Plans
Conclusion

2006 JavaOneSM Conference | Session TS-3412 | 25

Escape Analysis

● Problem: In general, when compiling and
optimizing a method, we must assume that other
threads and methods called can make arbitrary
changes to any Java-based object

2006 JavaOneSM Conference | Session TS-3412 | 26

Escape Analysis

● Problem: In general, when compiling and
optimizing a method, we must assume that other
threads and methods called can make arbitrary
changes to any Java-based object

● For objects allocated in a method these
assumptions can be relaxed if we can prove that
it does not ESCAPE the code being compiled

2006 JavaOneSM Conference | Session TS-3412 | 27

Non-Escaping Objects

● Allocated in the method being compiled
● Are not a subclass of Thread
● Do not have a finalizer
● Are not stored to a static field or a field of an

escaped object
● Are not passed as an argument to a method call

unless we know that the called method does not
cause it to escape

2006 JavaOneSM Conference | Session TS-3412 | 28

Escape Example
class Escape1 {
 Integer val;
 Escape1 next;
 Escape1(Integer v) { val = v;}
 void example() {
 Integer i1 = new Integer(1);
 Integer i2 = new Integer(2);
 Integer i3 = new Integer(3);
 Escape1 e1 = new Escape1(i1);
 Escape1 e2 = new Escape1(i2);
 Escape1 e3 = new Escape1(i3);
 e1.next = e2;
 next = e2; // e2 and i2 escape via “this”
 e2.next = e3; // e3 and i3 escape
 }
}

2006 JavaOneSM Conference | Session TS-3412 | 29

Optimization Possibilities

● Eliminate locking on the object
● Optimize field references
● In some cases can allocate object on the stack

frame instead of the heap

2006 JavaOneSM Conference | Session TS-3412 | 30

Common Occurrences of
Non-escaping Objects

● Autoboxing of method arguments (if called
method is inlined.)

● Iterators over Collections
● StringBuilder objects created for

String concatenation

2006 JavaOneSM Conference | Session TS-3412 | 31

Tracking Object Stores

● The analysis in the server compiler is based on:
● J. Choi, M. Gupta, M. Serrano, V Sreedhar, S. Midkiff,

Escape Analysis for Java, OOPSLA99, 1999

2006 JavaOneSM Conference | Session TS-3412 | 32

Tracking Object Stores

● For all ptr. values in a method, computes the set
of objects that it could point to

● Initialize allocations to non-escaping and all other
pointer values as escaping

● Mark anything a ptr. value could point to as
escaping when it is:
● Stored into a field of an escaped object
● Passed as an argument to a method which causes the

argument to escape

2006 JavaOneSM Conference | Session TS-3412 | 33

Tracking Object Stores

● The paper describes 2 algorithms:
● Flow-insensitive—identifies objects which do not

escape over the entire method
● Flow-sensitive—identifies objects which do not escape

over regions of a method
● The flow-sensitive algorithm requires more

memory and may interact with other
compiler optimizations

2006 JavaOneSM Conference | Session TS-3412 | 34

Tracking Object Stores

● The server compiler currently implements the
flow-insensitive algorithm

● We have a prototype of the flow-sensitive version
and are evaluating whether the extra complexity
give sufficiently better code

2006 JavaOneSM Conference | Session TS-3412 | 35

Tracking Method Arguments

● If a called method is not inlined, we must track
whether it causes any of its arguments to escape

● Without this tracking, we must make the
pessimistic assumption that all arguments
escape. This eliminated most of the optimization
opportunities from escape analysis

2006 JavaOneSM Conference | Session TS-3412 | 36

Tracking Method Arguments

● Since a called method may not have been
compiled yet, we can not rely on the compiler

2006 JavaOneSM Conference | Session TS-3412 | 37

Tracking Method Arguments

● We have a bytecode escape estimator which was
implemented by two researchers from the
Johannes Kepler University Linz as part of their
work described in:
● T. Kotzmann, H. Mössenböck, Escape analysis in the

context of dynamic compilation and deoptimization,
Proceedings of the 1st ACM/USENIX International
Conference on Virtual Execution Environments, 2005
http://portal.acm.org/citation.cfm?
doid=1064979.1064996

2006 JavaOneSM Conference | Session TS-3412 | 38

Tracking Method Arguments

● The escape estimator scans the bytecodes of a
method and produces a conservative estimate of
which arguments escape

● It also tracks whether the return value of the
scanned method is an unescaped object

● Records the results of the scan for later use

2006 JavaOneSM Conference | Session TS-3412 | 39

Field Optimization Without
Escape Analysis

class Escape2 {
 int fld1, fld2;
 Escape2(int v1, int v2) { fld1 = v1; fld2 = v2; }
 static void bigMethod() {
 ... // a large method too big to inline
 }
 static int example(int v1, int v2) {
 Escape2 e1 = new Escape2(v1, 10);
 Escape2 e2 = new Escape2(v2, 5 - v1);
 bigMethod();// must assume fields of e1 & e2 can change
 return e1.fld1 + e2.fld1; // need to reload values
 }
}

2006 JavaOneSM Conference | Session TS-3412 | 40

Field Optimization with
Escape Analysis

class Escape2 {
 int fld1, fld2;
 Escape2(int v1, int v2) { fld1 = v1; fld2 = v2; }
 static void bigMethod() {
 ... // a large method too big to inline
 }
 static int example(int v1, int v2) {
 Escape2 e1 = new Escape2(v1, 10);
 Escape2 e2 = new Escape2(v2, 5 - v1);
 bigMethod(); // cannot change fields of e1 & e2
 return e1.fld1 + e2.fld2; // returns v1 + (5 - v1) = 5
 }
}

2006 JavaOneSM Conference | Session TS-3412 | 41

Performance Results

● Lock elision provided no significant performance
benefit over and above biased locking and lock
coarsening (described later)

● Performance benefit of other optimizations made
possible by escape analysis is continuing

2006 JavaOneSM Conference | Session TS-3412 | 42

Implementation Status

● Java SE 6 has escape analysis and lock elision in
the server compiler

● It is off by default, it can be enabled with the
-XX:+UseEscapeAnalysis flag

● Java SE 7 will have further optimizations
● There are currently no plans to release a client

compiler with escape analysis

2006 JavaOneSM Conference | Session TS-3412 | 43

Agenda

Background
Synchronization Optimizations
Escape Analysis
Tiered Compilation and Other
Optimizations
Future Plans
Conclusion

2006 JavaOneSM Conference | Session TS-3412 | 44

Lock Coarsening

● Dynamically we often see a lock being released
and immediately acquired

● Idea is to eliminate the closely separated release
and acquire

● Doing this in non-loop code does not
impact fairness

● Not obvious at source level as the locks are either
synchronized methods or locks within the
called method

● Inlining exposes the closely paired locks

2006 JavaOneSM Conference | Session TS-3412 | 45

S();
if (p)

S();
else

S();
S();

Lock Coarsening

● Assume p is simple
predicate (no exception
possible) and S is a
synchronized method

● Release from first call can
be removed if acquire is
removed from then and
else path

● Release in then/else can
be removed if acquire is
removed from final call

2006 JavaOneSM Conference | Session TS-3412 | 46

Lock Coarsening

● Release from first call can
be removed if
acquire/release is removed
from then path

● Acquire is removed from
final call

S();
if (p)

S();
S();

2006 JavaOneSM Conference | Session TS-3412 | 47

Lock Coarsening

● Acquire/release could be
removed from then path if
we moved the release from
initial call to after the then
join point

● This case is not currently
handled

S();
if (p)

S();

2006 JavaOneSM Conference | Session TS-3412 | 48

Lock Coarsening—Results

● Removes 20% of all dynamic locks in single
warehouse run of specjbb2000

● Improves score on specjbb2000 by 2%
● Scimark Monte Carlo subtest score improved

by 60%!

Source: Sun Microsystems, Inc.

2006 JavaOneSM Conference | Session TS-3412 | 49

Array Copy Stubs

● System.arraycopy is heavily used in the JDK™
libraries as well as application code

● Compilers inlined System.arraycopy but they
tended to be pessimistic about aliasing and
alignment

● As a result performance was okay but not great

2006 JavaOneSM Conference | Session TS-3412 | 50

Array Copy Stubs

● In Mustang (and backported to 5.0u5) hand
coded assembly stubs written for each type size
assuming no overlap

● Compiler generates one simple test to decide
● Overlap? Same code as previously
● No Overlap? Call stub

2006 JavaOneSM Conference | Session TS-3412 | 51

Array Copy Stubs—Results

● System.arraycopy microbenchmarks
● Slight degradation for small (1–4 elements)
● > 100% improvement for modest number of

elements (20+)
● 4% increase of specjbb2000 score on

SPARC® hardware
● 1+% increase of specjbb2000 score on AMD64

Source: Sun Microsystems, Inc.

2006 JavaOneSM Conference | Session TS-3412 | 52

Tiered Compilation

● Client compiler is good at startup and short apps
● Inferior performance for longer running apps

● Server compiler is good at long apps
● Inferior startup performance

● Single JVM with both compilers
● Like an automatic transmission—

● Startup with client compiler
● Cruise with server compiler

2006 JavaOneSM Conference | Session TS-3412 | 53

Tiered Compilation—Issues

● Different calling conventions
● A method compiled by client compiler can’t call method

created by server compiler or vice versa
● Different runtime interfaces

● OopMaps were incompatible

2006 JavaOneSM Conference | Session TS-3412 | 54

Tiered Compilation

● Different calling conventions
● Each compiler had separate code to describe calling

conventions
● In Mustang shared code maps a signature into a

description of the registers and/or stack slots
used to pass parameters

● As a result methods generated by different
compilers can call each other

2006 JavaOneSM Conference | Session TS-3412 | 55

Tiered Compilation

● Adapters convert from interpreter calling
convention to compiled convention (i2c) and
vice versa (c2i)

● Server compiler compiled adapters as separate
code objects

● Server compiler used a separate thread for
adapter compilation

● Client compiler built the code into the compiled
Java method

2006 JavaOneSM Conference | Session TS-3412 | 56

Tiered Compilation

● In Mustang adapter code is generated by
shared code

● A single adapter code object contains the i2c and
c2i for each signature seen

● Reduction in generated code compared to client
style of adapters

● Reduction in server compiler code and one less
JVM thread

2006 JavaOneSM Conference | Session TS-3412 | 57

Tiered Compilation

● Each compiler had distinct code for generating
wrapper code for Java native methods
● Transition from Java code to native and return requires

precisely ordered thread state changes
● Client compiler code was straight forward and

easy to modify
● Server code was difficult to understand and hard

to get correct

2006 JavaOneSM Conference | Session TS-3412 | 58

Tiered Compilation

● In Mustang Java native method wrappers are
produced by shared code

● Simple to modify
● Easy to experiment with new state transitions
● Better generated code

2006 JavaOneSM Conference | Session TS-3412 | 59

Tiered Compilation

SPARC-
client

SPARC-
server

X86-client X86-server AMD64-
d64

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2 5.0

6.0-B27
6.0-B69

R
el

at
iv

e
tim

e

Source: Sun Microsystems, Inc.

JNI Micro Benchmark

2006 JavaOneSM Conference | Session TS-3412 | 60

SPARC
-client

SPARC
-server

X86 -client X86 -server AMD64
-d64

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5 1.4.2

5.0
6.0-B27
6.0-B69

R
el

at
iv

e
tim

e

Tiered Compilation

Source: Sun Microsystems, Inc.

JNI Micro Benchmark

2006 JavaOneSM Conference | Session TS-3412 | 61

Tiered Compilation—Remaining Work

● Merging runtime stubs
● IC miss handler
● Deoptimization
● Exception handling

● Policy decisions
● When to deopt/recompile
● When to collect profile data

● Client compiler for 64bit platforms

2006 JavaOneSM Conference | Session TS-3412 | 62

Conclusion

● More performance improvements coming
● Finish tiered compilation
● More use of escape analysis results
● Faster call out to JNI

● Try it out
● http://mustang.dev.java.net/

2006 JavaOneSM Conference | Session TS-3412 | 63

For More Information

BOF-0197 Java HotSpot VM Q&A
● Thursday 7:30 PM North Meeting Room 121/124/125

2006 JavaOneSM Conference | Session TS-3412 | 64

Q&A

2006 JavaOneSM Conference | Session TS-3412 |

TS-3412

New Compiler Optimiztions
in the Java HotSpot™
Virtual Machine
Steve Dever
Steve Goldman
Kenneth Russell
Sun Microsystems, Inc.

