JavaOne

Testing Concurrent Software

Bill Pugh
Professor of Computer Science, University of
Maryland

Brian Goetz
Senior Staff Engineer, Sun Microsystems

Cliff Click
Distinguished Engineer, Azul Systems

1S-2220

2007 JavaOne®M Conference | Session TS-2220 | java.sun.com/javaone

|]avaOne

The Bottom Line

Some good news, some bad news

Testing concurrent software is difficult,
but not impossible.

By a combination of multiple techniques
(careful design, static analysis, code
review, extensive testing), you can get
the upper hand on concurrency bugs.

@-"”” 2007 JavaOneSM Conference | Session TS-2220 | 2 java.sun.com/javaone

= Java

JavaOne

What This Talk Is, and Isn’t

- Building correct concurrent software

. . . » ERIAN
is a big topic B T2 4
. We can’t teach you to do that in an hour =
(or a week)

- WEeé’'ll discuss ways for effectively
creating tests as part of a QA plan
for concurrent software

- We assume you already have some
idea of what to do (and what not to do)

. See also:
. Java Concurrency in Practice, Goetz et al.
. Concurrent Programming in Java, Lea

. T1S-2388: Effective Concurrency
for the Java™ Platform (Friday, 10:50am)

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 3 java.sun.com/javaone

JavaOne

Agenda

Introduction

Creating a Test Plan

Unit Testing

Concurrent Failure Modes
Performance Testing
System Testing

Summary

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 4 java.sun.com/javaone

JavaOne

Testing Concurrent Software

Like testing sequential code...

. Test cases for sequential code...
. ...may test safety or performance (or both)

. ...exercise code and assert invariants and
postconditions

. ...try to explore as much of the state space as possible
- One rough measure of this is code coverage

- ...try to find combinations of inputs and actions that are
most likely to cause failure

. Test cases for concurrent code do the same
- S0 we already know how to do it, right?

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 5 java.sun.com/javaone

;

JavaOne

Testing Concurrent Software

Like testing sequential code...but different

Concurrent programs have more failure modes
than sequential ones

Liveness failures: Deadlock, livelock, missed signals

Safety failures: synchronization errors,
atomicity failures

Failures in sequential programs are
largely deterministic

Same input, same failure

Many failures unique to concurrent
programs are rare probabilistic events

Some bugs require exquisitely unlucky timing

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 6 java.sun.com/javaone

JavaOne

Testing Concurrent Software

More extensive testing required
. State space is much larger due to thread interactions

- Need more intensive tests
- Run for longer periods
- Look for rare probabilistic failures
- Account for impact of GC, JITing, etc

- Must test on multiple platforms

. Different CPU architectures, Virtual Machine for the
Java platform (JVM™ machines), number of CPUs

- Some tests don't happen on some architectures
- Tests must be written to avoid masking bugs

The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ platform.
@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 7 java.sun.com/javaone

JavaOne

Design for Testability

Concurrent programming is hard enough
Where possible, separate concurrency
logic from business and functional logic

Concurrency is challenging enough
Even harder when mixed in with your business logic!

Isolate concurrency by extracting
concurrent abstractions

Such as bounded buffers, semaphores, thread pools

Use the ones from java.util.concurrent where possible
Implement your own only if the provided ones don't fit

Testing a single concurrent abstraction is a lot
easier than testing an entire application

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 8 java.sun.com/javaone

JavaOne

Agenda

Introduction

Creating a Test Plan
Unit Testing

Concurrent Failure Modes
Performance Testing
System Testing

Summary

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 9 java.sun.com/javaone

JavaOne

Building a QA Plan

Testing is only part of it

- The goal of QA is not to “find all the bugs”
- Because this is impossible

- Goal of QA is really to increase confidence

- QA approaches include

- Education, training, careful design

- Understanding the concurrent design/implementation
of what you have

- Manual code review
. Static analysis (automated code review)
. Testing

- Unit tests, load tests, performance tests, system tests

@ Sun 2007 JavaOneS™ Conference | Session TS-2220 | 10 java.sun.com/javaone

JavaOne

Building a QA Plan

Testing is only part of it

- Testing can never show the absence of errors,
only their presence

- Even more true with rare probabilistic failures

- Testing, code review, and reviewing analysis
reports are all subject to diminishing returns

- Luckily, also tend to find different types of problems

- By combining them, you buy more confidence
for your QA budget than testing alone

@ Sun 2007 JavaOne®M Conference | Session TS-2220 | 11

E_a—\. -

JavaOne

Manual Code Review

Expensive, but effective

Expert review is often the best way to find subtle
concurrency bugs

Can spot bugs that occur extremely rarely in practice
Can find bugs that won't happen on specific hardware
Often improves general code and comment quality

Doesn’t scale well
Useful for small, isolated concurrent components

Really, really hard, even for experts, to manually
review large or subtle components

Expensive to do frequently
Typically done by senior developers or consultants

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 12 java.sun.com/javaone

JavaOne

Static Analysis

Automated code review
- Analyzes a program without running it

- Can check rules/patterns
- Such as “hold a lock consistently when
accessing a field”

- Annotations that document concurrency design
are very helpful

. For both humans and automatic tools

- See Java Concurrency in Practice, FindBugs,
and Fluid from SurelLogic

- See TS-2007: Improving Software Quality With
Static Analysis

@ Sun 2007 JavaOneS™ Conference | Session TS-2220 | 13 java.sun.com/javaone

;

JavaOne

Concurrent Testing Scenarios

Lots of reasons to test...

Unit testing functionality
Basic tests of safety and liveness (can be sequential)

Unit testing functionality under concurrent stress
Looking for rare, timing-related interactions
Attempting to explore more of the state space

Component performance testing

Evaluate performance or scalability of a concurrent
abstraction under varying load

System stress testing
Test a large application to see if it works

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 14 java.sun.com/javaone

JavaOne

Agenda

Introduction

Creating a Test Plan

Unit Testing

Concurrent Failure Modes
Performance Testing
System Testing

Summary

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 15 java.sun.com/javaone

JavaOne

Unit Testing

Don’t forget the basics

. Start with basic unit tests

- Some tests can be sequential—goal is to establish
that documented sequential functionality works at all

. Easier to debug basic functionality in sequential environment

- But many concurrent classes have behavior that
cannot be tested with just one thread

. Testing blocking behavior requires at least two threads
- One thread that performs an operation that blocks

- Another thread that then performs an action that unblocks
the first thread

@ Sun 2007 JavaOneS™ Conference | Session TS-2220 | 16 java.sun.com/javaone

= Java

JavaOne

@ Sun

Unit Testing
Some behaviors require multiple threads to test
- Exchanger

- Inherently requires two threads to exchange

CyclicBarrier
- Inherently requires N threads to reach a barrier point

. Lock

. If one thread holds it, does it actually block other threads?
- When holding thread releases it, can another acquire it?

- BlockingQueue

- Threads block if they try to add too many elements
- Blocked threads unblock when room is made
- Threads block if they try to remove nonexistent elements

2007 JavaOneSM Conference | Session TS-2220 | 17 java.sun.com/javaone

@ Sun

Unit Testing

Framework support

- JUnit 4 and TestNG support timeouts

- TestNG supports concurrent testing
. To allow tests to finish faster
- For stress testing

- Addons to JUnit 4 also support concurrent testing

- But neither provides good support for single test
cases that require coordination of multiple threads

2007 JavaOneSM Conference | Session TS-2220 | 18 java.sun.com/javaone

&

=14
=

—_—
= Java

JavaOne

Unit Testing

@ Sun

More framework support needed

void testPutThenTake () throws InterruptedException ({
BoundedBlockingQueue<Integer> buf
= new BoundedBlockingQueue<Integer> (1) ;

buf .put (42) ;
assertEquals (42, buf.take()):
}

void testPutPutTakeTake () throws InterruptedException {
BoundedBlockingQueue<Integer> buf

= new BoundedBlockingQueue<Integer> (1) ;
buf.put (42) ;

buf.put(17) ; -
uf.put(17) 9 ® . 4 T
assertEquals (42, buf.take()); P
assertEquals (17, buf.take()) aL':igL?szt
} g

e, unstuck!

2007 JavaOneSM Conference | Session TS-2220 | 19 java.sun.com/javaone

JavaOne

Unit Testing

More framework support needed
void testPutPutTakeTake () throws InterruptedException ({

final BoundedBlockingQueue<Integer> buf
= new BoundedBlockingQueue<Integer> (1) ;

Thread t = new Thread() {

public void run() {
assertEquals (42, buf.take());

assertEquals (17, buf.take())

b}
t.start () ;
buf.put (42) ;
buf.put(17);
t.join();

20 java.sun.com/javaone

2007 JavaOneSM Conference | Session TS-2220 |

@ Sun

JavaOne

Unit Testing
More framework support needed
- Exception in second thread isn’'t seen by JUnit

- Propagates up call stack of thread
- Printed to console

. Test always passes
- JUnit unaware of exception

- Must ensure that exception in any thread is
propagated back to the testing framework

- Requires lots of messy boilerplate code
- Runnables can't throw checked exceptions

- We need something better

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 21 java.sun.com/javaone

JavaOne

@ Sun

Unit Testing

Necessity is the mother of invention

At UMD, we teach writing concurrent abstractions
Blocking queue, etc.

We have a fairly elaborate automated system for
testing functional correctness of student work

The Marmoset project

Need to have reliable, repeatable tests for
concurrent functionality

And allow students to write such tests

Developed new framework for concurrent tests
Which you can download and use

2007 JavaOneSM Conference | Session TS-2220 | 22 java.sun.com/javaone

e

—_—
. Java

e VIUltithreaded 1 estCase (a.k.a.

MTC)

Adding support for multiple test threads

. Same test, rewritten with MTC

- Framework infers test lifecycle from method names

class TestPutPutTakeTake extends MTC {
BoundedBlockingQueue<Integer> buf;

void initialize () {
buf = new BoundedBlockingQueue<Integer> (1) ;
}

void threadPutPut() throws InterruptedException {
buf .put (42) ;
buf.put(17) ;
}

void threadTakeTake () throws InterruptedException {
assertEquals (42, buf.take());
assertEquals (17, buf.take())

}

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 23 java.sun.com/javaone

JavaOne

Multithreaded Test Case

Adding support for multiple test threads

. Uses same ideas as JUnit
- Run initialize() method (if it exists)

- Run all threadXxx() methods concurrently
- Run finish() method (if it exists)

- Yeah, doing it with annotations would be cooler
- But just needed something that worked

. Does this test case test what we wanted?
- No, didn’t check blocking behavior

. Can use sleep and System.currentTimeMillis
- Imprecise, doesn’t work with debuggers, ugly

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 24 java.sun.com/javaone

Unit Testing Blocking Operations
Thread 1 Thread 2
put 42 I

put 42

g & N put 17 l
" This call to put should

not return until after the
call to take has started

put 17
(blocks)

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 25 java.sun.com/javaone

JavaOne

Unit Testing

Adding support for blocking operations

- System maintains a global tick counter
. Starts at zero
- Advanced only when all threads are waiting/blocked
- Tests can wait until counter gets to a particular value
- Tests can check the current value

- Plays well with debuggers
- unlike using Thread.sleep()

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 26 java.sun.com/javaone

JavaOne

Unit Testing

Using the tick counter to test blocking operations

- With tick counter support, we can now test
blocking operations

void threadPutPut() throws InterruptedException {
buf.put (42) ;
assertEqual (0, getTick())
buf.put(17) ;
assertEqual (1, getTick());
}

void threadGetGet () throws InterruptedException {
waitForTick (1) ;
assertEquals (42 ,buf. take()) ;
assertEquals (17 ,buf. take()) ;

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 27 java.sun.com/javaone

JavaOne

Example: Unit Testing a Lock

Using the tick counter to test blocking operations

void threadFirstLocker () {
lock.lock () ; Thread 1 Thread 2
assertEqual (0, getTick()); tick 0
waitForTick (2) ; bd<]
lock.unlock () ;

}

void threadSecondLocker({
waitForTick (1) ;
assertFalse (lock.tryLock()); tick2
assertEqual (1, getTick());
lock.lock () ;

assertEqual (2, getTick()) e
lock.unlock() ; lunmii

tick 1

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 28 java.sun.com/javaone

JavaOne

MTC—History and Future

Try it—and contribute!

- We've been using this
- In courses at Univ. of Maryland

- To rewrite all of the TCK tests for Java Specification
Request (JSR) 166

- Results are a lot simpler than the original JSR 166 TCK tests!

- Once you've constructed a test case
- Can run it once (for tests designed to be deterministic)
- Can run it many times (for nondeterministic tests)

- Open source, pointer to implementation at:
« http:/ffindbugs.sourceforge.net/

- Hopefully, someone else will improve on it

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 29 java.sun.com/javaone

JavaOne

Agenda

Introduction

Creating a Test Plan

Unit Testing

Concurrent Failure Modes
Performance Testing
System Testing

Summary

@ Sun 2007 JavaOneSM Conference | SessionTS-2220 | 30 java.sun.com/javaone

JavaOne

Concurrent Failure Modes

Things that can’t go wrong in sequential programs

- Most features of the Java programming
language are designed for repeatability
across runs and platforms

. e.g. floating point behavior

- ...except for threads*
- Even correct programs can vary their behavior

- Some errors only manifested through very particular
interleavings or timings

- Many failures in concurrent programs are rare,
probabillistic events

* (and identity hash code)

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 31 java.sun.com/javaone

JavaOne

Concurrent Failure Modes
Synchronization errors
- If a variable (field or array element):
. |s accessed by two or more threads, and
- At least one of those accesses is a write, and
- The variable is not a volatile field

- Then the accesses must be ordered by
synchronization (“happens-before”)

- synchronized, java.util.concurrent.locks.Lock

- Otherwise, your code is bad

. Code with synchronization errors has
exceptionally subtle semantics

@ Sun 2007 JavaOneS™ Conference | Session TS-2220 | 32 java.sun.com/javaone

JavaOne

Concurrent Failure Modes

Atomicity failures

- Even without synchronization errors, can still
have nasty, timing-dependent concurrency bugs

- Occur when threads interact in an unexpected way

- These are usually atomicity failures

- A sequence of actions thought of as an atomic unit,
but not adequately protected from interference

- Volatiles cannot prevent atomicity failures!
- Requires using locking or atomic variables

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 33 java.sun.com/javaone

= Java

JavaOne

Concurrent Failure Modes

Atomicity failures

- Typical causes of atomicity failures
- Check-then-act

if (foo '= null) // Another thread could set
foo.doSomething(); // foo to null

Value v = map.get(k); // Even if Map is thread-safe,

if (v == null) { // two threads might call get,
v = new Value(k); // both see null, and both
map.put(k, v); // add a new Value to map

}

- Read-modify-write

++numRequests; // Really three separate actions
// (even if volatile)

@ Sun 2007 JavaOneS™ Conference | Session TS-2220 | 34 java.sun.com/javaone

JavaOne

Concurrent Failure Modes
Rare interleavings
- Some interleavings are rare if interpreted
. Compiler can aggressive reorder operations
- Invisible to correctly synchronized code
- Some interleavings are rare on a 1-CPU system
- OS context switches only happen at designated points

- More CPU’s generate more interleavings;
Want more threads than CPUs

- About twice as many active threads as cores is
generally good

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 35 java.sun.com/javaone

JavaOne

Concurrent Failure Modes

Generating more interleavings
- Use a multicore or multiprocessor system

- Avoid synchronization in test harness or
debugging code

. e.g. System.out.printin()
- May cause bugs to disappear

- Or force “bad” interleavings
. e.g. barrier sync before suspicious code
- Sprinkling Thread.yield() or Thread.sleep()
- Perhaps with a bytecode rewriting tool

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 36 java.sun.com/javaone

;

JavaOne

Testing Components

Testing for races
Generate as many interleavings as possible

Main challenge: find testable properties that
Fail with high probability if something goes wrong
Don't artificially limit the concurrency of the test
Introduce no additional synchronization

Errors may be masked by the test program
Test program messes with timings
Test program synchronization may mask data races
Delays in test program may mask race conditions

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 37 java.sun.com/javaone

;

JavaOne

Testing Components

Testing for races

Obvious test for bounded buffer:
Everything that goes in comes out (and no extras)

Without getting in the way...

Checksum elements as they go in or out

Keep per-thread checksums, combine them at end
S0 no synchronization during test run!

Need an order-insensitive checksum (e.g. sum, xor)
Use deterministic termination criteria

Don't share RNGs between threads
Prevent compiler from “pruning” under test

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 38 java.sun.com/javaone

Testing Components

Testing under concurrent stress

void testPutsAndTakes () {
for (int i = 0; i < nPairs; i++) {
pool.execute (new Producer());
pool.execute (new Consumer())

}

barrier.await(),; // wait for all threads to be ready
barrier.await(); // wait for all threads to finish
assertEquals (putSum.get (), takeSum.get()),

}
class Consumer implements Runnable {
public void run() {

try {
barrier.await (),
int sum = 0,
--i)

for (int i = nTrials,; i > 0;
sum += bb. take();,

takeSum.getAndAdd (sum) ;

barrier.await (),

} catch (Exception e) |
throw new RuntimeException (e)

}

2007 JavaOneSM Conference | Session TS-2220 | 39 java.sun.com/javaone

@Sun

JavaOne

Experience at Azul

The world is full of undiagnosed synchronization errors
- When customer’s code fails

. Azul's VM can check for concurrent access to
non-thread-safe collections

- And throws an exception when it finds it
- On both threads

. Slight performance hit, but decent at finding bugs
- We've implemented our own that you can use

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 40 java.sun.com/javaone

Debugging
Tools for building test cases
- UncontendedLock

- Implements Lock, but throws an exception if
contention is actually seen

- Use when your design says you don't need a lock—
but want to verify that at runtime

- Use runtime flag choose this or NoOpLock
- Also a ReadWriteLock version

- SlowReleasinglLock
. Delegates to ReentrantLock

- But pauses after releasing a lock
- Will cause atomicity failures to be more common

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 41 java.sun.com/javaone

JavaOne

ock Implementations for
Debugging

Open source
- Pointer to implementation at:
 http://findbugs.sourceforge.net/

- These and related locks for debugging

- Should Java Platform v.7 assert against
concurrent access to non-thread-safe classes?
. One extra field
- Minimal overhead if not enabled
- About half the cost of regular locks if enabled

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 42 java.sun.com/javaone

JavaOne

Dynamic Tools for Debugging

- We've talked about just a few ideas for trying to
identify probabilistic faults
- This Is an active research area
- Keep your eyes out for other tools that can help

- For example, IBM’s ConTest

http.//www.haifa.ibm.com/projects/verification/contest/index.html

. “Systematically and transparently schedules execution to
increase the likelihood that race conditions, deadlocks and
other intermittent bugs will appear”

@ Sun 2007 JavaOneS™ Conference | Session TS-2220 | 43 java.sun.com/javaone

JavaOne

Agenda

Introduction

Creating a Test Plan

Unit Testing

Concurrent Failure Modes
Performance Testing
Summary

@ Sun 2007 JavaOneSM Conference | SessionTS-2220 | 44 java.sun.com /javaone

JavaOne

Performance Testing
Scalability vs. Performance
- How fast is it?

- Without contention?
- With expected contention?

- Does performance fall off a cliff under higher than
expected contention?

- Performance tests must reflect realistic use cases
. Selecting these is often the hardest part
- Usually extensions of safety tests

- Secondary goal: empirically select parameters
- Buffer sizes, queue sizes, pool sizes

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 45 java.sun.com/javaone

JavaOne

Performance Testing

Parallel bottlenecks

- Need to watch out for contention points
- Bottlenecks that don't scale with your application

- One bottleneck can prevent the entire application
from scaling

. Ifitisn’t a bottleneck, keep it simple

- A simple, blocking, thread-safe class is going
to be easier to get right than one designed for
concurrent access

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 46 java.sun.com/javaone

JavaOne

Performance Testing
Tool support

. Some commercial and vendor specific tools
- Azul has some nice ones

- Tools that visually display CPU usage are helpful
- Perfbar for Solaris and gtk
- Are you pegging your CPU utilization?

. Are you spending too much time in the kernel?

. Can use Java Management Extensions (JMX™) API
and JVM tool interface to get some information

- ThreadMXBean provides information:
. Cpu time per thread
- Number of times blocked
- Number of times waited for notification

@ Sun 2007 JavaOneS™ Conference | Session TS-2220 | 47 java.sun.com/javaone

JavaOne

Performance Testing
Using JMX API and jconsole to measure contention
- Can access JMX API through jconsole

- setThreadContentionMonitoringEnabled (true)

- Allows you to get total time spent waiting
for contended locks

- Can also set this through jconsole

- Won't tell you which lock is contended
- But will tell you if you have an issue

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 48 java.sun.com/javaone

JavaOne

Performance Testing
GC bottlenecks

- Never call System.gc()
. Forces a horrible, slow, stop the world collection

. If you use any Java RMI or EJB™ architecture,
Sun's JVM machine calls System.gc() every
60 seconds

- Bug # 4403367
- Totally kills scalability, particularly with large heap

- Workaround for Sun's bug
- Set—Dsun.rmi.dgc.server.gclnterval=2000000000

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 49 java.sun.com/javaone

JavaOne

Performance Testing

Document concurrency requirements

Document whether a class is supposed to handle
concurrent requests

Concurrent classes are not just thread-safe—they are
designed to perform well under concurrent access

Document how many concurrent operations
it can handle

With default parameters, ConcurrentHashMap tops out
at about 16 concurrent updates

But effectively no limit on concurrent reads

Test to see if your expectations are being met

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 50 java.sun.com/javaone

;

JavaOne

Performance Testing
What are we testing for?
Performance tests often derived from safety tests
With some timing added

Can learn many things from performance tests
Throughput under specific parameters
Sensitivity to varying parameters
Scalability with increasing thread count

Exercise care applying results of component tests

Most tests are unrealistic simulations
of the application

Component tests usually focus on extreme contention

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 51 java.sun.com/javaone

JavaOne

Performance Testing

Common pitfalls
- Watch out for these when writing
performance tests!
- Introducing timing or synchronization artifacts
- Not accounting for compilation or GC
- Unrealistic sampling of code paths
Unrealistic degrees of contention

Dead code elimination
- Make sure every result is used and unguessable

- Avoiding these often requires “tricking” the
compiler—which is hard!

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 52 java.sun.com/javaone

JavaOne

Agenda

Introduction

Creating a Test Plan

Unit Testing

Concurrent Failure Modes
Performance Testing
System Testing
Summary

@ Sun 2007 JavaOneSM Conference | SessionTS-2220 | 53 java.sun.com/javaone

JavaOne

System Testing

Touchpoints

- Get a machine with as many cores as possible
. At least as many as will be used in production

- Log every error

- If an probabilistic error occurs only once every 4 hours,
you need to have good logging

- Verity concurrent expectations
- Use UncontendedLocks where appropriate

- If a method is only supposed to be invoked in the event
thread, check it

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 54 java.sun.com/javaone

JavaOne

System Testing

Using aspects

- You can use Aspect Oriented Programming
(AOP) to inject runtime assertions
- That System.gc isn’t called
- That Swing methods are called from the event thread

- Or to swap in debugging versions of classes

- Substitute versions of HashMap that check for
Improper concurrent access

. Substitute version of Lock that looks for deadlock risks

. See “Testing with Leverage, part llI” (Goetz)

- http://www.ibm.com/developerworks/java/library/j-
jtp08226.html

. Contains precooked code, ready-to-use

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 55 java.sun.com/javaone

JavaOne

Agenda

Introduction

Creating a Test Plan

Unit Testing

Concurrent Failure Modes
Performance Testing
System Testing
Summary

@ Sun 2007 JavaOneSM Conference | Session TS-2220 | 56 java.sun.com/javaone

JavaOne

@ Sun

Summary...

. Testing concurrent software is hard!
- Keep your expectations appropriate
. Testing is not going to give high confidence you don't have
rare probabilistic bugs
- Separate business logic from concurrency logic
. Easier to get each right
- Easier to test

- Use precooked code, already picked over by experts,
when possible
- Java.util.concurrent is pretty darn good

- But only because they've done everything recommended
here, fixing bugs in the process

2007 JavaOneSM Conference | Session TS-2220 | 57 java.sun.com/javaone

JavaOne

@ Sun

For More Information

» Other sessions and BOFs

- 1S-2388: Effective Concurrency for
the Java Platform (Friday, 10:50am)

- TS-2007: Improving Software Quality
With Static Analysis

- BOF-2864: Experiences With
Debugging Data Races

. Books

- Java Concurrency in Practice,
Goetz et. al.

- Concurrent Programming in Java,
Doug Lea

2007 JavaOneSM Conference | Session TS-2220 |

58

a.sun.com/javaone

JavaOne

Bill Pugh
Professor of Computer Science, University
of Maryland

Brian Goetz
Senior Staff Engineer, Sun Microsystems

Cliff Click
Distinguished Engineer, Azul Systems

2007 JavaOne®M Conference | Session TS-2220 | 59 java.sun.com/javaone

&

SYSTEMS

JavaOne

Testing Concurrent Software

Bill Pugh
Professor of Computer Science, University of
Maryland

Brian Goetz
Senior Staff Engineer, Sun Microsystems

Cliff Click
Distinguished Engineer, Azul Systems

1S-2220

2007 JavaOne®M Conference | Session TS-2220 | java.sun.com/javaone

