@Sun

IT]
L8
i

O

D_r“
| @
-

JavaOne

Joshua Bloch

Chief Java Architect
Google Inc.

TS-2689

2007 JavaOne®M Conference | Session TS-2689 | iava.sun.com/javaone

Disclaimer
Effective Java Still Hasn’t Been Reloaded,
but | Do Have Plenty of Ammunition

& A
e .’-I.'I-lI

2007 JavaOneSM Conference | Session TS-2689 | 2 java.sun.com/javaone

JavaOne

Topics

Object Creation (2 Sections)

Generics (6 Sections)
Miscellania (2 Sections)

@Sun 2007 JavaOneSM Conference | Session TS-2689 | 3 java.sun.com/javaone

JavaOne

Topics

Object Creation
Generics
Miscellania

D Sun 2007 JavaOneSM Conference | Session TS-2689 | 4 java.sun.com/javaone

S— I B ... W S S S S S

Advantages Over Constructors
(Old News)

Need not create a new object on each call

They have names
+ Allows multiple factories with same type signature

Flexibility to return object of any subtype
But wait! There’s more...

@ Sun 2007 JavaOneSM Conference | Session TS-2689 | 5 java.sun.com/javaone

S,
=
. Java

JavaOne

New Static Factory Advantage:
They Do Type Inference

* Which looks better?

* Map<String, List<String>> m =
new HashMap<String, List<String>>();

* Map<String, List<String>> m = HashMap.newInstance() ;

- Regrettably HashMap has no such method (yet)

- Until it does, you can write your own utility class

* Your generic classes can and should:

public static <K, V> HashMap<K, V> newlInstance() {
return new HashMap<K, V>();

}

@ Sun 2007 JavaOneSM Conference | Session TS-2689 | 6 java.sun.com/javaone

o 2. Static Factories and
Constructors Share a Problem

- Ugly when they have many optional parameters

- new NutritionFacts (int servingSize, int servings,
int calories, int fat, int sodium, int carbohydrate,
15 more optional params!) ;

- Telescoping signature pattern is a hack

* NutritionFacts locoCola =
new NutritionFacts (240, 8, 0, 0, 30, 28);

- Beans-style setters are not the answer!
- Allows inconsistency, mandates mutability

@Sun 2007 JavaOneSM Conference | Session TS-2689 | 7 java.sun.com/javaone

JavaOne

The Solution: Builder Pattern

Builder constructor takes all required params

One setter for each optional parameter
- Setters return the builder to allow for chaining

One method to generate instance
Pattern emulates named optional parameters!

NutritionFacts locoCola =
new NutritionFacts.Builder (240, 8)
.sodium(30) .carbohydrate (28) .build() ;

@ Sun 2007 JavaOneSM Conference | Session TS-2689 | 8 java.sun.com/javaone

JavaOne

Builder Implementation Sketch

public class NutritionFacts {
public static class Builder {
public Builder (int servingSize, int servings) ({
this.servingSize = servingSize;
this.servings = servings;

}

public Builder calories(int wval) {
calories = val; return this;

}

// 15 more setters

public NutritionFacts build() {
return new NutritionFacts (this) ;
}
}

private NutritionFacts (Builder builder) ({
<copy data from Builder to NutritionFacts>

}

@ Sun 2007 JavaOneSM Conference | Session TS-2689 | 9 java.sun.com/javaone

JavaOne

An Intriguing Possibility
package java.util;

public interface Builder<T> {
T build() ;

}

Much safer and more powerful than passing Class
objects around and calling newInstance ()

@ Sun 2007 JavaOneSM Conference | Session TS-2689 | 10 java.sun.com/javaone

JavaOne

Topics

Object Creation
Generics
Miscellania

D Sun 2007 JavaOneSM Conference | Session TS-2689 | 11 java.sun.com/javaone

JavaOne

& Sun

1. Avoid Raw Types in New Code

// Generic type: Good
Collection<Coin> coinCollection = new ArrayList<Coin>() ;
coinCollection.add(new Stamp()); // Won’'t compile

for (Coin ¢ : coinCollection) {

// Raw Type: Evil
Collection coinCollection = new ArrayList();
coinCollection.add (new Stamp()); // Succeeds but should not

for (Object o : coinCollection) {
Coin ¢ = (Coin) o; // Throws exception at runtime

2007 JavaOneSM Conference | Session TS-2689 | 12 java.sun.com/javaone

S,
=
. Java

JavaOne

Don’t Ignore Compiler Warnings

» If you've been using generics, you've seen lots
» Understand each warning
- Eliminate it if possible

- If you can’t eliminate a warning, suppress them
@SuppressWarnings ("unchecked")

- But limit the scope as much as possible
- Declare an extra variable if necessary

@Sun 2007 JavaOneSM Conference | Session TS-2689 | 13 java.sun.com/javaone

S,
=
_ Java

JavaOne

D Sun

2. Use Bounded Wildcards
to Increase Applicability of APIs

// Method names are from the perspective of customer
public interface Shop<T> {
T buy()

void sell (T myItem) ;
void buy (int numToBuy, Collection<T> myCollection) ;

void sell (Collection<T> mylLot) ;

class Model { }
class ModelPlane extends Model { }

class ModelTrain extends Model { }

Thanks to Peter Sestoft for shop example

2007 JavaOneSM Conference | Session TS-2689 | 14 java.sun.com/javaone

S,
—
JEVE]

JavaOne

& Sun

Works Fine If You Stick to One
Type

// Individual purchase and sale
Shop<ModelPlane> modelPlaneShop = ... ;

ModelPlane myPlane = modelPlaneShop.buy () ;

modelPlaneShop.sell (myPlane) ;

// Bulk purchase and sale
Collection<ModelPlane> myPlanes = ... ;
modelPlaneShop.buy (5, myPlanes) ;
modelPlaneShop.sell (myPlanes) ;

2007 JavaOneSM Conference | Session TS-2689 |

15

java.sun.com/javaone

JavaOne

Simple Subtyping Works Fine

// You can buy a model from a train shop
Model myModel = modelTrainShop.buy() ;

// You can sell a model train to a model shop
modelShop.sell (myTrain) ;

public interface Shop<T> {
T buy();
void sell (T myItem) ;
void buy (int numToBuy, Collection<T> myCollection) ;

void sell (Collection<T> myLot) ;

@ Sun 2007 JavaOneSM Conference | Session TS-2689 | 16 java.sun.com/javaone

JavaOne

& Sun

Collection Subtyping Doesn’t
Work!

// You can't buy a bunch of models from the train shop
modelTrainShop.buy (5, myModelCollection); // Won't compile

// You can't sell a bunch of trains to the model shop
modelShop.sell (myTrains) ; // Won't compile

public interface Shop<T> {
T buy();
void sell (T item) ;
void buy(int numToBuy, Collection<T> myCollection) ;

void sell (Collection<T> myLot) ;

2007 JavaOneSM Conference | Session TS-2689 | 17 java.sun.com/javaone

JavaOne

Bounded Wildcards to the Rescue

public interface Shop<T> {
T buy() ;
void sell (T item) ;

void buy(int numToBuy,
Collection<? super T> myCollection) ;

void sell (Collection<? extends T> myLot) ;

// You can buy a bunch of models from the train shop
modelTrainShop.buy (5, myModelCollection); // Compiles

// You can sell your train set to the model shop;
modelShop.sell (myTrains) ; // Compiles

@ Sun 2007 JavaOneSM Conference | Session TS-2689 | 18 java.sun.com/javaone

S,
—
JEVE]

JavaOne

Basic Rule for Bounded Wildcards

- Use <? extends T> when parameterized
instance is a T producer (“for read/input”)

- Use <? super T> when parameterized instance
is a T consumer (“for write/output”)

@Sun 2007 JavaOneSM Conference | Session TS-2689 | 19 java.sun.com/javaone

Variables

Bounded wildcards
void sell (Collection<? extends T> myLot) ;

Major use: restrict input parameters
Can use super

Bounded type variables
<T extends Number> T sum(List<T> x) { .. }

Restricts actual type parameter
Works for parameterized classes and methods

Can'’t use super

@Sun 2007 JavaOneSM Conference | Session TS-2689 | 20 java.sun.com/javaone

JavaOne

Between Wlldcards and Type
Parameters

You often have the choice between wildcards
and type parameters in parameterized methods

These two signatures have identical semantics
boolean addAll (Collection<? extends E> c);
<T extends E> boolean addAll (Collection<T> c) ;

@Sun 2007 JavaOneSM Conference | Session TS-2689 | 21 java.sun.com/javaone

S Sun

Parameters
In Parameterized Methods

// Generic method with type parameter E
public <E> void removeAll (Collection<E> coll) {
for (E e : coll)
remove (e) ;

}

// Method whose parameter uses wildcard type
public void removeAll (Collection<?> coll) {
for (Object o : coll)
remove (0) ;

}

The rule: If a type variable appears only once
in a method signature, use wildcard instead

2007 JavaOneSM Conference | Session TS-2689 | 22 java.sun.com/javaone

Bounded Wlldcards In Return
Types

They force client to deal with wildcards directly

Only library designers should have to think
about wildcards

Rarely, you do need to return wildcard type

For example, a read-only list of numbers
List<? extends Number> operands() ;

@Sun 2007 JavaOneSM Conference | Session TS-2689 | 23 java.sun.com/javaone

JavaOne

& Sun

Don’t Overuse Wildcards

// Perfectly good method
public static <T> List<T> longer (List<T> cl, List<T> c2) {

return cl.size() >= c2.size() ? cl : c2;

// Don’t do this!!! More complex and less powerful
public static List<?> longer (List<?> cl, List<?> c2) {
return cl.size() >= c2.size() ? cl : c2;

2007 JavaOneSM Conference | Session TS-2689 | 24 java.sun.com/javaone

S,
=
JEVE]

JavaOne

Don’t Overuse Wildcards (2)

* |n java.util.concurrent.ExecutorService
public Future<?> submit (Runnable task)
* Intent: to show that Future always returned null
+ Result: minor pain for API users

» Correct idiom to indicate unused type parameter
public Future<Void> submit (Runnable task) ;
» Type void is non-instantiable
- Easier to use and clarifies intent

@Sun 2007 JavaOneSM Conference | Session TS-2689 | 25 java.sun.com/javaone

Program?

public static void rotate (List<?> list) {
if (list.size() == 0)
return;
list.add(list.remove (0)) ;

@ Sun 2007 JavaOneSM Conference | Session TS-2689 | 26 java.sun.com/javaone

o Answer:
It Won’t Compile

public static void rotate (List<?> list) {
if (list.size() == 0)
return;
list.add(list.remove (0)) ;

Rotate.java:6: cannot find symbol

symbol : method add(java.lang.Object)

location: interface java.util.List<capture#503 of ?>
list.add(list.remove (0)) ;

A

@ Sun 2007 JavaOneSM Conference | Session TS-2689 | 27 java.sun.com/javaone

JavaOne

Intuition Behind the Problem

public static void rotate (List<?> list) {
if (list.size () == 0)
return;
list.add(list.remove (0)) ;

remove and add are two distinct operations

Invoking each method “captures” the wildcard type
Type system doesn’t know captured types are identical

@Sun 2007 JavaOneSM Conference | Session TS-2689 | 28 java.sun.com/javaone

S,
—
JEVE]

JavaOne

This Program Really Is Unsafe

public class Rotate {
List<?> list;
Rotate (List<?> list) { this.list = list; }

public void rotate() {
if (list.size() == 0)
return;
list.add(list.remove (0)) ;

}

Another thread could set list field from List<Stamp>
to List<Coin> between remove and add

@Sun 2007 JavaOneSM Conference | Session TS-2689 | 29 java.sun.com/javaone

S,
—
JEVE]

JavaOne

Solution: Control Wildcard-Capture

public static void rotate (List<?> list) {
rotateHelper (list) ;

// Generic helper method captures wildcard once
private static <E> void rotateHelper (List<E> list) {

if (list.size() == 0)
return;
list.add(list.remove (0)) ;

Now the list and the element have same type: E

2007 JavaOneSM Conference | Session TS-2689 | 30 java.sun.com/javaone

& Sun

)
!
. Java

JavaOne

5. Generics and Arrays
Don’t Mix; Prefer Generics

Generic array creation error caused by
new T[SIZE], Set<T>[SIZE], List<String>[SIZE]

Affects varargs (warning rather than error)
void foo(Class<? extends Thing>... things);

Avoid generic arrays; use List instead
List<T>, List<Set<T>>, List<List<String>>

Some even say: Avoid arrays altogether

@ Sun 2007 JavaOneSM Conference | Session TS-2689 | 31 java.sun.com/javaone

Container

Typically, containers are parameterized
Limits you to a fixed number of type parameters

Sometimes you need more flexibility
Database rows

You can parameterize selector instead
Present selector to container to get data
Data is strongly typed at compile time
Effectively allows for unlimited type parameters

@ Sun 2007 JavaOneSM Conference | Session TS-2689 | 32 java.sun.com/javaone

S,
=
JEVE]

JavaOne

D Sun

Typesafe Heterogeneous
Container Example

public class Favorites {

private Map<Class<?>, Object> favorites =
new HashMap<Class<?>, Object>();

public <T> void setFavorite (Class<T> klass, T thing) {
favorites.put(klass, thing)

}

public <T> T getFavorite (Class<T> klass) {
return klass.cast (favorites.get(klass)) ;

}

public static void main(String[] args) {
Favorites f = new Favorites();
f.setFavorite (String.class, "Java");
f.setFavorite (Integer.class, Oxcafebabe) ;
String s = f.getFavorite(String.class);
int i = f.getFavorite (Integer.class);

2007 JavaOneSM Conference | Session TS-2689 | 33 java.sun.com/javaone

JavaOne

List<String> or
List<Integer>

// Won’t Compile!
List<String> stooges = Arrays.asList(
"Larry", "Moe", "Curly");
List<Integer> fibs = Arrays.asList(
1, 1, 2, 3, 5, 8);
f.setFavorite (List<String>.class, Stooges);
f.setFavorite (List<Integer>.class, fibs);
String s = f.getFavorite(List<String>.class);
int i = f.getFavorite (List<Integer>.class);

Generics use type erasure. List<String> and
List<Integer> have the same class object

@ Sun 2007 JavaOneSM Conference | Session TS-2689 | 34 java.sun.com/javaone

S,
=
. Java

JavaOne

The Solution: Super Type Tokens

import java.lang.reflect.*;

public abstract class TypeRef<T> {
private final Type type;
protected TypeRef () ({
ParameterizedType superclass = (ParameterizedType)
getClass () .getGenericSuperclass() ;
type = superclass.getActualTypeArguments () [0];
}
@Override public boolean equals (Object o) {
return o instanceof TypeRef &é&
((TypeRef)0) . type.equals (type) ;
}
@Override public int hashCode () {

return type.hashCode() ;
} Idea due to Neal Gafter

@ Sun 2007 JavaOneSM Conference | Session TS-2689 | 35 java.sun.com/javaone

JavaOne

D Sun

Contalner W|th Super Type
Tokens

public class Favorites2 ({
private Map<TypeRef<?>, Object> favorites =
new HashMap< TypeRef<?> , Object>() ;
public <T> void setFavorite (TypeRef<T> type, T thing) {
favorites.put(type, thing);
}
@SuppressWarning ("unchecked")
public <T> T getFavorite (TypeRef<T> type) ({
return (T) favorites.get(type)
}
public static void main(String[] args) ({
Favorites2 f = new Favorites2() ;
List<String> stooges = Arrays.asList(
"Larry", "Moe", "Curly");
f.setFavorite (new TypeRef<List<String>>(){}, stooges)
List<String> 1ls = f.getFavorite(
new TypeRef<List<String>>(){}):

} 2007 JavaOneSM Conference | Session TS-2689 | 36 java.sun.com/javaone

@D Sun

Generics Summary

Avoid raw types; Don’t ignore compiler warnings
Use bounded wildcards to increase power of APIs

Understand the relationship between bounded
wildcards and bounded type variables

Generics and arrays don’t mix; prefer generics
Use typesafe heterogeneous container pattern

Generics are tricky, but worth learning.
They make your programs better!

2007 JavaOne®sM Conference | Session TS-2689 | 37

JavaOne

Topics

Object Creation
Generics
Miscellania

@ Sun 2007 JavaOneSM Conference | Session TS-2689 | 38 java.sun.com/javaone

)
!
. Java

JavaOne

1. Use the @Override Annotation
Every Time You Want to Override

It's so easy to do this by mistake

public class Pair<T1l, T2> {
private final Tl first; private final T2 second;
public Pair (Tl first, T2 second) {
this.first = first; this.second = second;

}
public boolean equals (Pair<T1l, T2> p){

return first.equals(p.first) && second.equals (p.second) ;

}
public int hashCode() ({

return first.hashCode() + 31 * second.hashCode() ;

}
}

The penalty is random behavior at runtime
Diligent use of @Override eliminates problem

@Override public boolean equals(Pair<Tl, T2> p) { // Won’'t compile

@ Sun 2007 JavaOneSM Conference | Session TS-2689 | 39 java.sun.com/javaone

JavaOne

2. final Is the New private

Effective Java™ says make all fields private
unless you have reason to do otherwise

| now believe the same holds true for £inal
* Minimizes mutability
 Clearly thread-safe—one less thing to worry about

Blank finals are fine
So get used to typing private final
But watch out for readObject (and clone)

@Sun 2007 JavaOneSM Conference | Session TS-2689 | 40 java.sun.com/javaone

JavaOne

Summary

Releases 5 and 6 contain many new features
We are still figuring out to make best use of them

This talk contained a sampling of best practices
» Many areas omitted due to time constraints

Next year Effective Java™ really will be reloaded
* | swear

@Sun 2007 JavaOneSM Conference | Session TS-2689 | 41 java.sun.com/javaone

JavaOne

Joshua Bloch 4

Effective Java
Programming Language Guide

Foreword by Guy Steele

2007 JavaOne®M Conference | Session TS-2689 | 42 iaua.sun.com/iavaone

@Sun

IT]
L8
i

O

D_r“
| @
-

JavaOne

Joshua Bloch

Chief Java Architect
Google Inc.

TS-2689

2007 JavaOne®M Conference | Session TS-2689 | iava.sun.com/javaone

