microsystems

JavaOne

Effective Concurrency
for the Java™ Platform

Brian Goetz

Senior Staff Engineer
Sun Microsystems, Inc.
brian.goetz@sun.com

1S-2388

2007 JavaOne®M Conference | Session TS-2388 | java.sun.com/javaone

«

JavaOne

The Big Picture

2007 JavaOne®M Conference | Session TS-2388 | java.sun.com/javaone

JavaOne

About the Speaker

. Brian Goetz has been a professional :
software developer for 20 years BRIAN GOETZ W

WITH TiM PEIERLS, JOSHUA BLOCH,
JOSEPH BOWBEER, DaviD HOLMES,

° Author Of AND DOUG LEA
Java Concurrency in Practice

. Author of over 75 articles on Java™
platform development

See
http://www.briangoetz.com/pubs.html

. Member of Java Community ProcesssM
(JCPSM) expert groups for JSRs 166
(Concurrency), 107 (Caching), and 305
(Safety annotations)

- Regular presenter at the JavaOnesM
conference, SDWest, OOPSLA,
JavaPolis, and No Fluff, Just Stuff

L MR = - el el

JSR = Java Specification Request

@ Sun 2007 JavaOne®M Conference | Session TS-2388 | 3 java.sun.com/javaone

JavaOne

Agenda

Introduction
Rules for Writing Thread-Safe Code

Document Thread-Safety Intent and Implementation
Encapsulate Data and Synchronization

Prefer Immutable Objects

Exploit Effective Immutability

Rules for Structuring Concurrent Applications
Think Tasks, Not Threads
Build Resource-Management Into Your Architecture
Decouple ldentification of Work from Execution

Rules for Improving Scalability
Find and Eliminate the Serialization

@ Sun 2007 JavaOneSM Conference | Session TS-2388 | 4 java.sun.com/javaone

JavaOne

Agenda

Introduction
Rules for Writing Thread-Safe Code

Document Thread-Safety Intent and Implementation
Encapsulate Data and Synchronization

Prefer Immutable Objects

Exploit Effective Immutability

Rules for Structuring Concurrent Applications
Think Tasks, Not Threads
Build Resource-Management Into Your Architecture
Decouple ldentification of Work from Execution

Rules for Improving Scalability
Find and Eliminate the Serialization

@ Sun 2007 JavaOneSM Conference | Session TS-2388 | 5 java.sun.com/javaone

JavaOne

Introduction

- This talk is about identifying patterns for
concurrent code that are less fragile

. Conveniently, many are the good practices
we already know

- Though sometimes we forget the basics

- Feel free to break (almost) all the rules here
- But be prepared to pay for it at maintenance time

- Remember the core language value:
Reading code is more important than writing code

@ Sun 2007 JavaOneSM Conference | Session TS-2388 | 6 java.sun.com/javaone

JavaOne

Agenda

Introduction
Rules for Writing Thread-Safe Code

Document Thread-Safety Intent and Implementation
Encapsulate Data and Synchronization

Prefer Immutable Objects

Exploit Effective Immutability

Rules for Structuring Concurrent Applications
Think Tasks, Not Threads
Build Resource-Management Into Your Architecture
Decouple ldentification of Work from Execution

Rules for Improving Scalability
Find and Eliminate the Serialization

@ Sun 2007 JavaOneSM Conference | Session TS-2388 | 7 java.sun.com/javaone

«

=14
=

—_—
= Java

JavaOne

@ Sun

Document Thread-Safety

One of the easiest way to write thread-safe classes is to build on

existing thread-safe classes

. But how do you know if a class is thread-safe?
. The documentation should say, but frequently doesn't

. Can be dangerous to guess
. Should assume not thread-safe unless otherwise specified

Document thread-safety design intent

. Class annotations: @ThreadSafe, @NotThreadSafe

@ThreadSafe

public class ConcurrentHashMap { }
With class-level thread-safety annotations:

. Clients will know whether the class is thread-safe

. Maintainers will know what promises must be kept

- Tools can help identify common mistakes

2007 JavaOneSM Conference | Session TS-2388 |

8

java.sun.com./javaone

JavaOne

Document Thread-Safety

- Should also document how a class gets its thread-safety
. This is your synchronization policy

. The Rule:

- When writing a variable that might next be read by another thread, or reading a
variable that might last have been written by another thread, both threads must
synchronize using a common lock

- Leads to design rules of the form hold lock L when
accessing variable V

. We say Vis guarded by L

- These rules form protocols for coordinating access to data
- Such as “Only the one holding the conch shell can speak”

- Only work if all participants follow the protocol
. If one party cheats, everyone loses

@ Sun 2007 JavaOne®M Conference | Session TS-2388 | 9 java.sun.com/javaone

&

=14
=

—_—
. Java

JavaOne

@ Sun

Document Thread-Safety

- Use RGuardedBy to document your locking protocols

- Annotating a field with @GuardedBy ("this") means:

- Only access the field when holding the lock on “this”

@ThreadSafe
public class Positivelnteger {
// INVARIANT: value > 0
@GuardedBy (""this'") private int value = 1;

public synchronized int getValue() { return value,; }
public void setValue (int value) f{
if (value <= 0)
throw new IllegalArgumentException(....);,

synchronized (this) {
this.value = value,
}

}

Simplifies maintenance and avoids common mistakes

2007 JavaOneSM Conference | Session TS-2388 | 10

Like adding a new code path and forgetting to synchronize
Improper maintenance is a big source of concurrency bugs

java.sun.com/javaone

«

=14
=

—_—
. Java

JavaOne

Document Thread-Safety

- For primitive variables, @ GuardedBy is straightforward

- But what about
@GuardedBy ("this'") Set<Rock> knownRocks = new HashSet<Rock>();

- There are three different types of potentially mutable state
.The knownRocks reference
-The internal data structures in the HashSet
.The elements of the collection

- Which types of state are we talking about? All of them?

. It varies, but we can often tell from context
-Are the elements owned by the class, or by clients?
-Are the elements thread-safe?

.Is the reference to the collection mutable?
@GuardedBy ("this") final Set<Rock> knownRocks =

@ Sun 2007 JavaOne®M Conference | Session TS-2388 | 11 java.sun.com/javaone

JavaOne

Document Thread-Safety

. For complicated data structures, draw a diagram
identifying ownership and synchronization policies

. Color each state domain with its synchronization policy
@ThreadSafe public class Rock { }

@GuardedBy ("this") final Set<Rock>
knownRocks = new HashSet<Rock>() knownRocks

- Very effective for designing and
reviewing code!

. Frequently identifies gaps
or inconsistencies in

HashSet<Rock>
synchronization policies S (e

@.fﬂﬂ 2007 JavaOne®M Conference | Session TS-2388 | 12 java.sun.com/javaone

@ Sun

Document classes as @ThreadSafe or
@NotThreadSafe

Saves your clients from guessing wrong
Puts maintainers on notice to preserve thread-safety

Document synchronization policy with @GuardedBy

Helps you make sure you have a clear thread-safety strategy
Helps maintainers keep promises made to clients
Helps tools alert you to mistakes

Use diagrams to verify thread-safety strategies for
nontrivial data structures

Inadequate documentation — fragility

2007 JavaOne®M Conference | Session TS-2388 | 13 java.sun.com/javaone

JavaOne

Agenda

Introduction
Rules for Writing Thread-Safe Code

Document Thread-Safety Intent and Implementation
Encapsulate Data and Synchronization

Prefer Immutable Objects

Exploit Effective Immutability

Rules for Structuring Concurrent Applications
Think Tasks, Not Threads
Build Resource-Management Into Your Architecture
Decouple ldentification of Work from Execution

Rules for Improving Scalability
Find and Eliminate the Serialization

@ Sun 2007 JavaOneSM Conference | Session TS-2388 | 14 java.sun.com/javaone

“~Encapsulate

Synchronization

- Encapsulation promotes clear, maintainable code
. Reduces scope of effect of code changes

- Encapsulation similarly promotes thread safety
. Reduces how much code can access a variable

- And therefore how much be examined to ensure that synchronization
protocols are followed

- Thread safety is about coordinating access to shared
mutable data
. Shared—might be accessed by more than one thread
- Mutable—might be modified by some thread

- Less code that accesses a variable means fewer opportunities
for error

@ Sun 2007 JavaOne®M Conference | Session TS-2388 | 15 java.sun.com/javaone

“Encapsulate Data and
Synchronization

Encapsulation makes it sensible to talk about individual classes
being thread-safe

A body of code is thread-safe if:
It is correct in a single-threaded environment, and
It continues to be correct when called from multiple threads
Regardless of interleaving of execution by the runtime
Without additional coordination by callers

Correct means conforms to its specification

Often framed in terms of invariants and postconditions
These are statements about state

Can’t say a body of code guarantees an invariant unless no other
code can modify the underlying state

Thread-safety can only describe a body of code that manages all access
to its mutable state

Without encapsulation, that's the whole program

@ Sun 2007 JavaOne®M Conference | Session TS-2388 | 16 java.sun.com/javaone

“~Encapsulate

Synchronization

. Is this code correct? Is it thread-safe?

public class PositiveInteger {
// INVARIANT: value > 0
@GuardedBy ("this'") public int value = 1;

public synchronized int getValue() { return value,; }

public synchronized void setValue (int value) {
if (value <= 0)
throw new IllegalArgumentException(....);
this.value = value;,

}

- We can’t say unless we examine all the code that accesses value
.Doesn’t even enforce invariants in single-threaded case
.Difficult to reason about invariants when data can change at any time
-.Can’t ensure data is accessed with proper synchronization

@ Sun 2007 JavaOne®M Conference | Session TS-2388 | 17 java.sun.com/javaone

“~Encapsulate

Synchronization

- Without encapsulation, cannot determine thread-safety without
reviewing the entire application

- Much easier to analyze one class than a whole program
- Harder to accidentally break thread safety if data and synchronization
are encapsulated
- We can build thread-safe code without encapsulation
. Butit's fragile
- Requires code all over the program to follow the protocol

public final static Object lock = new Object();,
@GuardedBy ("lock")
public final static Set<String> users

= new HashSet<String>(),

- Imposing locking requirements on external code is asking for trouble
. Fragility increases with the distance between declaration and use

@ Sun 2007 JavaOne®M Conference | Session TS-2388 | 18 java.sun.com/javaone

JavaOne

ncapsulate Data an
Synchronization

- Sometimes we can push the encapsulation even deeper
- Manage state using thread-safe objects or volatile variables
. Even less fragile—can't forget to synchronize
- Butonly if class imposes no additional invariants

. Can transform this

public class Users {
@GuardedBy ("this")
private final Set<User> users = new HashSet<User>();,

public synchronized void addUser (User u) { users.add(u),; }

}
- Into this

public class Users {
private final Set<User> users
= Collections.synchronizedSet (new HashSet<User>()),

public void addUser (User u) { users.add(u),; }

@ Sun 2007 JavaOne®M Conference | Session TS-2388 | 19 java.sun.com/javaone

JavaOne

@ Sun

ncapsulate
Synchronization

. If a class imposes invariants on its state, it must also provide its own
synchronization to protect these invariants

. Even if component classes are thread-safe!

. UserManager follows The Rule
- But still might not be thread-safe!

public class UserManager {
// Each known user is in exactly one of {active, inactive}
private final Set<User> active
= Collections.synchronizedSet (new HashSet<User>()),
private final Set<User> inactive
= Collections.synchronizedSet (new HashSet<User>()),

// Constructor populates inactive set with known users
public void activate (User u) {

if (inactive.remove (u))
active.add (u) ,;

}
public boolean isKnownUser (User u) {
return active.contains(u) || inactive.contains (u);,
}
}
2007 JavaOne®M Conference | Session TS-2388 | 20 java.sun.com/javaone

JavaOne

@ Sun

ncapsulate
Synchronization

- In UserManager, all data is accessed with synchronization

. But still possible to see a user as neither active nor inactive
. Therefore not thread-safe—can violate its specification!

- Need to make compound operations atomic with respect to one other
. Solution: synchronize UserManager methods

public class UserManager {
// Each known user is in exactly one of {active, inactive}
private final Set<User> active = Collections.synchronizedSet(...);,
private final Set<User> inactive = Collections.synchronizedSet(...);,

public synchronized void activate (User u) {
if (inactive.remove (u))
active.add (u) ;
}
public synchronized boolean isKnownUser (User u) {
return active.contains(u) || inactive.contains (u);,
}
public Set<User> getActiveUsers() {
return Collections.unmodifiableSet (active),
}

2007 JavaOneSM Conference | Session TS-2388 | 21 java.sun.com/javaone

EE Encapsula%e ga%a an%

Synchronization

The problem was that synchronization was specified at a
different level than the invariants

Result: atomicity failures (race conditions)
Could fix with client-side locking, but is fragile

Instead, encapsulate enforcement of invariants
All variables in an invariant should be guarded by same lock
Hold lock for duration of operation on related variables

Always provide synchronization at the same level as
the invariants

When composing operations on thread-safe objects, you may end
up with multiple layers of synchronization

And that’s OK!

@ Sun 2007 JavaOne®M Conference | Session TS-2388 | 22 java.sun.com/javaone

«

=14
=

—_—
= Java

JavaOne

Summary: Encapsulation

- A thread-safe class encapsulates its data and any
needed synchronization

. Lack of encapsulation — fragility

- Without encapsulation, correctness and thread-safety can only
describe the entire program, not a single class

- Wherever a class defines invariants on its state, it must provide
synchronization to preserve those invariants

. Even if this means multiple layers of synchronization

- Where should the synchronization go?
- In the client—too fragile
- In the component classes—may not preserve invariants
. In the composite that defines invariants—just right

@ Sun 2007 JavaOne®M Conference | Session TS-2388 | 23 java.sun.com/javaone

JavaOne

Agenda

Introduction
Rules for Writing Thread-Safe Code

Document Thread-Safety Intent and Implementation
Encapsulate Data and Synchronization

Prefer Inmutable Objects

Exploit Effective Immutability

Rules for Structuring Concurrent Applications
Think Tasks, Not Threads
Build Resource-Management Into Your Architecture
Decouple ldentification of Work from Execution

Rules for Improving Scalability
Find and Eliminate the Serialization

@ Sun 2007 JavaOneSM Conference | Session TS-2388 | 24 java.sun.com/javaone

JavaOne

Prefer Immutable Objects

An immutable object is one whose
. State cannot be changed after construction

. Allfields are final
Not optional—critical for thread-safety of immutable objects

- Immutable objects are automatically thread-safe!

. Simpler
. Can only ever be in one state, controlled by the constructor

. Safer

. Can be freely shared with unknown or malicious code, who cannot
subvert their invariants

- More scalable
- No synchronization required when sharing!

- (See Effective Java technology Item #13 for more)

@ Sun 2007 JavaOne®M Conference | Session TS-2388 | 25 java.sun.com/javaone

«

=14
=

—_—
= Java

JavaOne

@ Sun

Prefer Immutable Objects

- Most concurrency hazards stem from the need to coordinate
access to mutable state

- Race conditions and data races come from insufficient synchronization

- Many other problems (e.g., deadlock) are consequences of strategies for
proper coordination

. No mutable state — no need for coordination
- No race conditions, data races, deadlocks, scalability bottlenecks

- ldentify immutable objects with @ Immutable
- @Immutable implies @ThreadSafe

. Don’t worry about the cost of object creation
. Object lifecycle is generally cheap
- Immutable objects have some performance benefits too

2007 JavaOne®M Conference | Session TS-2388 | 26 java.sun.com/javaone

&

=14
=

—_—
= Java

JavaOne

@ Sun

Prefer Immutable Objects

- Even if immutability is not an option, less mutable state can still
mean less coordination

. Benefits of immutability apply to individual variables as well
as objects

. Final fields have special visibility guarantees
. Final fields are simpler than mutable fields

- Final is the new private
. Declare fields final wherever practical
Worth doing extra work to avoid making fields nonfinal

- In synchronization policy diagrams, final variables provide a synchronization
policy for references

But not the referred-to object

- If you can’t get away with full immutability, seek to limit mutable
State as much as possible

2007 JavaOne®M Conference | Session TS-2388 | 27 java.sun.com/javaone

JavaOne

Agenda

Introduction
Rules for Writing Thread-Safe Code

Document Thread-Safety Intent and Implementation
Encapsulate Data and Synchronization

Prefer Immutable Objects

Exploit Effective Immutability

Rules for Structuring Concurrent Applications
Think Tasks, Not Threads
Build Resource-Management Into Your Architecture
Decouple ldentification of Work from Execution

Rules for Improving Scalability
Find and Eliminate the Serialization

’.Ti,‘ﬂ 2007 JavaOne®M Conference | Session TS-2388 | 28 java.sun.com/javaone

«

=14
=

—_—
= Java

JavaOne

@ Sun

Find the Serialization

. Performance is a measure of how fast
. Learning to work faster increases your performance

. Scalability is a measure of how much more work could be done with
more resources
. Learning to delegate increases your scalability

- When problems get over a certain size, performance improvements
won't get you there—you need to scale

. If a problem got ten times bigger, how much more resources
would | need to solve it?

. If you can just buy ten times as many CPUs (or memory or disks), then
we say the problem scales linearly or perfectly

2007 JavaOne®M Conference | Session TS-2388 | 29 java.sun.com/javaone

JavaOne

Find the Serialization

- Processor speeds flattened
out around 2003
. Moore's law now gives us more 9838
cores, not faster ones
- Increasing throughput means 10000

keeping more cores busy

. Can no longer just buy a
faster box to get a speedup

- Must write programs that take
advantage of additional CPUs

- Just adding more cores may o
not improve throughput

100

Tasks must be amenable '

to parallelization

01

Source: (Graphic © 2006 Herb Sutter)

* Clock Speed [MHz] [

= Transistors [D00)

197

1375

1373

1983

1987

@ Sun 2007 JavaOneSM Conference | Session TS-2388 |

193 1335 1333 2003 2007

30 java.sun.com/javaone

JavaOne

Find the Serialization

System throughput is governed by Amdahl’s Law

. Divides work into serial and parallel portions
. Serial work cannot be sped up by adding resources
. Parallelizable work can be

Most tasks have a mix of serial and parallel work

- Harvesting crops can be sped up with more workers
. But additional workers will not make them grow any faster

1
(1-F)
N

Amdahl’'s Law says: Speedup <

(F+

. Fis the fraction that must be executed serially
. N is the number of available workers

)

As N — infinity, speedup — 1/F

. With 50% serialization, can only speed up by a factor of two
. No matter how many processors

@ Sun 2007 JavaOne®M Conference | Session TS-2388 | 31 java.sun.com/javaone

«

=14
=

-1
—_ Java

JavaOne

Find the Serialization

. Every task has some sources of serialization
- You just have to know where to look

- The primary source of serialization is the exclusive lock
- The longer locks are held for, the worse it gets

- Even when tasks consist only of thread-local computation, there
is still serialization inherent in task dispatching

while (!shutdownRequested) ({

Task t = taskQueue.take(); // potential serialization
Result r = t.doTask() ;
resultSet.add (result) ; // potential serialization

}

- Accessing the task queue and the results container invariably involves
serialization

@ Sun 2007 JavaOne®M Conference | Session TS-2388 | 32 java.sun.com/javaone

JavaOne

Find the Serialization

- To improve scalability, you have to find the
serialization and break it up

- Can reduce lock-induced serialization in several ways

- Hold locks for less time—"get in, get out”

- Move thread-local computation out of synchronized blocks
. But don’t make them so small as to split atomic operations
- Replace synchronized counters with AtomicInteger

- Use lock splitting or lock striping to reduce lock
contention
. Guards different state with different locks
- Reduces likelihood of lock contention
- Replace synchronized Map with ConcurrentHashMap

@ Sun 2007 JavaOne®M Conference | Session TS-2388 | 33 java.sun.com/javaone

JavaOne

@ Sun

Find the Serialization

- Can eliminate locking entirely in some cases
- Replace mutable objects with immutable ones
- Replace shared objects with thread-local ones

. Confine objects to a specific thread (as in Swing)

- Consider ThreadLocal for heavyweight mutable objects that
don't need to be shared (e.g., GregorianCalendar)

- Signs that a concurrent program is bound by locking and
not by CPU resources

. Total CPU utilization < 100%
- High percentage of kernel CPU usage

2007 JavaOne®M Conference | Session TS-2388 | 34 java.sun.com/javaone

JavaOne

For More Information

. Other sessions

BRIAN GOETZ e
- 18-2220: Testing Concurrent S e, B et
Software R DEae Lan

- TS-2007: Improving Software
Quality with Static Analysis

- BOF-2864: Debugging Data
Races

. Books

. Java Concurrency in Practice
(Goetz, et al)

. See http://www.jcip.net

. Concurrent Programming
in Java (Lea)

. Effective Java (Bloch) B e . :

@ Sun 2007 JavaOne®M Conference | Session TS-2388 | 35 java.sun.com/javaone

JavaOne

Effective Concurrency
for the Java Platform

Brian Goetz, Sun Microsystems

2007 JavaOne®M Conference | Session TS-2388 | 36 java.sun.com/javaone

microsystems

JavaOne

Effective Concurrency
for the Java™ Platform

Brian Goetz

Senior Staff Engineer
Sun Microsystems, Inc.
brian.goetz@sun.com

1S-2388

2007 JavaOne®M Conference | Session TS-2388 | java.sun.com/javaone

