
2007 JavaOneSM Conference | Session TS-2220 |

TS-2220

Testing Concurrent Software
Bill Pugh
Professor of Computer Science, University of
Maryland
Brian Goetz
Senior Staff Engineer, Sun Microsystems
Cliff Click
Distinguished Engineer, Azul Systems

2007 JavaOneSM Conference | Session TS-2220 | 2

The Bottom Line

Testing concurrent software is difficult,
but not impossible.
By a combination of multiple techniques
(careful design, static analysis, code
review, extensive testing), you can get
the upper hand on concurrency bugs.

Some good news, some bad news

2007 JavaOneSM Conference | Session TS-2220 | 3

What This Talk Is, and Isn’t
● Building correct concurrent software

is a big topic
● We can’t teach you to do that in an hour

(or a week)

● We’ll discuss ways for effectively
creating tests as part of a QA plan
for concurrent software

● We assume you already have some
idea of what to do (and what not to do)
● See also:

● Java Concurrency in Practice, Goetz et al.
● Concurrent Programming in Java, Lea
● TS-2388: Effective Concurrency

for the Java™ Platform (Friday, 10:50am)

2007 JavaOneSM Conference | Session TS-2220 | 4

Agenda
Introduction
Creating a Test Plan
Unit Testing
Concurrent Failure Modes
Performance Testing
System Testing
Summary

2007 JavaOneSM Conference | Session TS-2220 | 5

Like testing sequential code…
Testing Concurrent Software
● Test cases for sequential code…

● …may test safety or performance (or both)
● …exercise code and assert invariants and

postconditions
● …try to explore as much of the state space as possible

● One rough measure of this is code coverage
● …try to find combinations of inputs and actions that are

most likely to cause failure
● Test cases for concurrent code do the same

● So we already know how to do it, right?

2007 JavaOneSM Conference | Session TS-2220 | 6

Like testing sequential code…but different
Testing Concurrent Software
● Concurrent programs have more failure modes

than sequential ones
● Liveness failures: Deadlock, livelock, missed signals
● Safety failures: synchronization errors,

atomicity failures
● Failures in sequential programs are

largely deterministic
● Same input, same failure

● Many failures unique to concurrent
programs are rare probabilistic events
● Some bugs require exquisitely unlucky timing

2007 JavaOneSM Conference | Session TS-2220 | 7

More extensive testing required
Testing Concurrent Software
● State space is much larger due to thread interactions
● Need more intensive tests

● Run for longer periods
● Look for rare probabilistic failures
● Account for impact of GC, JITing, etc

● Must test on multiple platforms
● Different CPU architectures, Virtual Machine for the

Java platform (JVM™ machines), number of CPUs
● Some tests don't happen on some architectures

● Tests must be written to avoid masking bugs

The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ platform.

2007 JavaOneSM Conference | Session TS-2220 | 8

Design for Testability
● Where possible, separate concurrency

logic from business and functional logic
● Concurrency is challenging enough
● Even harder when mixed in with your business logic!

● Isolate concurrency by extracting
concurrent abstractions
● Such as bounded buffers, semaphores, thread pools
● Use the ones from java.util.concurrent where possible

● Implement your own only if the provided ones don't fit

● Testing a single concurrent abstraction is a lot
easier than testing an entire application

Concurrent programming is hard enough

2007 JavaOneSM Conference | Session TS-2220 | 9

Agenda
Introduction
Creating a Test Plan
Unit Testing
Concurrent Failure Modes
Performance Testing
System Testing
Summary

2007 JavaOneSM Conference | Session TS-2220 | 10

Testing is only part of it
Building a QA Plan
● The goal of QA is not to “find all the bugs”

● Because this is impossible
● Goal of QA is really to increase confidence
● QA approaches include

● Education, training, careful design
● Understanding the concurrent design/implementation

of what you have
● Manual code review
● Static analysis (automated code review)
● Testing

● Unit tests, load tests, performance tests, system tests

2007 JavaOneSM Conference | Session TS-2220 | 11

Testing is only part of it
Building a QA Plan
● Testing can never show the absence of errors,

only their presence
● Even more true with rare probabilistic failures

● Testing, code review, and reviewing analysis
reports are all subject to diminishing returns
● Luckily, also tend to find different types of problems

● By combining them, you buy more confidence
for your QA budget than testing alone

2007 JavaOneSM Conference | Session TS-2220 | 12

Expensive, but effective
Manual Code Review
● Expert review is often the best way to find subtle

concurrency bugs
● Can spot bugs that occur extremely rarely in practice
● Can find bugs that won't happen on specific hardware
● Often improves general code and comment quality

● Doesn’t scale well
● Useful for small, isolated concurrent components
● Really, really hard, even for experts, to manually

review large or subtle components
● Expensive to do frequently

● Typically done by senior developers or consultants

2007 JavaOneSM Conference | Session TS-2220 | 13

Automated code review
Static Analysis
● Analyzes a program without running it
● Can check rules/patterns

● Such as “hold a lock consistently when
accessing a field”

● Annotations that document concurrency design
are very helpful
● For both humans and automatic tools
● See Java Concurrency in Practice, FindBugs,

and Fluid from SureLogic
● See TS-2007: Improving Software Quality With

Static Analysis

2007 JavaOneSM Conference | Session TS-2220 | 14

Lots of reasons to test…
Concurrent Testing Scenarios
● Unit testing functionality

● Basic tests of safety and liveness (can be sequential)
● Unit testing functionality under concurrent stress

● Looking for rare, timing-related interactions
● Attempting to explore more of the state space

● Component performance testing
● Evaluate performance or scalability of a concurrent

abstraction under varying load
● System stress testing

● Test a large application to see if it works

2007 JavaOneSM Conference | Session TS-2220 | 15

Agenda
Introduction
Creating a Test Plan
Unit Testing
Concurrent Failure Modes
Performance Testing
System Testing
Summary

2007 JavaOneSM Conference | Session TS-2220 | 16

Unit Testing
● Start with basic unit tests

● Some tests can be sequential—goal is to establish
that documented sequential functionality works at all
● Easier to debug basic functionality in sequential environment

● But many concurrent classes have behavior that
cannot be tested with just one thread
● Testing blocking behavior requires at least two threads

● One thread that performs an operation that blocks
● Another thread that then performs an action that unblocks

the first thread

Don’t forget the basics

2007 JavaOneSM Conference | Session TS-2220 | 17

Unit Testing
● Exchanger

● Inherently requires two threads to exchange

● CyclicBarrier
● Inherently requires N threads to reach a barrier point

● Lock
● If one thread holds it, does it actually block other threads?
● When holding thread releases it, can another acquire it?

● BlockingQueue
● Threads block if they try to add too many elements
● Blocked threads unblock when room is made
● Threads block if they try to remove nonexistent elements

Some behaviors require multiple threads to test

2007 JavaOneSM Conference | Session TS-2220 | 18

Framework support
Unit Testing
● JUnit 4 and TestNG support timeouts
● TestNG supports concurrent testing

● To allow tests to finish faster
● For stress testing

● Addons to JUnit 4 also support concurrent testing
● But neither provides good support for single test

cases that require coordination of multiple threads

2007 JavaOneSM Conference | Session TS-2220 | 19

Unit Testing
void testPutThenTake() throws InterruptedException {

BoundedBlockingQueue<Integer> buf
= new BoundedBlockingQueue<Integer>(1);

buf.put(42);
assertEquals(42, buf.take());

}

void testPutPutTakeTake() throws InterruptedException {
BoundedBlockingQueue<Integer> buf

= new BoundedBlockingQueue<Integer>(1);
buf.put(42);
buf.put(17);

assertEquals(42, buf.take());
assertEquals(17, buf.take());

}

More framework support needed

This blocks
and can’t get

unstuck!

2007 JavaOneSM Conference | Session TS-2220 | 20

Unit Testing
void testPutPutTakeTake() throws InterruptedException {

final BoundedBlockingQueue<Integer> buf
= new BoundedBlockingQueue<Integer>(1);

Thread t = new Thread() {
public void run() {

assertEquals(42, buf.take());
assertEquals(17, buf.take());

}};
t.start();
buf.put(42);
buf.put(17);
t.join();

}

More framework support needed

Won’t compile;
take() throws

InterruptedException

Assertion
failure won’t

be noticed by
JUnit

2007 JavaOneSM Conference | Session TS-2220 | 21

Unit Testing
● Exception in second thread isn’t seen by JUnit

● Propagates up call stack of thread
● Printed to console

● Test always passes
● JUnit unaware of exception

● Must ensure that exception in any thread is
propagated back to the testing framework
● Requires lots of messy boilerplate code
● Runnables can't throw checked exceptions

● We need something better

More framework support needed

2007 JavaOneSM Conference | Session TS-2220 | 22

Unit Testing
● At UMD, we teach writing concurrent abstractions

● Blocking queue, etc.
● We have a fairly elaborate automated system for

testing functional correctness of student work
● The Marmoset project

● Need to have reliable, repeatable tests for
concurrent functionality
● And allow students to write such tests

● Developed new framework for concurrent tests
● Which you can download and use

Necessity is the mother of invention

2007 JavaOneSM Conference | Session TS-2220 | 23

MultithreadedTestCase (a.k.a.
MTC)
● Same test, rewritten with MTC

● Framework infers test lifecycle from method names
class TestPutPutTakeTake extends MTC {

BoundedBlockingQueue<Integer> buf;

void initialize() {
buf = new BoundedBlockingQueue<Integer>(1);

}

void threadPutPut() throws InterruptedException {
buf.put(42);
buf.put(17);

}

void threadTakeTake() throws InterruptedException {
assertEquals(42, buf.take());
assertEquals(17, buf.take());

}
}

Adding support for multiple test threads

2007 JavaOneSM Conference | Session TS-2220 | 24

Multithreaded Test Case
● Uses same ideas as JUnit

● Run initialize() method (if it exists)
● Run all threadXxx() methods concurrently
● Run finish() method (if it exists)

● Yeah, doing it with annotations would be cooler
● But just needed something that worked

● Does this test case test what we wanted?
● No, didn’t check blocking behavior

● Can use sleep and System.currentTimeMillis
● Imprecise, doesn’t work with debuggers, ugly

Adding support for multiple test threads

2007 JavaOneSM Conference | Session TS-2220 | 25

Unit Testing Blocking Operations
Thread 1 Thread 2

put 42

put 17
(blocks)

This call to put should
not return until after the
call to take has started

Wait
for

Tick 1

put 42

put 17

2007 JavaOneSM Conference | Session TS-2220 | 26

Unit Testing
● System maintains a global tick counter

● Starts at zero
● Advanced only when all threads are waiting/blocked
● Tests can wait until counter gets to a particular value
● Tests can check the current value

● Plays well with debuggers
● unlike using Thread.sleep()

Adding support for blocking operations

2007 JavaOneSM Conference | Session TS-2220 | 27

Unit Testing
● With tick counter support, we can now test

blocking operations
void threadPutPut() throws InterruptedException {

buf.put(42);
assertEqual(0, getTick());
buf.put(17);
assertEqual(1, getTick());

}

void threadGetGet() throws InterruptedException {
waitForTick(1);
assertEquals(42,buf.take());
assertEquals(17,buf.take());

}

Using the tick counter to test blocking operations

2007 JavaOneSM Conference | Session TS-2220 | 28

Example: Unit Testing a Lock

void threadFirstLocker() {
lock.lock();
assertEqual(0, getTick());
waitForTick(2);
lock.unlock();

}

void threadSecondLocker({
waitForTick(1);
assertFalse(lock.tryLock());
assertEqual(1, getTick());
lock.lock();
assertEqual(2, getTick());
lock.unlock();

}

Using the tick counter to test blocking operations

tick 0

tick 1

tick 2

lock

wait
for
tick
2

unlock

trylock

locks
(blocks)

unlock

wait
for
tick
1

Thread 1 Thread 2

2007 JavaOneSM Conference | Session TS-2220 | 29

MTC—History and Future
● We've been using this

● In courses at Univ. of Maryland
● To rewrite all of the TCK tests for Java Specification

Request (JSR) 166
● Results are a lot simpler than the original JSR 166 TCK tests!

● Once you’ve constructed a test case
● Can run it once (for tests designed to be deterministic)
● Can run it many times (for nondeterministic tests)

● Open source, pointer to implementation at:
● http://findbugs.sourceforge.net/

● Hopefully, someone else will improve on it

Try it—and contribute!

2007 JavaOneSM Conference | Session TS-2220 | 30

Agenda
Introduction
Creating a Test Plan
Unit Testing
Concurrent Failure Modes
Performance Testing
System Testing
Summary

2007 JavaOneSM Conference | Session TS-2220 | 31

Concurrent Failure Modes
● Most features of the Java programming

language are designed for repeatability
across runs and platforms
● e.g. floating point behavior

● …except for threads*
● Even correct programs can vary their behavior
● Some errors only manifested through very particular

interleavings or timings
● Many failures in concurrent programs are rare,

probabilistic events

Things that can’t go wrong in sequential programs

* (and identity hash code)

2007 JavaOneSM Conference | Session TS-2220 | 32

Synchronization errors
Concurrent Failure Modes
● If a variable (field or array element):

● Is accessed by two or more threads, and
● At least one of those accesses is a write, and
● The variable is not a volatile field

● Then the accesses must be ordered by
synchronization (“happens-before”)
● synchronized, java.util.concurrent.locks.Lock

● Otherwise, your code is bad
● Code with synchronization errors has

exceptionally subtle semantics

2007 JavaOneSM Conference | Session TS-2220 | 33

Atomicity failures
Concurrent Failure Modes
● Even without synchronization errors, can still

have nasty, timing-dependent concurrency bugs
● Occur when threads interact in an unexpected way

● These are usually atomicity failures
● A sequence of actions thought of as an atomic unit,

but not adequately protected from interference
● Volatiles cannot prevent atomicity failures!

● Requires using locking or atomic variables

2007 JavaOneSM Conference | Session TS-2220 | 34

Atomicity failures
Concurrent Failure Modes
● Typical causes of atomicity failures

● Check-then-act
if (foo != null) // Another thread could set

foo.doSomething(); // foo to null

Value v = map.get(k); // Even if Map is thread-safe,
if (v == null) { // two threads might call get,

v = new Value(k); // both see null, and both
map.put(k, v); // add a new Value to map

}

● Read-modify-write
++numRequests; // Really three separate actions

// (even if volatile)

2007 JavaOneSM Conference | Session TS-2220 | 35

Concurrent Failure Modes
● Some interleavings are rare if interpreted

● Compiler can aggressive reorder operations
● Invisible to correctly synchronized code

● Some interleavings are rare on a 1-CPU system
● OS context switches only happen at designated points

● More CPU’s generate more interleavings;
Want more threads than CPUs
● About twice as many active threads as cores is

generally good

Rare interleavings

2007 JavaOneSM Conference | Session TS-2220 | 36

Concurrent Failure Modes
● Use a multicore or multiprocessor system
● Avoid synchronization in test harness or

debugging code
● e.g. System.out.println()
● May cause bugs to disappear

● Or force “bad” interleavings
● e.g. barrier sync before suspicious code
● Sprinkling Thread.yield() or Thread.sleep()
● Perhaps with a bytecode rewriting tool

Generating more interleavings

2007 JavaOneSM Conference | Session TS-2220 | 37

Testing for races
Testing Components
● Generate as many interleavings as possible
● Main challenge: find testable properties that

● Fail with high probability if something goes wrong
● Don't artificially limit the concurrency of the test
● Introduce no additional synchronization

● Errors may be masked by the test program
● Test program messes with timings
● Test program synchronization may mask data races
● Delays in test program may mask race conditions

2007 JavaOneSM Conference | Session TS-2220 | 38

Testing for races
Testing Components
● Obvious test for bounded buffer:

Everything that goes in comes out (and no extras)
● Without getting in the way…

● Checksum elements as they go in or out
● Keep per-thread checksums, combine them at end

● So no synchronization during test run!
● Need an order-insensitive checksum (e.g. sum, xor)
● Use deterministic termination criteria

● Don't share RNGs between threads
● Prevent compiler from “pruning” under test

2007 JavaOneSM Conference | Session TS-2220 | 39

Testing under concurrent stress
Testing Components

void testPutsAndTakes() {
for (int i = 0; i < nPairs; i++) {

pool.execute(new Producer());
pool.execute(new Consumer());

}
barrier.await(); // wait for all threads to be ready
barrier.await(); // wait for all threads to finish
assertEquals(putSum.get(), takeSum.get());

}

class Consumer implements Runnable {
public void run() {

try {
barrier.await();
int sum = 0;
for (int i = nTrials; i > 0; --i)

sum += bb.take();
takeSum.getAndAdd(sum);
barrier.await();

} catch (Exception e) {
throw new RuntimeException(e);

}
}

}

2007 JavaOneSM Conference | Session TS-2220 | 40

Experience at Azul
● When customer’s code fails

● Azul’s VM can check for concurrent access to
non-thread-safe collections
● And throws an exception when it finds it
● On both threads

● Slight performance hit, but decent at finding bugs
● We've implemented our own that you can use

The world is full of undiagnosed synchronization errors

2007 JavaOneSM Conference | Session TS-2220 | 41

Lock Implementations for
Debugging
● UncontendedLock

● Implements Lock, but throws an exception if
contention is actually seen

● Use when your design says you don't need a lock—
but want to verify that at runtime
● Use runtime flag choose this or NoOpLock
● Also a ReadWriteLock version

● SlowReleasingLock
● Delegates to ReentrantLock
● But pauses after releasing a lock

● Will cause atomicity failures to be more common

Tools for building test cases

2007 JavaOneSM Conference | Session TS-2220 | 42

Lock Implementations for
Debugging
● Pointer to implementation at:

● http://findbugs.sourceforge.net/
● These and related locks for debugging
● Should Java Platform v.7 assert against

concurrent access to non-thread-safe classes?
● One extra field
● Minimal overhead if not enabled
● About half the cost of regular locks if enabled

Open source

2007 JavaOneSM Conference | Session TS-2220 | 43

Dynamic Tools for Debugging
● We’ve talked about just a few ideas for trying to

identify probabilistic faults
● This is an active research area

● Keep your eyes out for other tools that can help
● For example, IBM’s ConTest

http://www.haifa.ibm.com/projects/verification/contest/index.html
● “ Systematically and transparently schedules execution to

increase the likelihood that race conditions, deadlocks and
other intermittent bugs will appear”

2007 JavaOneSM Conference | Session TS-2220 | 44

Agenda
Introduction
Creating a Test Plan
Unit Testing
Concurrent Failure Modes
Performance Testing
Summary

2007 JavaOneSM Conference | Session TS-2220 | 45

Scalability vs. Performance
Performance Testing
● How fast is it?

● Without contention?
● With expected contention?

● Does performance fall off a cliff under higher than
expected contention?

● Performance tests must reflect realistic use cases
● Selecting these is often the hardest part
● Usually extensions of safety tests

● Secondary goal: empirically select parameters
● Buffer sizes, queue sizes, pool sizes

2007 JavaOneSM Conference | Session TS-2220 | 46

Performance Testing
● Need to watch out for contention points

● Bottlenecks that don’t scale with your application
● One bottleneck can prevent the entire application

from scaling
● If it isn’t a bottleneck, keep it simple

● A simple, blocking, thread-safe class is going
to be easier to get right than one designed for
concurrent access

Parallel bottlenecks

2007 JavaOneSM Conference | Session TS-2220 | 47

Performance Testing
● Some commercial and vendor specific tools

● Azul has some nice ones

● Tools that visually display CPU usage are helpful
● Perfbar for Solaris and gtk
● Are you pegging your CPU utilization?

● Are you spending too much time in the kernel?

● Can use Java Management Extensions (JMX™) API
and JVM tool interface to get some information
● ThreadMXBean provides information:

● Cpu time per thread
● Number of times blocked
● Number of times waited for notification

Tool support

2007 JavaOneSM Conference | Session TS-2220 | 48

Performance Testing
● Can access JMX API through jconsole
● setThreadContentionMonitoringEnabled(true)

● Allows you to get total time spent waiting
for contended locks

● Can also set this through jconsole
● Won't tell you which lock is contended

● But will tell you if you have an issue

Using JMX API and jconsole to measure contention

2007 JavaOneSM Conference | Session TS-2220 | 49

Performance Testing
● Never call System.gc()

● Forces a horrible, slow, stop the world collection
● If you use any Java RMI or EJB™ architecture,

Sun's JVM machine calls System.gc() every
60 seconds
● Bug # 4403367
● Totally kills scalability, particularly with large heap

● Workaround for Sun's bug
● Set—Dsun.rmi.dgc.server.gcInterval=2000000000

GC bottlenecks

2007 JavaOneSM Conference | Session TS-2220 | 50

Performance Testing
● Document whether a class is supposed to handle

concurrent requests
● Concurrent classes are not just thread-safe—they are

designed to perform well under concurrent access
● Document how many concurrent operations

it can handle
● With default parameters, ConcurrentHashMap tops out

at about 16 concurrent updates
● But effectively no limit on concurrent reads

● Test to see if your expectations are being met

Document concurrency requirements

2007 JavaOneSM Conference | Session TS-2220 | 51

What are we testing for?
Performance Testing
● Performance tests often derived from safety tests

● With some timing added
● Can learn many things from performance tests

● Throughput under specific parameters
● Sensitivity to varying parameters
● Scalability with increasing thread count

● Exercise care applying results of component tests
● Most tests are unrealistic simulations

of the application
● Component tests usually focus on extreme contention

2007 JavaOneSM Conference | Session TS-2220 | 52

Common pitfalls
Performance Testing
● Watch out for these when writing

performance tests!
● Introducing timing or synchronization artifacts
● Not accounting for compilation or GC
● Unrealistic sampling of code paths
● Unrealistic degrees of contention
● Dead code elimination

● Make sure every result is used and unguessable

● Avoiding these often requires “tricking” the
compiler—which is hard!

2007 JavaOneSM Conference | Session TS-2220 | 53

Agenda
Introduction
Creating a Test Plan
Unit Testing
Concurrent Failure Modes
Performance Testing
System Testing
Summary

2007 JavaOneSM Conference | Session TS-2220 | 54

Touchpoints
System Testing
● Get a machine with as many cores as possible

● At least as many as will be used in production
● Log every error

● If an probabilistic error occurs only once every 4 hours,
you need to have good logging

● Verify concurrent expectations
● Use UncontendedLocks where appropriate
● If a method is only supposed to be invoked in the event

thread, check it

2007 JavaOneSM Conference | Session TS-2220 | 55

Using aspects
System Testing
● You can use Aspect Oriented Programming

(AOP) to inject runtime assertions
● That System.gc isn’t called
● That Swing methods are called from the event thread

● Or to swap in debugging versions of classes
● Substitute versions of HashMap that check for

improper concurrent access
● Substitute version of Lock that looks for deadlock risks

● See “Testing with Leverage, part III” (Goetz)
● http://www.ibm.com/developerworks/java/library/j-

jtp08226.html
● Contains precooked code, ready-to-use

2007 JavaOneSM Conference | Session TS-2220 | 56

Agenda
Introduction
Creating a Test Plan
Unit Testing
Concurrent Failure Modes
Performance Testing
System Testing
Summary

2007 JavaOneSM Conference | Session TS-2220 | 57

Summary…
● Testing concurrent software is hard!

● Keep your expectations appropriate
● Testing is not going to give high confidence you don't have

rare probabilistic bugs

● Separate business logic from concurrency logic
● Easier to get each right
● Easier to test

● Use precooked code, already picked over by experts,
when possible
● java.util.concurrent is pretty darn good
● But only because they’ve done everything recommended

here, fixing bugs in the process

2007 JavaOneSM Conference | Session TS-2220 | 58

For More Information
● Other sessions and BOFs

● TS-2388: Effective Concurrency for
the Java Platform (Friday, 10:50am)

● TS-2007: Improving Software Quality
With Static Analysis

● BOF-2864: Experiences With
Debugging Data Races

● Books
● Java Concurrency in Practice,

Goetz et. al.
● Concurrent Programming in Java,

Doug Lea

2007 JavaOneSM Conference | Session TS-2220 | 59

Q&A
Bill Pugh
Professor of Computer Science, University
of Maryland

Brian Goetz
Senior Staff Engineer, Sun Microsystems

Cliff Click
Distinguished Engineer, Azul Systems

2007 JavaOneSM Conference | Session TS-2220 |

TS-2220

Testing Concurrent Software
Bill Pugh
Professor of Computer Science, University of
Maryland
Brian Goetz
Senior Staff Engineer, Sun Microsystems
Cliff Click
Distinguished Engineer, Azul Systems

