
2007 JavaOneSM Conference | Session TS-1106 |

TS-1106

Creating Manageable Systems
With JMX, Spring, AOP, and
Groovy

Vladimir Vivien
Sr. Software Engineer
Simplius, LLC
http://simpli.us/

2007 JavaOneSM Conference | Session TS-1106 | 2

Goal

Explore how to build manageable
systems using Java™ Management
Extensions (JMX™), AOP, and Groovy
within the context of a Spring container.

Build runtime manageable systems

2007 JavaOneSM Conference | Session TS-1106 | 3

Agenda
● Motivation
● Introduction to JMX Technology
● JMX Technology and the Spring Framework (v.2)
● JMX Technology With Spring AOP
● JMX Technology Notification and Spring
● Agile JMX Technology Notification Handling
● Put It All Together: Food Planet Demo
● Summary
● Q&A

2007 JavaOneSM Conference | Session TS-1106 | 4

Agenda
● Motivation
● Introduction to JMX Technology
● JMX Technology and the Spring Framework (v.2)
● JMX Technology With Spring AOP
● JMX Technology Notification and Spring
● Agile JMX Technology Notification Handling
● Put It All Together: Food Planet Demo
● Summary
● Q&A

2007 JavaOneSM Conference | Session TS-1106 | 5

Perilous Driving
● Would you drive this car?

● No speedometer
● No gas gauge
● No engine temp gauge
● No instrument panel
● No signal flashers

● Most deployed apps have
similar shortcomings
● System is a black box
● No runtime visibility
● No way to see app's states

2007 JavaOneSM Conference | Session TS-1106 | 6

Motivation
● Better visibility of system at runtime
● Go beyond simple event log files
● Ability to monitor

● Expose states/health of application in real time
● Take preventive measures where possible
● React intuitively and quickly to changes and

requirements
● Greater management

● Interactively control application in user-friendly way
● Ability to change operational parameters on the fly
● Avoid down time for critical applications

What do we want to achieve

2007 JavaOneSM Conference | Session TS-1106 | 7

Agenda
● Motivation
● Introduction to JMX Technology
● JMX Technology and the Spring Framework (v.2)
● JMX Technology With Spring AOP
● JMX Technology Notification and Spring
● Agile JMX Technology Notification Handling
● Put It All Together: Food Planet Demo
● Summary
● Q&A

2007 JavaOneSM Conference | Session TS-1106 | 8

JMX Technology
● Java Management eXtension
● Mature API [originally Java Specification Request

(JSR)-3]
● Standard Java API for exposing management
● Includes a server and wire protocols for connection
● Provides several monitoring and a timer components

● Main usage is management and monitoring
● Part of core Java platform starting with version 5

● VM information exposed through JMX technology
● Instrument and expose your own application
● Management standard for Java Platform, Enterprise Edition

(Java EE platform) artifacts (JSR 77)

What is JMX Technology?

2007 JavaOneSM Conference | Session TS-1106 | 9

JMX Management Architecture

JVM™ = Java Virtual Machine
The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ platform.

2007 JavaOneSM Conference | Session TS-1106 | 10

The MBean Server
● Container for management components

● Allows registry, discovery, and query of components
● Handles interaction with components from client
● Exposes component operations and properties

● Provides event bus
● Register to receive event notification
● Broadcast events to registered components

● Server is exposed as management component

The management context

2007 JavaOneSM Conference | Session TS-1106 | 11

The Management Bean (MBean)
● Exposes managed resources in standard way
● MBean API:

● Standard MBean interface
● The simplest way to implement management
● Requires naming pattern (i.e. xxxMBean)

● Others include Dynamic, Model, and Open MBean
● Registered in the MBean Server

● Makes it visible to management client
● Exposes attributes (JavaBeans™ architecture-style

getters/setters)
● Expose operations (interface methods)
● Event Notifications

How management information is exposed

2007 JavaOneSM Conference | Session TS-1106 | 12

The Object Name
● javax.management.ObjectName
● Uniquely identifies registered MBeans
● Supports flexible naming strategy
● Format

● [domain]:key=value[,key=value]*
● Example

● demo.service:type=Greeting,description=greets the
world

● Use by management tool extensively

2007 JavaOneSM Conference | Session TS-1106 | 13

Exposing an MBean—Code
public interface GreetServiceMBean {
public void setLanguage(String lang);
public void start();
public void stop(int val);

}

public class GreetService implements GreetServiceMBean {
public void setLanguage(String lang){...}
public boolean start() {...}
public void stop(int val) {...}

}

public void RegisterMBean () throws Exception {
MbeanServer svr = ManagementFactory.getPlatformServer();
ObjectName objName =

new ObjectName("demo.service:type=Greet...");
svr.registerMBean(new GreetService(), objName);

}

1

2

3

2007 JavaOneSM Conference | Session TS-1106 | 14

Exposing an MBean—Console
View

2007 JavaOneSM Conference | Session TS-1106 | 15

Managing the VM
● Starting with Java platform v.5, VM includes

instrumentation
● VM exposes numerous information as MBeans

● Class loading information
● Memory consumption
● Garbage collection
● Threads
● Etc.

● JConsole makes a formidable profiling tool
● Ability to look into VM's activities with no code

2007 JavaOneSM Conference | Session TS-1106 | 16

Management Console—JConsole
● Interactive desktop management tool
● Introduced in Java

Development Kit (JDK™)
5 release

● Profiles memory, threads, GC
● Supports for remote connection
● Attaches to running VM

● Java platform v.5 requires switch
● -Dcom.sun.management.jmxremote

2007 JavaOneSM Conference | Session TS-1106 | 17

DEMO
Exposing MBeans/JConsole

2007 JavaOneSM Conference | Session TS-1106 | 18

Agenda
● Motivation
● Introduction to JMX Technology
● JMX Technology and the Spring Framework (v.2)
● JMX Technology with Spring AOP
● JMX Technology Notification and Spring
● Agile JMX Technology Notification Handling
● Put It All Together: Food Planet Demo
● Summary
● Q&A

2007 JavaOneSM Conference | Session TS-1106 | 19

Why Spring?
● Extensive support for JMX technology
● Lightweight and portable
● Simplified development model using POJO's
● Platform for modular development
● Consistent Infrastructure API's

● Enterprise Java technology—Enterprise JavaBeans™ (EJB™) architecture,
Java Message Service (JMS) API, J2EE Connector Architecture (JCA),
Web Service, JMX technology

● Data Access—Java DataBase Connectivity (JDBC™) software, Hibernate,
TopLink, Java Data Objects (JDO), Java Persistence API (JPA)

● Web—Spring MVC, Tapestry, JavaServer™ Faces, Struts, etc.
● Others—AOP, scripting, scheduling, concurrency

● http://springframework.org/

2007 JavaOneSM Conference | Session TS-1106 | 20

JMX Technology and Spring
● Declaratively registers any POJO as MBeans
● No special interface or naming patterns required
● Spring provides the MBean Exporter component
● Full control and flexibility:

● Support several strategies for ObjectName
● MBeanInfoAssembler API

● Supports different strategies for exporting MBeans
● Use list of interfaces for management
● Use Method names to export for management
● Use code-level annotation to customize export

● Specify MBean registration behavior

2007 JavaOneSM Conference | Session TS-1106 | 21

JMX Technology and Spring
(Cont.)
● Wire POJO's as JMX technology notification

listeners
● Use Spring's supplied MBean server or provide

your own (defaults to VM's)
● Auto detects classes with JMX technology

naming pattern
● MBeans can take advantage of DI container

● Declarative injection of MBean dependencies
● Easily establish relationship between MBeans

2007 JavaOneSM Conference | Session TS-1106 | 22

Simple Spring JMX Technology
Exporter

<bean id="greetSvc" class="demo.GreetService"/>
<bean id="exporter"
class="org.springframework.jmx.export.MBeanExporter">

<property name="beans">
<map>

<entry key="demo.service:type=Greet ..."
value-ref="greetSvc"/>

</map>
</property>

</bean>

public class GreetService {
public void setLanguage(String lang){...}
public boolean start() {...}
public void stop(int val) {...}

}

1

2

springspring--context.xmlcontext.xml

Spring ExporterSpring Exporter

ObjectNameObjectName

2007 JavaOneSM Conference | Session TS-1106 | 23

Metadata Info Assembler
● MetaDataMBeanInfoAssembler class
● Builds MBeans using code-level annotations

● Supports Java platform annotations
● Supports Commons Attributes annotations
● Automatically registers beans as MBeans that have the

@ManagedResource annotation
● Granular control of MBean attributes/operations

● Use @ManagedAttribute annotation for bean methods
● However, introduces dependency on Spring

Using annotation to create management interfaces

2007 JavaOneSM Conference | Session TS-1106 | 24

Java Platform v.5 Annotation
Example

@ManagedResource(objectName="demo.service:type=Greet ...")
public class GreetService {
@ManagedAttribute
public void setLanguage(String lang){...} ...

}

1

<bean id="greetSvc" class="demo.GreetService"/>
<bean
id="attribSrc"
class="...export.annotation.AnnotationJmxAttributeSource"/>

<bean id="exporter" class="...export.MBeanExporter">
<property name="autodetect" value="true"/>
<property name=”assembler”>

<bean class="...export.assembler.MetadataMBeanInfoAssembler">
<property name="attributeSource" ref="attribSrc"/>

</bean>
</property>

</bean>

2

2007 JavaOneSM Conference | Session TS-1106 | 25

DEMO
JMX Technology and Spring

2007 JavaOneSM Conference | Session TS-1106 | 26

Agenda
● Motivation
● Introduction to JMX Technology
● JMX Technology and the Spring Framework (v.2)
● JMX Technology With Spring AOP
● JMX Technology Notification and Spring
● Agile JMX Technology Notification Handling
● Put It All Together: Food Planet Demo
● Summary
● Q&A

2007 JavaOneSM Conference | Session TS-1106 | 27

JMX Technology and AOP
● Aspects can provide clean separation of concerns
● Aspects make infrastructural concerns, such as

management, transparent to other concerns
● Business logic is cleaner

● Remove dependency on management code
● Reduce/eliminate code entanglement

● AOP suited for JMX technology monitoring
● Aspects collects system states as application executes
● Aspects channel instrumented data to MBeans

Leveraging AOP for management

2007 JavaOneSM Conference | Session TS-1106 | 28

Spring AOP
● A proxy-based implementation

● Only supports method invocation interception
● Intercept methods calls on Spring beans
● Spring uses the popular AspectJ language
● Spring aspects are applied at runtime

● Spring makes it easy to create aspects
● Declaratively—any Spring bean may be an aspect
● Annotation—supports @AspectJ code-level annotation
● Annotated class can be used with AspectJ
● http://springframework.org/documentation/—Chapter 6

The easier way to aspects

2007 JavaOneSM Conference | Session TS-1106 | 29

JMX Technology and Spring AOP
● Augment management infrastructure
● Transparently aggregate data for instrumentation
● Push instrumented data to management beans

Leveraging Spring AOP for management

2007 JavaOneSM Conference | Session TS-1106 | 30

Using Spring AOP

<bean id="aspectBean"
class="demo.GreetAspect"/>

<aop:config>
<aop:pointcut id="myPointCut"

expression="execution(* demo.GreetServer.greet(..)) "/>
<aop:aspect id="aspect" ref="aspectBean">

<aop:before
pointcut-ref="myPointCut"
method="beforeGreeting"/>

<aop:after
pointcut-ref="myPointCut"
method="afterGreeting"/>

</aop:aspect>
</aop:config>

public class GreetingAspect {
private GreetingMbean mbean;
public void beforeGreeting() {...}
public void afterGreeting() {...}

}

1

2

spring-context.xml
Aspect
bean

Intercepts

Management Bean

2007 JavaOneSM Conference | Session TS-1106 | 31

Agenda
● Motivation
● Introduction to JMX Technology
● JMX Technology and the Spring Framework (v.2)
● JMX Technology With Spring AOP
● JMX Technology Notification and Spring
● Agile JMX Technology Notification Handling
● Put It All Together: Food Planet Demo
● Summary
● Q&A

2007 JavaOneSM Conference | Session TS-1106 | 32

JMX Technology Notification
Model
● JMX technology has a rich notification model
● Integral part of JMX technology
● Interfaces included in JMX technology

notification model
● Notificationcontent of notification
● NotificationBroadcaster – source of event notification
● NotificationListener – recipient of notification
● NotificationFilter – allows filtering of notifications

● The MBean server broadcasts numerous events
● Your Mbeans can broadcast/listen for events
● Management tools can subscribe to notifications

2007 JavaOneSM Conference | Session TS-1106 | 33

Notification Object
● Interface used for event notification
● Event broadcasters pass an instance of this class

to event listeners
● Contains

● String representing notification type
● A JMX technology ObjectName reference to

broadcaster
● Sequence number for the event
● Time stamp when notification was created
● A string message about the event
● A broadcaster supplied data object

Looking inside the notification Object

2007 JavaOneSM Conference | Session TS-1106 | 34

JMX Technology Listener
Registration

1public class MyTimer extends javax.management.timer.Timer{}

public class RegisterListener throws Exception{
demo.MyTimer timer = new demo.MyTimer();
Notification n = new Notification(“timer.heartbeat”,

null, new Date(System.currentMillis()));
timer.setNotification(n);
timer.setPeriod(3000);

NotifycationFilterSupport f = new NotificationFilterS...
f.enableType(“timer.heartbeat”);
TimerLstnr lstnr = new TimerLstnr();
timer.addListener(lstnr,f,null);

}

3

2public class TimerLstnr implements NotificationListener{
public handleNotification(Notification n, Object obj){...}

}

2007 JavaOneSM Conference | Session TS-1106 | 35

Listener Registration With Spring
<bean id="myTimer" class="demo.MyTimer">
<property name”period” value=”3000”/>

</bean>

<bean id="exporter" class="...export.MBeanExporter">
<property name="beans">
<map><entry key="jmx.timer:type=Timer" value-ref="myTimer"/></map>
</property>

<property name="notificationListenerMappings">
<map>

<entry key="jmx.timer:type=Timer">
<bean class="demo.TimerLstnr"/>

</entry>
</map>

</property>
</bean>

2007 JavaOneSM Conference | Session TS-1106 | 36

Agenda
● Motivation
● Introduction to JMX Technology
● JMX Technology and the Spring Framework (v.2)
● JMX Technology With Spring AOP
● JMX Technology Notification and Spring
● Agile JMX Technology Notification Handling
● Put It All Together: Food Planet Demo
● Summary
● Q&A

2007 JavaOneSM Conference | Session TS-1106 | 37

Agile Notification Handling
● Mechanism to react to JMX technology

notifications
● Agile adaptation to changes in business

conditions and requirements
● Autonomous reactions

● Capture business rules and work flows
● Apply rules automatically with no intervention

● Extends system functionalities while core
infrastructure remains intact

● Ability to react preventively to adverse conditions

Motivation for using dynamic language for management

2007 JavaOneSM Conference | Session TS-1106 | 38

Why Groovy?
● Integrates well with the Spring Framework
● Popular language and described as

● “Agile dynamic language for the Java platform
inspired by Python, Ruby, and Smalltalk...”

● Compiles directly into Java bytecode
● Groovy scripts import Java objects (vice versa)

● Some interesting language features include:
● Closures
● Duck typing
● optional line terminator and method parentheses
● Extended syntactical support for collections

Using Groovy as glue code for monitored events

2007 JavaOneSM Conference | Session TS-1106 | 39

Groovy and Spring
● Spring 2.0 introduces support for Groovy

● Also supports JRuby and BeanShell
● Declaratively wire Groovy bean into Spring
● Groovy bean can use getter/setter injection
● Groovy bean must implement Java platform

interface
● Spring requires an interface for proper typing

● Refreshable flag updates Groovy bean
● http://springframework.org/documentation—Chapter 24
● http://groovy.codehaus.org/

Integrating Groovy and Spring

2007 JavaOneSM Conference | Session TS-1106 | 40

Groovy Bean With Spring
public interface Action {

public void act();
public setValue(String

v);
}

class GAction extends Action {
public act() { ... }
String value

}

<beans>

<lang:groovy id="action" refresh-check-delay="5000"
script-source="/META-INF/script/GAction.groovy">
<lang:property name="value" value="RUN"/>

</lang:groovy>

<bean id=”listener” class=”demo.GreetingListener”>
<property name=”action”><ref bean=”action”/></property>

</bean>

</beans>

1
spring-context.xml

Groovy ScriptJava Interface

Groovy Bean
2

2007 JavaOneSM Conference | Session TS-1106 | 41

Agenda
● Motivation
● Introduction to JMX Technology
● JMX Technology and the Spring Framework (v.2)
● JMX Technology With Spring AOP
● JMX Technology Notification and Spring
● Agile JMX Technology Notification Handling
● Put It All Together: Food Planet Demo
● Summary
● Q&A

2007 JavaOneSM Conference | Session TS-1106 | 42

Food Planet Components

2007 JavaOneSM Conference | Session TS-1106 | 43

Food Planet Application
● Application runs within a Spring context

● JdbcTemplates provides database access
● Uses Spring MVC Controllers for web access
● Http Access Management

● Aspect intercepts requests to MVC Controllers
● Aspect aggregates data for instrumentation
● Http MBean provides monitoring/control of Http access

● Inventory Database Management
● Aspect intercepts database during purchase
● Aspect aggregates inventory data for instrumentation
● Inventory MBean monitors inventory level
● When item less then threshold sends notification
● Groovy bean is used to manage inventory level events

Using JMX technology, Spring AOP, and Groovy together

2007 JavaOneSM Conference | Session TS-1106 | 44

DEMO
Food Planet Online Store

2007 JavaOneSM Conference | Session TS-1106 | 45

JMX Technology Design Issues
● Management beans should be lightweight
● Develop meaningful MBean naming strategy

● Management consoles use bean name extensively
● Use JMX technology domain to group similar beans
● Use name's key/value attribute to categorize beans

● Usability issues
● Expose editable values (numbers, string, etc.)
● Avoid null attributes
● Avoid MBean methods with large parameter count

Designing for management

2007 JavaOneSM Conference | Session TS-1106 | 46

JMX Technology Design Issues
(Cont.)
● Create consistent management model
● Monitoring

● Use AOP to collect instrumented values
● Use JMX technology event bus to handle monitored

events
● Application Control

● Provide life cycle and functional controls
● Use action verbs to describe push-button functions

● Configuration
● Update application parameters at runtime
● Provide feedback attributes to reflect changes

2007 JavaOneSM Conference | Session TS-1106 | 47

Agenda
● Motivation
● Introduction to JMX Technology
● JMX Technology and the Spring Framework (v.2)
● JMX Technology With Spring AOP
● JMX Technology Notification and Spring
● Agile JMX Technology Notification Handling
● Put It All Together: Food Planet Demo
● Summary
● Q&A

2007 JavaOneSM Conference | Session TS-1106 | 48

Summary
● Log files are no longer enough for the critical applications
● Ability to monitor system states and health in real time
● React preventively to adverse conditions
● JMX technology provides a robust management API to meet

stringent management needs
● JMX technology includes a management server, event

notification mechanism, monitoring service, and connectors
for management clients

● It is available in JDK software starting with Java platform v.5
● JMX technology and JConsole management console

provide a full-featured diagnostic, monitoring, and VM
profiling tool

2007 JavaOneSM Conference | Session TS-1106 | 49

Summary (Cont.)
● JMX technology integrates well with the Spring

Framework
● Any Spring POJO can be exposed for management
● Spring AOP can augment management infrastructure of

system by transparently aggregate instrumented data
● The JMX technology Notification offers an impressive set

of features use to broadcasts events to the JMX
technology runtime

● Combined with a dynamic language such as Groovy,
JMX technology can create agile mechanism to react to
monitored event notifications in more expressive and rich
manner

2007 JavaOneSM Conference | Session TS-1106 | 50

For More Information
● JMX Technology

http://java.sun.com/products/JavaManagement/
● Spring

http://www.springframework.org/documentation
● Groovy

http://groovy.codehaus.org/
● AOP

http://eclipse.org/aspectj

2007 JavaOneSM Conference | Session TS-1106 | 51

For More Information
● Tools

● Jconsole
http://java.sun.com/javase/6/docs/technotes/tools/share/jconsole.html

● MC4J
http://mc4j.org/

● Glassbox
http://glassbox.com/

● Broadway Project
● https://broadway.dev.java.net/

2007 JavaOneSM Conference | Session TS-1106 | 52

Q&A

2007 JavaOneSM Conference | Session TS-1106 |

TS-1106

Creating Manageable Systems
With JMX, Spring, AOP, and
Groovy

Vladimir Vivien
Sr. Software Engineer
Simplius, LLC
http://simpli.us/

