
2007 JavaOneSM Conference | Session TS-2689 |

TS-2689

Effective Java™ Reloaded:
This Time It’s for Real

Joshua Bloch

Chief Java Architect
Google Inc.

Not

2007 JavaOneSM Conference | Session TS-2689 | 2

I am actively at work revising the
book. It will be done later this year
for sure. This talk has some of the
new material.

Effective Java Still Hasn’t Been Reloaded,
but I Do Have Plenty of Ammunition

Disclaimer

2007 JavaOneSM Conference | Session TS-2689 | 3

Topics

Object Creation (2 Sections)
Generics (6 Sections)
Miscellania (2 Sections)

2007 JavaOneSM Conference | Session TS-2689 | 4

Topics

Object Creation
Generics
Miscellania

2007 JavaOneSM Conference | Session TS-2689 | 5

1. Static Factories Have
Advantages Over Constructors
(Old News)

• Need not create a new object on each call
• They have names

• Allows multiple factories with same type signature
• Flexibility to return object of any subtype
• But wait! There’s more…

2007 JavaOneSM Conference | Session TS-2689 | 6

New Static Factory Advantage:
They Do Type Inference

• Which looks better?
• Map<String, List<String>> m =

new HashMap<String, List<String>>();

• Map<String, List<String>> m = HashMap.newInstance();

• Regrettably HashMap has no such method (yet)
• Until it does, you can write your own utility class

• Your generic classes can and should:
﻿ public static <K, V> HashMap<K, V> newInstance() {

return new HashMap<K, V>();
}

2007 JavaOneSM Conference | Session TS-2689 | 7

2. Static Factories and
Constructors Share a Problem

• Ugly when they have many optional parameters
• new NutritionFacts(int servingSize, int servings,

int calories, int fat, int sodium, int carbohydrate,
15 more optional params!);

• Telescoping signature pattern is a hack
• NutritionFacts locoCola =

new NutritionFacts(240, 8, 0, 0, 30, 28);

• Beans-style setters are not the answer!
• Allows inconsistency, mandates mutability

2007 JavaOneSM Conference | Session TS-2689 | 8

The Solution: Builder Pattern

• Builder constructor takes all required params
• One setter for each optional parameter

• Setters return the builder to allow for chaining
• One method to generate instance
• Pattern emulates named optional parameters!

NutritionFacts locoCola =
new NutritionFacts.Builder(240, 8)

.sodium(30).carbohydrate(28).build();

2007 JavaOneSM Conference | Session TS-2689 | 9

Builder Implementation Sketch
public class NutritionFacts {

public static class Builder {
public Builder(int servingSize, int servings) {

this.servingSize = servingSize;
this.servings = servings;

}

public Builder calories(int val) {
calories = val; return this;

}
... // 15 more setters

public NutritionFacts build() {
return new NutritionFacts(this);

}
}
private NutritionFacts(Builder builder) {

<copy data from Builder to NutritionFacts>
}

}

2007 JavaOneSM Conference | Session TS-2689 | 10

An Intriguing Possibility
package java.util;

public interface Builder<T> {
T build();

}

Much safer and more powerful than passing Class
objects around and calling newInstance()

2007 JavaOneSM Conference | Session TS-2689 | 11

Topics

Object Creation
Generics
Miscellania

2007 JavaOneSM Conference | Session TS-2689 | 12

1. Avoid Raw Types in New Code
// Generic type: Good
Collection<Coin> coinCollection = new ArrayList<Coin>();
coinCollection.add(new Stamp()); // Won’t compile
...

for (Coin c : coinCollection) {
...

}

// Raw Type: Evil
Collection coinCollection = new ArrayList();
coinCollection.add(new Stamp()); // Succeeds but should not
...

for (Object o : coinCollection) {
Coin c = (Coin) o; // Throws exception at runtime

...
}

2007 JavaOneSM Conference | Session TS-2689 | 13

Don’t Ignore Compiler Warnings

• If you’ve been using generics, you’ve seen lots
• Understand each warning
• Eliminate it if possible

• If you can’t eliminate a warning, suppress them
@SuppressWarnings("unchecked")
• But limit the scope as much as possible
• Declare an extra variable if necessary

2007 JavaOneSM Conference | Session TS-2689 | 14

2. Use Bounded Wildcards
to Increase Applicability of APIs

// Method names are from the perspective of customer
public interface Shop<T> {

T buy();
void sell(T myItem);
void buy(int numToBuy, Collection<T> myCollection);
void sell(Collection<T> myLot);

}

class Model { }
class ModelPlane extends Model { }
class ModelTrain extends Model { }

Thanks to Peter Sestoft for shop example

2007 JavaOneSM Conference | Session TS-2689 | 15

Works Fine If You Stick to One
Type

// Individual purchase and sale
Shop<ModelPlane> modelPlaneShop = ... ;
ModelPlane myPlane = modelPlaneShop.buy();
modelPlaneShop.sell(myPlane);

// Bulk purchase and sale
Collection<ModelPlane> myPlanes = ... ;
modelPlaneShop.buy(5, myPlanes);
modelPlaneShop.sell(myPlanes);

2007 JavaOneSM Conference | Session TS-2689 | 16

Simple Subtyping Works Fine
// You can buy a model from a train shop
Model myModel = modelTrainShop.buy();

// You can sell a model train to a model shop
modelShop.sell(myTrain);

public interface Shop<T> {
T buy();
void sell(T myItem);
void buy(int numToBuy, Collection<T> myCollection);
void sell(Collection<T> myLot);

}

2007 JavaOneSM Conference | Session TS-2689 | 17

Collection Subtyping Doesn’t
Work!

// You can't buy a bunch of models from the train shop
modelTrainShop.buy(5, myModelCollection); // Won't compile

// You can't sell a bunch of trains to the model shop
modelShop.sell(myTrains); // Won't compile

public interface Shop<T> {
T buy();
void sell(T item);
void buy(int numToBuy, Collection<T> myCollection);
void sell(Collection<T> myLot);

}

2007 JavaOneSM Conference | Session TS-2689 | 18

Bounded Wildcards to the Rescue
public interface Shop<T> {

T buy();
void sell(T item);
void buy(int numToBuy,

Collection<? super T> myCollection);
void sell(Collection<? extends T> myLot);

}

// You can buy a bunch of models from the train shop
modelTrainShop.buy(5, myModelCollection); // Compiles

// You can sell your train set to the model shop;
modelShop.sell(myTrains); // Compiles

2007 JavaOneSM Conference | Session TS-2689 | 19

Basic Rule for Bounded Wildcards

• Use <? extends T> when parameterized
instance is a T producer (“for read/input”)

• Use <? super T> when parameterized instance
is a T consumer (“for write/output”)

2007 JavaOneSM Conference | Session TS-2689 | 20

3. Don’t Confuse Bounded
Wildcards With Bounded Type
Variables

• Bounded wildcards
void sell(Collection<? extends T> myLot);
• Major use: restrict input parameters
• Can use super

• Bounded type variables
<T extends Number> T sum(List<T> x) { … }
• Restricts actual type parameter

• Works for parameterized classes and methods
• Can’t use super

2007 JavaOneSM Conference | Session TS-2689 | 21

There Is a Strong Relationship
Between Wildcards and Type
Parameters

• You often have the choice between wildcards
and type parameters in parameterized methods

• These two signatures have identical semantics
• boolean addAll(Collection<? extends E> c);
• <T extends E> boolean addAll(Collection<T> c);

2007 JavaOneSM Conference | Session TS-2689 | 22

Prefer Wildcards to Type
Parameters
in Parameterized Methods

// Generic method with type parameter E
public <E> void removeAll(Collection<E> coll) {

for (E e : coll)
remove(e);

}

// Method whose parameter uses wildcard type
public void removeAll(Collection<?> coll) {

for (Object o : coll)
remove(o);

}

The rule: If a type variable appears only once
in a method signature, use wildcard instead

2007 JavaOneSM Conference | Session TS-2689 | 23

It’s Usually Best to Avoid
Bounded Wildcards in Return
Types

• They force client to deal with wildcards directly
• Only library designers should have to think

about wildcards
• Rarely, you do need to return wildcard type

• For example, a read-only list of numbers
List<? extends Number> operands();

2007 JavaOneSM Conference | Session TS-2689 | 24

Don’t Overuse Wildcards
// Perfectly good method
public static <T> List<T> longer(List<T> c1, List<T> c2) {

return c1.size() >= c2.size() ? c1 : c2;
}

// Don’t do this!!! More complex and less powerful
public static List<?> longer(List<?> c1, List<?> c2) {

return c1.size() >= c2.size() ? c1 : c2;
}

2007 JavaOneSM Conference | Session TS-2689 | 25

Don’t Overuse Wildcards (2)

• In java.util.concurrent.ExecutorService
public Future<?> submit(Runnable task);
• Intent: to show that Future always returned null
• Result: minor pain for API users

• Correct idiom to indicate unused type parameter
public Future<Void> submit(Runnable task);
• Type Void is non-instantiable
• Easier to use and clarifies intent

2007 JavaOneSM Conference | Session TS-2689 | 26

4. Pop Quiz:
What’s Wrong With This
Program?

public static void rotate(List<?> list) {
if (list.size() == 0)

return;
list.add(list.remove(0));

}

2007 JavaOneSM Conference | Session TS-2689 | 27

Answer:
It Won’t Compile

public static void rotate(List<?> list) {
if (list.size() == 0)

return;
list.add(list.remove(0));

}

Rotate.java:6: cannot find symbol
symbol : method add(java.lang.Object)
location: interface java.util.List<capture#503 of ?>

list.add(list.remove(0));
^

2007 JavaOneSM Conference | Session TS-2689 | 28

Intuition Behind the Problem
public static void rotate(List<?> list) {

if (list.size() == 0)
return;

list.add(list.remove(0));
}

remove and add are two distinct operations
Invoking each method “captures” the wildcard type
Type system doesn’t know captured types are identical

2007 JavaOneSM Conference | Session TS-2689 | 29

This Program Really Is Unsafe
public class Rotate {

List<?> list;
Rotate(List<?> list) { this.list = list; }

public void rotate() {
if (list.size() == 0)

return;
list.add(list.remove(0));

}
...

}

Another thread could set list field from List<Stamp>
to List<Coin> between remove and add

2007 JavaOneSM Conference | Session TS-2689 | 30

Solution: Control Wildcard-Capture
public static void rotate(List<?> list) {

rotateHelper(list);
}

// Generic helper method captures wildcard once
private static <E> void rotateHelper(List<E> list) {

if (list.size() == 0)
return;

list.add(list.remove(0));
}

Now the list and the element have same type: E

2007 JavaOneSM Conference | Session TS-2689 | 31

5. Generics and Arrays
Don’t Mix; Prefer Generics

• Generic array creation error caused by
• new T[SIZE], Set<T>[SIZE], List<String>[SIZE]

• Affects varargs (warning rather than error)
• void foo(Class<? extends Thing>... things);

• Avoid generic arrays; use List instead
• List<T>, List<Set<T>>, List<List<String>>

• Some even say: Avoid arrays altogether

2007 JavaOneSM Conference | Session TS-2689 | 32

6. Cool Pattern:
Typesafe Heterogeneous
Container

• Typically, containers are parameterized
• Limits you to a fixed number of type parameters

• Sometimes you need more flexibility
• Database rows

• You can parameterize selector instead
• Present selector to container to get data
• Data is strongly typed at compile time
• Effectively allows for unlimited type parameters

2007 JavaOneSM Conference | Session TS-2689 | 33

Typesafe Heterogeneous
Container Example

public class Favorites {
private Map<Class<?>, Object> favorites =

new HashMap<Class<?>, Object>();
public <T> void setFavorite(Class<T> klass, T thing) {

favorites.put(klass, thing);
}
public <T> T getFavorite(Class<T> klass) {

return klass.cast(favorites.get(klass));
}
public static void main(String[] args) {

Favorites f = new Favorites();
f.setFavorite(String.class, "Java");
f.setFavorite(Integer.class, 0xcafebabe);
String s = f.getFavorite(String.class);
int i = f.getFavorite(Integer.class);

}
}

2007 JavaOneSM Conference | Session TS-2689 | 34

But Suppose You Have a Favorite
List<String> or
List<Integer>

// Won’t Compile!
List<String> stooges = Arrays.asList(

"Larry", "Moe", "Curly");
List<Integer> fibs = Arrays.asList(

1, 1, 2, 3, 5, 8);
f.setFavorite(List<String>.class, Stooges);
f.setFavorite(List<Integer>.class, fibs);
String s = f.getFavorite(List<String>.class);
int i = f.getFavorite(List<Integer>.class);

Generics use type erasure: List<String> and
List<Integer> have the same class object

2007 JavaOneSM Conference | Session TS-2689 | 35

The Solution: Super Type Tokens
import java.lang.reflect.*;

public abstract class TypeRef<T> {
private final Type type;
protected TypeRef() {

ParameterizedType superclass = (ParameterizedType)
getClass().getGenericSuperclass();

type = superclass.getActualTypeArguments()[0];
}
@Override public boolean equals (Object o) {

return o instanceof TypeRef &&
((TypeRef)o).type.equals(type);

}
@Override public int hashCode() {

return type.hashCode();
}

}
Idea due to Neal Gafter

2007 JavaOneSM Conference | Session TS-2689 | 36

Typesafe Heterogeneous
Container With Super Type
Tokens

public class Favorites2 {
private Map<TypeRef<?>, Object> favorites =

new HashMap< TypeRef<?> , Object>();
public <T> void setFavorite(TypeRef<T> type, T thing) {

favorites.put(type, thing);
}
@SuppressWarning("unchecked")
public <T> T getFavorite(TypeRef<T> type) {

return (T) favorites.get(type);
}
public static void main(String[] args) {

Favorites2 f = new Favorites2();
List<String> stooges = Arrays.asList(

"Larry", "Moe", "Curly");
f.setFavorite(new TypeRef<List<String>>(){}, stooges);
List<String> ls = f.getFavorite(

new TypeRef<List<String>>(){});
}

}

2007 JavaOneSM Conference | Session TS-2689 | 37

Generics Summary

• Avoid raw types; Don’t ignore compiler warnings
• Use bounded wildcards to increase power of APIs
• Understand the relationship between bounded

wildcards and bounded type variables
• Generics and arrays don’t mix; prefer generics
• Use typesafe heterogeneous container pattern
• Generics are tricky, but worth learning.

They make your programs better!

2007 JavaOneSM Conference | Session TS-2689 | 38

Topics

Object Creation
Generics
Miscellania

2007 JavaOneSM Conference | Session TS-2689 | 39

1. Use the @Override Annotation
Every Time You Want to Override

• It’s so easy to do this by mistake
public class Pair<T1, T2> {

private final T1 first; private final T2 second;
public Pair(T1 first, T2 second) {

this.first = first; this.second = second;
}
public boolean equals(Pair<T1, T2> p){

return first.equals(p.first) && second.equals(p.second);
}
public int hashCode() {

return first.hashCode() + 31 * second.hashCode();
}

}

• The penalty is random behavior at runtime
• Diligent use of @Override eliminates problem

@Override public boolean equals(Pair<T1, T2> p) { // Won’t compile

2007 JavaOneSM Conference | Session TS-2689 | 40

2. final Is the New private

• Effective JavaTM says make all fields private
unless you have reason to do otherwise

• I now believe the same holds true for final
• Minimizes mutability
• Clearly thread-safe—one less thing to worry about

• Blank finals are fine
• So get used to typing private final
• But watch out for readObject (and clone)

2007 JavaOneSM Conference | Session TS-2689 | 41

Summary

• Releases 5 and 6 contain many new features
• We are still figuring out to make best use of them
• This talk contained a sampling of best practices

• Many areas omitted due to time constraints
• Next year Effective JavaTM really will be reloaded

• I swear

422007 JavaOneSM Conference | Session TS-2689 |

Q&A

2007 JavaOneSM Conference | Session TS-2689 |

TS-2689

Effective Java™ Reloaded:
This Time it’s for Real

Joshua Bloch

Chief Java Architect
Google Inc.

Not

