
2006 JavaOneSM Conference | Session TS-4916 |

TS-4916

Creating Professional Swing UIs
Using the NetBeans™ GUI Builder
Tomas Pavek, Jan Stola, Scott Violet
Sun Microsystems
http://www.netbeans.org
http://swinglabs.dev.java.net

Copyright © 2006, Sun Microsystems, Inc., All rights reserved.

2006 JavaOneSM Conference | Session TS-4916 | 2

Goal of This Presentation

Learn how to easily create professional
Swing UIs using the NetBeans™ GUI
Builder (formerly code-named Matisse)

2006 JavaOneSM Conference | Session TS-4916 | 3

Agenda

NetBeans GUI Builder Introduction
Cross Platform UI
How to Design Layout
Internationalization
Using Custom Components
Managing Generated Code

2006 JavaOneSM Conference | Session TS-4916 | 4

Agenda

NetBeans GUI Builder Introduction
Cross Platform UI
How to Design Layout
Internationalization
Using Custom Components
Managing Generated Code

2006 JavaOneSM Conference | Session TS-4916 | 5

Introduction

● Visual interaction (WYSIWYG)
● Simplify layout design
● Easy manipulation and customization

of components
● Quick prototyping
● Consistency
● Generating code, binding to UI
● Ease of maintenance

Why to use a GUI builder

2006 JavaOneSM Conference | Session TS-4916 | 6

Main features
NetBeans GUI Builder Introduction

● Supports AWT/Swing
● Based on JavaBeans™ architecture
● Allows designing layout in a natural way
● One-way code generator
● Using standard JDK™ software classes

2006 JavaOneSM Conference | Session TS-4916 | 7

What will we present?
NetBeans GUI Builder Introduction

● Special NetBeans IDE build for JavaOneSM

conference (upcoming 6.0 version)
● Update for NetBeans 5.0/5.5 IDE will be available
● http://form.netbeans.org/JavaOne

2006 JavaOneSM Conference | Session TS-4916 | 8

DEMO
NetBeans GUI Builder Introduction

2006 JavaOneSM Conference | Session TS-4916 | 9

Basic tips
NetBeans GUI Builder Introduction

● Note the Source/Design view switch in toolbar
● Use Inspector to explore hierarchy of components
● Use preview to see live GUI quickly
● “Design This Container” action is useful for:

● Standalone containers
● Panels in tabbed pane
● A panel in a scroll pane

● Note you can design UI without subclassing
a visual class

2006 JavaOneSM Conference | Session TS-4916 | 10

Agenda

NetBeans GUI Builder Introduction
Cross Platform UI
How to Design Layout
Internationalization
Using Custom Components
Managing Generated Code

2006 JavaOneSM Conference | Session TS-4916 | 11

Swing GUI Specifics
UI Design Goals

● Different platforms, look and feels, localization
● Component sizes and proportions may change

● Dynamic behavior
● We want resizability most of GUI forms

● UI is expressed by code
● No common resource format
● Layout can't be modified independently (localized)

2006 JavaOneSM Conference | Session TS-4916 | 12

Requirements on Java Technology GUI
UI Design Goals

● Platform (look and feel) independence
● Localization independence
● Scale with size, font, and resolution
● Follow UI guidelines
● Visual consistency
● UI separated from application logic

2006 JavaOneSM Conference | Session TS-4916 | 13

Common mistakes in cross platform UI design
Platform Independence

● Using absolute sizes or positions
● Relying on relative proportions of components
● Implicit position dependencies
● Hard coded strings
● Hard coded fonts and colors
● Hard coded left to right orientation

2006 JavaOneSM Conference | Session TS-4916 | 14

Example: absolute sizes and positions
Cross Platform UI

2006 JavaOneSM Conference | Session TS-4916 | 15

Example: absolute sizes and positions
Cross Platform UI

2006 JavaOneSM Conference | Session TS-4916 | 16

Example: missing resizable element
Cross Platform UI

2006 JavaOneSM Conference | Session TS-4916 | 17

Example: missing resizable element
Cross Platform UI

2006 JavaOneSM Conference | Session TS-4916 | 18

Complex example: insidious grid
Cross Platform UI

2006 JavaOneSM Conference | Session TS-4916 | 19

Complex example: insidious grid
Cross Platform UI

2006 JavaOneSM Conference | Session TS-4916 | 20

Complex example: insidious grid
Cross Platform UI

2006 JavaOneSM Conference | Session TS-4916 | 21

Complex example: insidious grid
Cross Platform UI

Mistakes:
● Relying on relative proportions of components
● Implicit position dependencies

2006 JavaOneSM Conference | Session TS-4916 | 22

Example: hard coded font
Cross Platform UI

2006 JavaOneSM Conference | Session TS-4916 | 23

Example: hard coded font
Cross Platform UI

2006 JavaOneSM Conference | Session TS-4916 | 24

Agenda

NetBeans GUI Builder Introduction
Cross Platform UI
How to Design Layout
Internationalization
Using Custom Components
Managing Generated Code

2006 JavaOneSM Conference | Session TS-4916 | 25

Cross Platform UI design in NetBeans IDE

● Matisse helps to avoid the cross platform
mistakes

● Dynamic layout definition built behind the scene
● Relative positioning
● Adaptive spacing (gaps according to UI guidelines)
● Aligning (also supports baseline alignment)
● Resizing definition
● BiDi compliant

● Built-in internationalization support

Layout designed once can run everywhere

2006 JavaOneSM Conference | Session TS-4916 | 26

Can combine different layout managers
Cross Platform UI design in NetBeans IDE

● Need not care about layout managers while in the
default Free Design mode

● Using a layout manager still valid in some cases:
● Free Design not convenient for all types of layout
● May need full control over all aspects of the layout

● Invoke “Customize Layout” on a container with
GridBagLayout for a helpful customizer

● Containers with Free Design and layout
managers can be combined freely

2006 JavaOneSM Conference | Session TS-4916 | 27

Layout guidelines
Good Design Practices

● Follow the guidelines Matisse offers
● It is easy to make the components aligned right away

● Pay attention to the suggested alignment
● There can be more guidelines offered on close

positions but with different alignment

2006 JavaOneSM Conference | Session TS-4916 | 28

Avoid the “I have lots of space” syndrome
Good Design Practices

● Snap components to preferred positions
● Draw components to container borders
● Reduce superfluous space
● What you see is really what you get

2006 JavaOneSM Conference | Session TS-4916 | 29

Default size and resizability
Good Design Practices

● Keep components in their default size,
or make them resizable

● Design every container as resizable

2006 JavaOneSM Conference | Session TS-4916 | 30

Aligning actions
Good Design Practices

● You don’t need to do everything via mouse
● There are aligning actions in toolbar
● …and more actions in context menu

2006 JavaOneSM Conference | Session TS-4916 | 31

Layout design tips
Good Design Practices

● Matisse does not “remember” the absolute
positions but relations between components
● Pay attention to anchors, lines of alignment, resizability

● Components may move to preserve the
established relations

2006 JavaOneSM Conference | Session TS-4916 | 32

DEMO
Designing Layout

2006 JavaOneSM Conference | Session TS-4916 | 33

More design tips
Good Design Practices

● Use “Space Around Component” dialog to fine-
tune gaps between components
● Gaps can also be resizable
● You can provide custom LayoutStyle

implementation for runtime
● Use “Set Same Size” action to impose same

width on related components (e.g., buttons)
● When dragging

● Use Shift to add multiple components
● Use Control to hold to a guideline
● Use Alt to suppress snapping on guidelines

2006 JavaOneSM Conference | Session TS-4916 | 34

New layout features in JDK 6 software
Matisse Behind the Scene

● GroupLayout—brand new layout manager
● LayoutStyle—responsible for spacing
● Swing Layout Extensions library used before
● Practical tips for manual coding:

● Can provide custom LayoutStyle implementation
● Can replace part of the layout dynamically

● Controlling visibility—can show/hide components without
affecting the layout

2006 JavaOneSM Conference | Session TS-4916 | 35

GroupLayout

● Not intended for hand coding
● Can automatically add preferred gaps

● Uses LayoutStyle to determine preferred gaps
● Ability to align components along their baseline

● Finally!
● Each axis treated independently

● Must configure horizontal and vertical axis separately

2006 JavaOneSM Conference | Session TS-4916 | 36

GroupLayout

● Group
● Contains components and other groups

● Horizontal Group sets x and width
● Vertical Group sets y and height
● Two types of Groups

● Sequential Group
● Aligns contents one after another

● Parallel Group
● Aligns contents on top of each other
● Typically used in conjunction with sequential group

along opposite axis

Groups

2006 JavaOneSM Conference | Session TS-4916 | 37

Sequential Group

Horizontal Axis

Vertical Axis

SequentialGroup hg = layout.createSequentialGroup();
hg.addComponent(c1).addComponent(c2).addComponent(c3);
layout.setHorizontalGroup(hg);

2006 JavaOneSM Conference | Session TS-4916 | 38

Parallel Group Along One Axis

Vertical Axis

Horizontal Axis

ParallelGroup hg = layout.createParallelGroup();
hg.addComponent(c1).addComponent(c2).addComponent(c3);
layout.setHorizontalGroup(hg);

2006 JavaOneSM Conference | Session TS-4916 | 39

Parallel Group Used with a
Sequential Group

Vertical Axis

Horizontal Axis

ParallelGroup hg = layout.createParallelGroup();
hg.addComponent(c1).addComponent(c2).addComponent(c3);
layout.setHorizontalGroup(hg);
SequentialGroup vg = layout.createSequentialGroup();
hg.addComponent(c1).addComponent(c2).addComponent(c3);
layout.setVerticalGroup(vg);

2006 JavaOneSM Conference | Session TS-4916 | 40

Agenda

NetBeans GUI Builder Introduction
Cross Platform UI
How to Design Layout
Internationalization
Using Custom Components
Managing Generated Code

2006 JavaOneSM Conference | Session TS-4916 | 41

How to make the GUI localizable
Internationalization

● Allow translation without rebuilding the GUI
● No hard coded strings

● Stored in .properties file
● Accessed via ResourceBundle

● All visible text should be internationalized
● Text on labels, buttons, tabs, titled borders, etc.
● Window titles
● Tool tips
● Mnemonics
● Accessibility descriptions

2006 JavaOneSM Conference | Session TS-4916 | 42

DEMO
Internationalization

2006 JavaOneSM Conference | Session TS-4916 | 43

Agenda

NetBeans GUI Builder Introduction
Cross Platform UI
How to Design Layout
Internationalization
Using Custom Components
Managing Generated Code

2006 JavaOneSM Conference | Session TS-4916 | 44

Using custom components in GUI builder
Custom Components

● Only requirement: must be JavaBeans
architecture–compliant

● Can be installed to palette via Palette Manager
● From an external JAR file (library)
● From a NetBeans IDE project

● If in a project, the component can be copied or
dragged from the project explorer directly

2006 JavaOneSM Conference | Session TS-4916 | 45

Developing your own component
Custom Components

● JavaBeans architecture requirements:
● Public non-abstract class
● Public no-arg constructor

● Good practice is to only expose properties that
makes sense (via BeanInfo)

● Return superclass’ BeanInfo as additional
BeanInfo

● Use Java-Bean tag in the JAR file’s manifest
● Define icon for the component (BeanInfo)

2006 JavaOneSM Conference | Session TS-4916 | 46

Example:
Java-Bean Tag in manifest.mf
Manifest-Version: 1.0
X-COMMENT: Main-Class will be added automatically by build

Name: com/me/beans/MyComponent.class
Java-Bean: True

● Go to Files view
● Open manifest.mf file under project root
● Enter the last two lines as marked above,

separated by an empty line

2006 JavaOneSM Conference | Session TS-4916 | 47

Example: Component’s Icon
package com.me.beans;

import java.beans.SimpleBeanInfo;
import java.awt.Image;

/**
 * Simple BeanInfo implementation for MyComponent.
 * Only provides an icon (the rest is omitted).
 */
public class MyComponentBeanInfo extends SimpleBeanInfo {
 public Image getIcon(int iconKind) {
 return loadImage("/com/me/beans/cool_icon.gif");
 }
}

2006 JavaOneSM Conference | Session TS-4916 | 48

Troubleshooting, common errors
Custom Components

● Class loading error
● Check the required JAR file (external component)
● Note: a library needs to be defined for multiple JARs
● Check the class is compiled (component from

a project)
● Instantiation error—check the sources:

● Whether the component is a bean
● What it does in constructor
● Look at the exception stack trace

● See NetBeans IDE FAQs for complete guide

2006 JavaOneSM Conference | Session TS-4916 | 49

DEMO
Using Custom Components

2006 JavaOneSM Conference | Session TS-4916 | 50

Agenda

NetBeans GUI Builder Introduction
Cross Platform UI
How to Design Layout
Internationalization
Using Custom Components
Managing Generated Code

2006 JavaOneSM Conference | Session TS-4916 | 51

Generated code vs. user code
Source Code

● Standard Java technology code is the only output
● Generated code is protected from changes

● initComponents() method
● Field variables for components
● Event handlers (headers)

● Can write any code outside the protected area
● To do more initialization/customization
● To implement additional logic (e.g., event handlers)
● To change components dynamically

2006 JavaOneSM Conference | Session TS-4916 | 52

Customizing generated code
Source Code

● See “Code” tab in the property sheet
● Generated code can be configured freely

● Local variables vs member fields, modifiers, way of
dispatching events…

● Custom code can be inserted almost anywhere
● Custom code for property values
● Custom code for creating components
● Pre-init and post-init code for components/properties

● Synthetic properties

2006 JavaOneSM Conference | Session TS-4916 | 53

Examples of using custom code
Source Code

● Setting up a complex property
● Special way of initialization (not via properties)

● For example binding to a dynamic content
● Special way of constructing a component

● For example JFormattedTextField
● Iterating over many components, for example:

● Creating a collection of components
● Setting some property to all components

2006 JavaOneSM Conference | Session TS-4916 | 54

DEMO
Customizing Generated Code

2006 JavaOneSM Conference | Session TS-4916 | 55

Summary

● NetBeans GUI Builder is designed to help you
create professional UIs

● The GUI Builder honors platform independence
and internationalization

● Standard Java technology code is produced that
can be used anywhere

● You can use third-party components and develop
own custom components

2006 JavaOneSM Conference | Session TS-4916 | 56

For More Information
● http://form.netbeans.org/JavaOne
● http://www.netbeans.org/kb/50/quickstart-gui.html
● http://www.netbeans.org/kb/faqs/#GUI_Editor_Matisse
● http://swing-layout.dev.java.net
● Related Sessions

● TS-1594 Best Practices: Data Binding
● TS-3399 A Simple Framework for Desktop Applications

● Blogs
● http://weblogs.java.net/blog/zixle
● http://weblogs.java.net/blog/tpavek

http://swing-layout.dev.java.net/
http://weblogs.java.net/blog/zixle

2006 JavaOneSM Conference | Session TS-4916 | 57

Q&A

2006 JavaOneSM Conference | Session TS-4916 |

TS-4916

Creating Professional Swing UIs
Using the NetBeans GUI Builder
Tomas Pavek, Jan Stola, Scott Violet
Sun Microsystems
http://www.netbeans.org
http://swinglabs.dev.java.net

