
2007 JavaOneSM Conference | Session TS-2862 |

TS-2862

A Fast Lock-Free Hash
Table

Dr Cliff Click
Distinguished Engineer
Azul Systems
blogs.azulsystems.com/cliff

2007 JavaOneSM Conference | Session TS-2862 | 2

A Fast Non-Blocking Hash Table
A Highly Scalable Hash Table
Another way to Think about Concurrency

Think Concurrently!

2007 JavaOneSM Conference | Session TS-2862 | 3

Agenda
● Motivation
● “Uninteresting” Hash Table Details
● State-Based Reasoning?
● Resize
● Performance
● Q&A

2007 JavaOneSM Conference | Session TS-2862 | 4

● Constant-time key-value mapping
● Fast arbitrary function
● Extendable, defined at runtime
● Used for symbol tables, DB caching, network

access, url caching, web content, etc.
● Crucial for large business applications

● > 1MLOC
● Used in very heavily multi-threaded apps

● > 1000 threads

Hash Tables

2007 JavaOneSM Conference | Session TS-2862 | 5

Popular Java™ Platform
Implementations
● Java Platform’s HashTable

● Single threaded; scaling bottleneck
● HashMap

● Faster but NOT multi-thread safe
● java.util.concurrent.ConcurrentHashMap

● Striped internal locks; 16–way the default
● Azul, IBM, Sun sell machines >100cpus
● Azul has customers using all CPUs in same app
● Becomes a scaling bottleneck!

2007 JavaOneSM Conference | Session TS-2862 | 6

A Lock-Free Hash Table
● No locks, even during table resize

● No spin-locks
● No blocking while holding locks
● All CAS spin-loops bounded
● Make progress even if other threads die…

● Requires atomic update instruction:
● CAS (Compare-And-Swap)

LL/SC (Load-Linked/Store-Conditional, PPC only),
or similar

● Uses sun.misc.Unsafe for CAS

2007 JavaOneSM Conference | Session TS-2862 | 7

● Slightly faster than j.u.c for 99% reads < 32 CPUs
● Faster with more CPUs (2x faster)

● Even with 4096–way striping
● 10x faster with default striping

● 3x Faster for 95% reads (30x vs default)
● 8x Faster for 75% reads (100x vs default)
● Scales well up to 768 CPUs, 75% reads

● Approaches hardware bandwidth limits

A Faster Hash Table

2007 JavaOneSM Conference | Session TS-2862 | 8

Agenda
● Motivation
● “Uninteresting” Hash Table Details
● State-Based Reasoning?
● Resize
● Performance
● Q&A

2007 JavaOneSM Conference | Session TS-2862 | 9

Some “Uninteresting” Details
● Hashtable: A collection of Key/Value pairs
● Works with any collection
● Scaling, locking, bottlenecks of the collection

management responsibility of that collection
● Must be fast or O(1) effects kill you
● Must be cache-aware
● I’ll present a sample Java platform solution

● But other solutions can work, make sense

2007 JavaOneSM Conference | Session TS-2862 | 10

“Uninteresting” Details
● Closed Power-of-2 Hash Table

● Reprobe on collision
● Stride–1 reprobe: Better cache behavior

● Key and value on same cache line
● Hash memoized

● Should be same cache line as K + V
● But hard to do in pure Java code

● No allocation on get() or put()
● Auto-resize

2007 JavaOneSM Conference | Session TS-2862 | 11

Example get() Code
● idx = hash = key.hashCode();

● while(true) { // reprobing loop

● idx &= (size-1); // limit idx to table size

● k = get_key(idx); // start cache miss early

● h = get_hash(idx); // get memoized hash

● if(k == key || (h == hash && key.equals(k)))

● return get_val(idx);// return matching value

● if(k == null) return null;

● idx++; // reprobe

● }

2007 JavaOneSM Conference | Session TS-2862 | 12

“Uninteresting” Details
● Could use prime table + MOD

● Better hash spread, fewer reprobes
● But MOD is 30x slower than AND

● Could use open table
● put() requires allocation
● Follow 'next' pointer instead of reprobe
● Each 'next' is a cache miss
● Lousy hash -> linked-list traversal

● Could put Key/Value/Hash on same cache line
● Other variants possible, interesting

2007 JavaOneSM Conference | Session TS-2862 | 13

Agenda
● Motivation
● “Uninteresting” Hash Table Details
● State-Based Reasoning!
● Resize
● Performance
● Q&A

2007 JavaOneSM Conference | Session TS-2862 | 14

Ordering and Correctness
● How to show table mods correct?

● put, putIfAbsent, change, delete, etc.
● Prove via: Fencing, memory model, load/store

ordering, “happens-before”?
● Instead prove* via state machine
● Define all possible {Key,Value} states
● Define Transitions, State Machine
● Show all states “legal”

* Warning: hand-wavy proof follows

2007 JavaOneSM Conference | Session TS-2862 | 15

State-Based Reasoning
● Define all {Key,Value} states and transitions
● Don’t Care about memory ordering:

● get() can read Key, Value in any order
● put() can change Key, Value in any order
● put() must use CAS to change Key or Value

● But not double-CAS
● No fencing required for correctness!

● (sometimes stronger guarantees are wanted
and will need fencing)

● Proof is simple!

2007 JavaOneSM Conference | Session TS-2862 | 16

● A Key slot is:
● null—empty
● K—some Key; can never change again

● A Value slot is:
● null—empty
● T—tombstone, for deleted values
● V—some Values

● A state is a {Key,Value} pair
● A transition is a successful CAS

Valid States

2007 JavaOneSM Conference | Session TS-2862 | 17

State Machine

{null,nu
ll}
Empty

{K,T}

{null,T/
V}

Partially inserted K/V pair -
Reader-only state

{K,V}

Standard K/V pair

de
le

teinsert

change

deleted key

{K,null}

Partially inserted K/V pair

2007 JavaOneSM Conference | Session TS-2862 | 18

Some Things to Notice
● Once a key is set, it never changes

● No chance of returning value for wrong key
● Means keys leak; table fills up with dead keys
● Fix in a few slides…

● No ordering guarantees provided!
● Bring your own ordering/synchronization

● Weird {null,V} state meaningful but uninteresting
● Means reader got an empty key and so missed
● But possibly prefetched wrong value

2007 JavaOneSM Conference | Session TS-2862 | 19

Some Things to Notice
● There is no machine-wide coherent state!
● Nobody guaranteed to read the same state

● Except on the same CPU with no other writers
● No need for it either
● Consider degenerate case of a single key
● Same guarantees as:

● Single shared global variable
● Many readers and writers, no synchronization
● i.e., darned little

2007 JavaOneSM Conference | Session TS-2862 | 20

Example put(key,newval) Code
● idx = hash = key.hashCode();

● while(true) { // Key-Claim stanza

● idx &= (size-1);

● k = get_key(idx); // State: {k,?}

● if(k == null && // {null,?} -> {key,?}

● CAS_key(idx,null,key))

● break; // State: {key,?}

● h = get_hash(idx); // get memoized hash

● if(k == key || (h == hash && key.equals(k)))

● break; // State: {key,?}

● idx++; // reprobe

● }

2007 JavaOneSM Conference | Session TS-2862 | 21

Example put(key,newval) Code
● // State: {key,?}

● oldval = get_val(idx); // State: {key,oldval}

● // Transition: {key,oldval} -> {key,newval}

● if(CAS_val(idx,oldval,newval)) {

● // Transition worked

● ... // Adjust size

● } else {

● // Transition failed; oldval has changed

● // We can act “as if” our put() worked but

● // was immediately stomped over

● }

● return oldval;

2007 JavaOneSM Conference | Session TS-2862 | 22

A Slightly Stronger Guarantee
● Probably want “happens-before” on Values

● java.util.concurrent provides this
● Similar to declaring that shared global 'volatile'
● Things written into a value before put()

● Are guaranteed to be seen after a get()
● Requires st/st fence before CAS'ing Value

● “Free” on Sparc, X86
● Requires ld/ld fence after loading Value

● “Free” on Azul

2007 JavaOneSM Conference | Session TS-2862 | 23

Agenda
● Motivation
● “Uninteresting” Hash Table Details
● State-Based Reasoning!
● Resize
● Performance
● Q&A

2007 JavaOneSM Conference | Session TS-2862 | 24

Resizing the Table
● Need to resize if table gets full
● Or just re-probing too often
● Resize copies live K/V pairs

● Doubles as cleanup of dead keys
● Resize (“cleanse”) after any delete
● Throttled, once per GC cycle is plenty often

● Alas, need fencing, ‘happens before’
● Hard bit for concurrent resize and put():

● Must not drop the last update to old table

2007 JavaOneSM Conference | Session TS-2862 | 25

Resizing
● Expand State Machine
● Side-effect: Mid-resize is a valid state
● Means resize is:

● Concurrent—readers can help, or just read and go
● Parallel—all can help
● Incremental—partial copy is OK

● Pay an extra indirection while resize in progress
● So want to finish the job eventually

● Stacked partial resizes OK, expected

2007 JavaOneSM Conference | Session TS-2862 | 26

get/put During Resize
● get() works on the old table

● Unless see a sentinel
● put() or other mod must use new table
● Must check for new table every time

● Late writes to old table ‘happens before’ resize
● Copying K/V pairs is independent of get/put
● Copy has many heuristics to choose from:

● All touching threads, only writers, unrelated
background thread(s), etc

2007 JavaOneSM Conference | Session TS-2862 | 27

New State: “use new table”
Sentinel
● X: Sentinel used during table-copy

● Means: not in old table, check new
● A Key slot is:

● null, K
● X—“use new table”, not any valid key
● null → K OR null → X

● A value slot is:
● null, T, V
● X—“use new table”, not any valid Value
● null → {T,V}* → X

2007 JavaOneSM Conference | Session TS-2862 | 28

State Machine—Old Table
{null,nu
ll}
Empty {K,T}

{null,T/
V/X}

Partially inserted
K/V pair

{K,V}

Standard K/V pair

de
le

te

insert

change

Deleted key

copy {K,V} into
newer table

{K,X}

{X,null}

check newer table

{K,null}

States {X,T/V/X} not possible

kill

2007 JavaOneSM Conference | Session TS-2862 | 29

State Machine: Copy One Pair

{null,nu
ll} {X,null}

empty

2007 JavaOneSM Conference | Session TS-2862 | 30

State Machine: Copy One Pair

{K,T/nu
ll} {K,X}

dead or partially inserted

{null,nu
ll} {X,null}

empty

2007 JavaOneSM Conference | Session TS-2862 | 31

State Machine: Copy One Pair

{K,V1}

alive, but old

{K,V2}

{K,X}

{K,V2}

old table
new table

{K,T/nu
ll} {K,X}

dead or partially inserted

{null,nu
ll} {X,null}

empty

2007 JavaOneSM Conference | Session TS-2862 | 32

Copying Old to New
● New States V', T'—primed versions of V,T

● Prime’d values in new table copied from old
● Non-prime in new table is recent put()
● “happens after” any prime’d value
● Engineering: wrapper class, steal a bit (C)

● Must be sure to copy late-arriving old-table write
● Attempt to copy atomically

● May fail and copy does not make progress
● But old, new tables not damaged

● Prime allows 2-phase commit

2007 JavaOneSM Conference | Session TS-2862 | 33

New States: Prime’d
● A Key slot is:

● null, K, X
● A Value slot is:

● null, T, V, X
● T',V' – primed versions of T and V
● Old things copied into the new table
● “2-phase commit”
● null → {T',V'}* → {T,V}* → X

● State machine again…

2007 JavaOneSM Conference | Session TS-2862 | 34

State Machine—New Table
{null,nu
ll}
Empty {K,T}

{null,T/
T'/V/V'/
X}

Partially inserted
K/V pair

{K,V}

Standard K/V pair

de
le

te

insert

Deleted key

{K,X}

{X,null}

check newer table

{K,null}

States {X,T/T'/V/V'/X} not possible

{K,T'/V'
}

copy in from
older table
copy in from
older table

kill

copy {K,V} into
newer table

2007 JavaOneSM Conference | Session TS-2862 | 35

State Machine—New Table
{null,nu
ll}
Empty {K,T}

{null,T/
T'/V/V'/
X}

Partially inserted
K/V pair

{K,V}

Standard K/V pair

de
le

te

insert
{K,X}

{X,null}

check newer table

{K,null}

States {X,T/T'/V/V'/X} not possible

{K,T'/V'
}

copy in from
older table

Deleted key
kill

copy {K,V} into
newer table

2007 JavaOneSM Conference | Session TS-2862 | 36

State Machine—New Table
{null,nu
ll}
Empty {K,T}

{null,T/
T'/V/V'/
X}

Partially inserted
K/V pair

{K,V}

Standard K/V pair

de
le

te

insert
{K,X}

{X,null}

check newer table

{K,null}

States {X,T/T'/V/V'/X} not possible

{K,T'/V'
}

copy in from
older table

Deleted key
kill

copy {K,V} into
newer table

2007 JavaOneSM Conference | Session TS-2862 | 37

State Machine: Copy One Pair

partial copy

{K,X}

K,V' in new table
X in old table

copy
complete

Fence
{K,V'x}

{K,V'1}

{K,V1}

{K,V'1}

{K,V1}

Fence

read V'x

read V1

old
new

2007 JavaOneSM Conference | Session TS-2862 | 38

Some Things to Notice
● Old value could be V or T

● or V' or T' (if nested resize in progress)
● Skip copy if new Value is not prime'd

● Means recent put() overwrote any old Value
● If CAS into new fails

● Means either put() or other copy in progress
● So this copy can quit

● Any thread can see any state at any time
● And CAS to the next state

2007 JavaOneSM Conference | Session TS-2862 | 39

Agenda
● Motivation
● “Uninteresting” Hash Table Details
● State-Based Reasoning?
● Resize
● Performance
● Q&A

2007 JavaOneSM Conference | Session TS-2862 | 40

Microbenchmark
● Measure insert/lookup/remove of strings
● Tight loop: No work beyond HashTable itself and test

harness (mostly RNG)
● “Guaranteed not to exceed” numbers
● All fences; full ConcurrentHashMap semantics
● Variables:

● 99% get, 1% put (typical cache) vs 75/25
● Dual Athalon, Niagara, Azul Vega1, Vega2
● Threads from 1 to 800
● NonBlocking vs 4096-way ConcurrentHashMap
● 1K entry table vs 1M entry table

2007 JavaOneSM Conference | Session TS-2862 | 41

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

Threads

M
-o
ps
/s
ec

AMD 2.4Ghz—2(HT) CPUs

NB–99

CHM–99

NB–75

CHM–75

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

Threads

M
-o
ps
/s
ec

NB

CHM

1K Table 1M Table

2007 JavaOneSM Conference | Session TS-2862 | 42

Niagara—8x4 CPUs

0 8 16 24 32 40 48 56 64
0

10

20

30

40

50

60

70

80

Threads

M
-o
ps
/s
ec

CHM

NB

0 8 16 24 32 40 48 56 64
0

10

20

30

40

50

60

70

80

Threads

M
-o
ps
/s
ec

CHM–99, NB–99

CHM–75, NB–75

1K Table 1M Table

2007 JavaOneSM Conference | Session TS-2862 | 43

Azul Vega1—384 CPUs

0 100 200 300 400
0

100

200

300

400

500

Threads

M
-o
ps
/s
ec

0 100 200 300 400
0

100

200

300

400

500

Threads

M
-o
ps
/s
ec

NB–99

CHM–99

NB–75

CHM–75

1K Table 1M Table

2007 JavaOneSM Conference | Session TS-2862 | 44

Azul Vega2—768 CPUs

0 100 200 300 400 500 600 700 800
0

200

400

600

800

1000

1200

Threads

M
-o
ps
/s
ec

0 100 200 300 400 500 600 700 800
0

200

400

600

800

1000

1200

Threads

M
-o
ps
/s
ec

NB–99

CHM–99

NB–75

CHM–75

NB

CHM

1K Table 1M Table

2007 JavaOneSM Conference | Session TS-2862 | 45

Summary
● A faster lock-free HashTable
● Faster for more CPUs
● Much faster for higher table modification rate
● State-Based Reasoning:

● No ordering, no JMM, no fencing
● Any thread can see any state at any time

● Must assume values change at each step
● State graphs really helped coding and debugging
● Resulting code is small and fast

2007 JavaOneSM Conference | Session TS-2862 | 46

Summary
● Obvious future work:

● Tools to check states
● Tools to write code

● Seems applicable to other data structures as well
● Code available at:

● https://sourceforge.net/projects/high-scale-lib
● See also TS-2220,

Testing Concurrent Software
● http://www.azulsystems.com/blogs/cliff/

2007 JavaOneSM Conference | Session TS-2862 | 47

Q&A

2007 JavaOneSM Conference | Session TS-2862 |

TS-2862

A Fast Lock-Free Hash
Table
Dr Cliff Click
Distinguished Engineer
Azul Systems
blogs.azulsystems.com/cliff

