
2007 JavaOneSM Conference | Session TS-2388 |

TS-2388

Effective Concurrency
for the Java™ Platform

Brian Goetz
Senior Staff Engineer
Sun Microsystems, Inc.
brian.goetz@sun.com

2007 JavaOneSM Conference | Session TS-2388 | 2

The Big Picture

Writing correct concurrent code
is difficult, but not impossible
Using good object-oriented design
techniques can make it easier

2007 JavaOneSM Conference | Session TS-2388 | 3

About the Speaker
● Brian Goetz has been a professional

software developer for 20 years
● Author of

Java Concurrency in Practice
● Author of over 75 articles on Java™

platform development
● See

http://www.briangoetz.com/pubs.html

● Member of Java Community ProcessSM

(JCPSM) expert groups for JSRs 166
(Concurrency), 107 (Caching), and 305
(Safety annotations)

● Regular presenter at the JavaOneSM

conference, SDWest, OOPSLA,
JavaPolis, and No Fluff, Just Stuff

JSR = Java Specification Request

2007 JavaOneSM Conference | Session TS-2388 | 4

Agenda
 Introduction
 Rules for Writing Thread-Safe Code

 Document Thread-Safety Intent and Implementation
 Encapsulate Data and Synchronization
 Prefer Immutable Objects
 Exploit Effective Immutability

 Rules for Structuring Concurrent Applications
 Think Tasks, Not Threads
 Build Resource-Management Into Your Architecture
 Decouple Identification of Work from Execution

 Rules for Improving Scalability
 Find and Eliminate the Serialization

2007 JavaOneSM Conference | Session TS-2388 | 5

Agenda
 Introduction
 Rules for Writing Thread-Safe Code

 Document Thread-Safety Intent and Implementation
 Encapsulate Data and Synchronization
 Prefer Immutable Objects
 Exploit Effective Immutability

 Rules for Structuring Concurrent Applications
 Think Tasks, Not Threads
 Build Resource-Management Into Your Architecture
 Decouple Identification of Work from Execution

 Rules for Improving Scalability
 Find and Eliminate the Serialization

2007 JavaOneSM Conference | Session TS-2388 | 6

Introduction
● This talk is about identifying patterns for

concurrent code that are less fragile
● Conveniently, many are the good practices

we already know
● Though sometimes we forget the basics

● Feel free to break (almost) all the rules here
● But be prepared to pay for it at maintenance time
● Remember the core language value:

Reading code is more important than writing code

2007 JavaOneSM Conference | Session TS-2388 | 7

Agenda
 Introduction
 Rules for Writing Thread-Safe Code

 Document Thread-Safety Intent and Implementation
 Encapsulate Data and Synchronization
 Prefer Immutable Objects
 Exploit Effective Immutability

 Rules for Structuring Concurrent Applications
 Think Tasks, Not Threads
 Build Resource-Management Into Your Architecture
 Decouple Identification of Work from Execution

 Rules for Improving Scalability
 Find and Eliminate the Serialization

2007 JavaOneSM Conference | Session TS-2388 | 8

Document Thread-Safety
● One of the easiest way to write thread-safe classes is to build on

existing thread-safe classes
● But how do you know if a class is thread-safe?

● The documentation should say, but frequently doesn't
● Can be dangerous to guess

● Should assume not thread-safe unless otherwise specified

● Document thread-safety design intent
● Class annotations: @ThreadSafe, @NotThreadSafe
@ThreadSafe
public class ConcurrentHashMap { }

● With class-level thread-safety annotations:
● Clients will know whether the class is thread-safe
● Maintainers will know what promises must be kept
● Tools can help identify common mistakes

2007 JavaOneSM Conference | Session TS-2388 | 9

Document Thread-Safety
● Should also document how a class gets its thread-safety

● This is your synchronization policy

● The Rule:
● When writing a variable that might next be read by another thread, or reading a

variable that might last have been written by another thread, both threads must
synchronize using a common lock

● Leads to design rules of the form hold lock L when
accessing variable V

● We say V is guarded by L

● These rules form protocols for coordinating access to data
● Such as “Only the one holding the conch shell can speak”

● Only work if all participants follow the protocol
● If one party cheats, everyone loses

2007 JavaOneSM Conference | Session TS-2388 | 10

Document Thread-Safety
● Use @GuardedBy to document your locking protocols
● Annotating a field with @GuardedBy("this") means:
● Only access the field when holding the lock on “this”
@ThreadSafe
public class PositiveInteger {

// INVARIANT: value > 0
@GuardedBy("this") private int value = 1;

public synchronized int getValue() { return value; }

public void setValue(int value) {
if (value <= 0)

throw new IllegalArgumentException(....);
synchronized (this) {

this.value = value;
}

}
}

● Simplifies maintenance and avoids common mistakes
● Like adding a new code path and forgetting to synchronize
● Improper maintenance is a big source of concurrency bugs

2007 JavaOneSM Conference | Session TS-2388 | 11

Document Thread-Safety
● For primitive variables, @GuardedBy is straightforward
● But what about

@GuardedBy("this") Set<Rock> knownRocks = new HashSet<Rock>();

● There are three different types of potentially mutable state
●The knownRocks reference
●The internal data structures in the HashSet
●The elements of the collection

● Which types of state are we talking about? All of them?
● It varies, but we can often tell from context

●Are the elements owned by the class, or by clients?
●Are the elements thread-safe?
●Is the reference to the collection mutable?

@GuardedBy("this") final Set<Rock> knownRocks =

2007 JavaOneSM Conference | Session TS-2388 | 12

knownRocks

HashSet<Rock>

Rock Rock Rock Rock

● For complicated data structures, draw a diagram
identifying ownership and synchronization policies

● Color each state domain with its synchronization policy
@ThreadSafe public class Rock { }

@GuardedBy("this") final Set<Rock>
knownRocks = new HashSet<Rock>();

● Very effective for designing and
reviewing code!

● Frequently identifies gaps
or inconsistencies in
synchronization policies

Document Thread-Safety

2007 JavaOneSM Conference | Session TS-2388 | 13

Summary: Document Thread-
Safety
● Document classes as @ThreadSafe or
@NotThreadSafe

● Saves your clients from guessing wrong
● Puts maintainers on notice to preserve thread-safety

● Document synchronization policy with @GuardedBy
● Helps you make sure you have a clear thread-safety strategy
● Helps maintainers keep promises made to clients
● Helps tools alert you to mistakes

● Use diagrams to verify thread-safety strategies for
nontrivial data structures

● Inadequate documentation → fragility

2007 JavaOneSM Conference | Session TS-2388 | 14

Agenda
 Introduction
 Rules for Writing Thread-Safe Code

 Document Thread-Safety Intent and Implementation
 Encapsulate Data and Synchronization
 Prefer Immutable Objects
 Exploit Effective Immutability

 Rules for Structuring Concurrent Applications
 Think Tasks, Not Threads
 Build Resource-Management Into Your Architecture
 Decouple Identification of Work from Execution

 Rules for Improving Scalability
 Find and Eliminate the Serialization

2007 JavaOneSM Conference | Session TS-2388 | 15

Encapsulate Data and
Synchronization
● Encapsulation promotes clear, maintainable code

● Reduces scope of effect of code changes

● Encapsulation similarly promotes thread safety
● Reduces how much code can access a variable
● And therefore how much be examined to ensure that synchronization

protocols are followed

● Thread safety is about coordinating access to shared
mutable data

● Shared—might be accessed by more than one thread
● Mutable—might be modified by some thread

● Less code that accesses a variable means fewer opportunities
for error

2007 JavaOneSM Conference | Session TS-2388 | 16

Encapsulate Data and
Synchronization
● Encapsulation makes it sensible to talk about individual classes

being thread-safe
● A body of code is thread-safe if:

● It is correct in a single-threaded environment, and
● It continues to be correct when called from multiple threads

● Regardless of interleaving of execution by the runtime
● Without additional coordination by callers

● Correct means conforms to its specification
● Often framed in terms of invariants and postconditions

● These are statements about state

● Can’t say a body of code guarantees an invariant unless no other
code can modify the underlying state

● Thread-safety can only describe a body of code that manages all access
to its mutable state

● Without encapsulation, that's the whole program

2007 JavaOneSM Conference | Session TS-2388 | 17

Encapsulate Data and
Synchronization
● Is this code correct? Is it thread-safe?

public class PositiveInteger {
// INVARIANT: value > 0
@GuardedBy("this") public int value = 1;

public synchronized int getValue() { return value; }

public synchronized void setValue(int value) {
if (value <= 0)

throw new IllegalArgumentException(....);
this.value = value;

}
}

● We can’t say unless we examine all the code that accesses value
●Doesn’t even enforce invariants in single-threaded case
●Difficult to reason about invariants when data can change at any time
●Can’t ensure data is accessed with proper synchronization

2007 JavaOneSM Conference | Session TS-2388 | 18

Encapsulate Data and
Synchronization
● Without encapsulation, cannot determine thread-safety without

reviewing the entire application
● Much easier to analyze one class than a whole program
● Harder to accidentally break thread safety if data and synchronization

are encapsulated

● We can build thread-safe code without encapsulation
● But it's fragile
● Requires code all over the program to follow the protocol
public final static Object lock = new Object();
@GuardedBy("lock")
public final static Set<String> users

= new HashSet<String>();

● Imposing locking requirements on external code is asking for trouble
● Fragility increases with the distance between declaration and use

2007 JavaOneSM Conference | Session TS-2388 | 19

Encapsulate Data and
Synchronization
● Sometimes we can push the encapsulation even deeper

● Manage state using thread-safe objects or volatile variables
● Even less fragile—can't forget to synchronize
● But only if class imposes no additional invariants

● Can transform this
public class Users {

@GuardedBy("this")
private final Set<User> users = new HashSet<User>();

public synchronized void addUser(User u) { users.add(u); }
....

}

● Into this
public class Users {

private final Set<User> users
= Collections.synchronizedSet(new HashSet<User>());

public void addUser(User u) { users.add(u); }
....

}

2007 JavaOneSM Conference | Session TS-2388 | 20

Encapsulate Data and
Synchronization
● If a class imposes invariants on its state, it must also provide its own

synchronization to protect these invariants
● Even if component classes are thread-safe!

● UserManager follows The Rule
● But still might not be thread-safe!
public class UserManager {

// Each known user is in exactly one of {active, inactive}
private final Set<User> active

= Collections.synchronizedSet(new HashSet<User>());
private final Set<User> inactive

= Collections.synchronizedSet(new HashSet<User>());

// Constructor populates inactive set with known users

public void activate(User u) {
if (inactive.remove(u))

active.add(u);
}

public boolean isKnownUser(User u) {
return active.contains(u) || inactive.contains(u);

}
}

2007 JavaOneSM Conference | Session TS-2388 | 21

Encapsulate Data and
Synchronization
● In UserManager, all data is accessed with synchronization

● But still possible to see a user as neither active nor inactive
● Therefore not thread-safe—can violate its specification!

● Need to make compound operations atomic with respect to one other
● Solution: synchronize UserManager methods

public class UserManager {
// Each known user is in exactly one of {active, inactive}
private final Set<User> active = Collections.synchronizedSet(...);
private final Set<User> inactive = Collections.synchronizedSet(...);

public synchronized void activate(User u) {
if (inactive.remove(u))

active.add(u);
}
public synchronized boolean isKnownUser(User u) {

return active.contains(u) || inactive.contains(u);
}
public Set<User> getActiveUsers() {

return Collections.unmodifiableSet(active);
}

}

2007 JavaOneSM Conference | Session TS-2388 | 22

Encapsulate Data and
Synchronization
● The problem was that synchronization was specified at a

different level than the invariants
● Result: atomicity failures (race conditions)
● Could fix with client-side locking, but is fragile
● Instead, encapsulate enforcement of invariants

● All variables in an invariant should be guarded by same lock
● Hold lock for duration of operation on related variables

● Always provide synchronization at the same level as
the invariants

● When composing operations on thread-safe objects, you may end
up with multiple layers of synchronization

● And that’s OK!

2007 JavaOneSM Conference | Session TS-2388 | 23

Summary: Encapsulation
● A thread-safe class encapsulates its data and any

needed synchronization
● Lack of encapsulation → fragility

● Without encapsulation, correctness and thread-safety can only
describe the entire program, not a single class

● Wherever a class defines invariants on its state, it must provide
synchronization to preserve those invariants

● Even if this means multiple layers of synchronization

● Where should the synchronization go?
● In the client—too fragile
● In the component classes—may not preserve invariants
● In the composite that defines invariants—just right

2007 JavaOneSM Conference | Session TS-2388 | 24

Agenda
 Introduction
 Rules for Writing Thread-Safe Code

 Document Thread-Safety Intent and Implementation
 Encapsulate Data and Synchronization
 Prefer Immutable Objects
 Exploit Effective Immutability

 Rules for Structuring Concurrent Applications
 Think Tasks, Not Threads
 Build Resource-Management Into Your Architecture
 Decouple Identification of Work from Execution

 Rules for Improving Scalability
 Find and Eliminate the Serialization

2007 JavaOneSM Conference | Session TS-2388 | 25

Prefer Immutable Objects
● An immutable object is one whose

● State cannot be changed after construction
● All fields are final

● Not optional—critical for thread-safety of immutable objects

● Immutable objects are automatically thread-safe!
● Simpler

● Can only ever be in one state, controlled by the constructor

● Safer
● Can be freely shared with unknown or malicious code, who cannot

subvert their invariants

● More scalable
● No synchronization required when sharing!

● (See Effective Java technology Item #13 for more)

2007 JavaOneSM Conference | Session TS-2388 | 26

Prefer Immutable Objects
● Most concurrency hazards stem from the need to coordinate

access to mutable state
● Race conditions and data races come from insufficient synchronization
● Many other problems (e.g., deadlock) are consequences of strategies for

proper coordination

● No mutable state → no need for coordination
● No race conditions, data races, deadlocks, scalability bottlenecks

● Identify immutable objects with @Immutable
● @Immutable implies @ThreadSafe

● Don’t worry about the cost of object creation
● Object lifecycle is generally cheap
● Immutable objects have some performance benefits too

2007 JavaOneSM Conference | Session TS-2388 | 27

Prefer Immutable Objects
● Even if immutability is not an option, less mutable state can still

mean less coordination
● Benefits of immutability apply to individual variables as well

as objects
● Final fields have special visibility guarantees
● Final fields are simpler than mutable fields

● Final is the new private
● Declare fields final wherever practical

● Worth doing extra work to avoid making fields nonfinal
● In synchronization policy diagrams, final variables provide a synchronization

policy for references
● But not the referred-to object

● If you can’t get away with full immutability, seek to limit mutable
state as much as possible

2007 JavaOneSM Conference | Session TS-2388 | 28

Agenda
 Introduction
 Rules for Writing Thread-Safe Code

 Document Thread-Safety Intent and Implementation
 Encapsulate Data and Synchronization
 Prefer Immutable Objects
 Exploit Effective Immutability

 Rules for Structuring Concurrent Applications
 Think Tasks, Not Threads
 Build Resource-Management Into Your Architecture
 Decouple Identification of Work from Execution

 Rules for Improving Scalability
 Find and Eliminate the Serialization

2007 JavaOneSM Conference | Session TS-2388 | 29

Find the Serialization
● Performance is a measure of how fast

● Learning to work faster increases your performance

● Scalability is a measure of how much more work could be done with
more resources

● Learning to delegate increases your scalability

● When problems get over a certain size, performance improvements
won’t get you there—you need to scale

● If a problem got ten times bigger, how much more resources
would I need to solve it?

● If you can just buy ten times as many CPUs (or memory or disks), then
we say the problem scales linearly or perfectly

2007 JavaOneSM Conference | Session TS-2388 | 30

Find the Serialization
● Processor speeds flattened

out around 2003
● Moore's law now gives us more

cores, not faster ones
● Increasing throughput means

keeping more cores busy

● Can no longer just buy a
faster box to get a speedup

● Must write programs that take
advantage of additional CPUs

● Just adding more cores may
not improve throughput

● Tasks must be amenable
to parallelization

Source: (Graphic © 2006 Herb Sutter)

2007 JavaOneSM Conference | Session TS-2388 | 31

Find the Serialization
● System throughput is governed by Amdahl’s Law

● Divides work into serial and parallel portions
● Serial work cannot be sped up by adding resources
● Parallelizable work can be

● Most tasks have a mix of serial and parallel work
● Harvesting crops can be sped up with more workers

● But additional workers will not make them grow any faster

● Amdahl’s Law says:

● F is the fraction that must be executed serially
● N is the number of available workers

● As N → infinity, speedup → 1/F
● With 50% serialization, can only speed up by a factor of two

● No matter how many processors

Speedup  1

F 1−F 
N



2007 JavaOneSM Conference | Session TS-2388 | 32

Find the Serialization
● Every task has some sources of serialization

● You just have to know where to look

● The primary source of serialization is the exclusive lock
● The longer locks are held for, the worse it gets

● Even when tasks consist only of thread-local computation, there
is still serialization inherent in task dispatching

while (!shutdownRequested) {
Task t = taskQueue.take(); // potential serialization
Result r = t.doTask();
resultSet.add(result); // potential serialization

}

● Accessing the task queue and the results container invariably involves
serialization

2007 JavaOneSM Conference | Session TS-2388 | 33

Find the Serialization
● To improve scalability, you have to find the

serialization and break it up
● Can reduce lock-induced serialization in several ways

● Hold locks for less time—“get in, get out”
● Move thread-local computation out of synchronized blocks

● But don’t make them so small as to split atomic operations

● Replace synchronized counters with AtomicInteger
● Use lock splitting or lock striping to reduce lock

contention
● Guards different state with different locks
● Reduces likelihood of lock contention
● Replace synchronized Map with ConcurrentHashMap

2007 JavaOneSM Conference | Session TS-2388 | 34

Find the Serialization
● Can eliminate locking entirely in some cases

● Replace mutable objects with immutable ones
● Replace shared objects with thread-local ones
● Confine objects to a specific thread (as in Swing)
● Consider ThreadLocal for heavyweight mutable objects that

don't need to be shared (e.g., GregorianCalendar)

● Signs that a concurrent program is bound by locking and
not by CPU resources

● Total CPU utilization < 100%
● High percentage of kernel CPU usage

2007 JavaOneSM Conference | Session TS-2388 | 35

For More Information
● Other sessions

● TS-2220: Testing Concurrent
Software

● TS-2007: Improving Software
Quality with Static Analysis

● BOF-2864: Debugging Data
Races

● Books
● Java Concurrency in Practice

(Goetz, et al)
● See http://www.jcip.net

● Concurrent Programming
in Java (Lea)

● Effective Java (Bloch)

2007 JavaOneSM Conference | Session TS-2388 | 36

Q&A
Effective Concurrency
for the Java Platform
Brian Goetz, Sun Microsystems

2007 JavaOneSM Conference | Session TS-2388 |

TS-2388

Effective Concurrency
for the Java™ Platform

Brian Goetz
Senior Staff Engineer
Sun Microsystems, Inc.
brian.goetz@sun.com

