&

AZUL

SYSTEMS®
JavaOne

A Fast Lock-Free Hash
Table

Dr CIiff Click

Distinguished Engineer
Azul Systems
blogs.azulsystems.com/cliff

TS-2862

2007 JavaOne®M Conference | Session TS-2862 | java.sun.com/javaone



JavaOne

Think Concurrently!

2007 JavaOne®M Conference | Session TS-2862 | 2 java.sun.com/javaone



JavaOne

Agenda

- Motivation

- “Uninteresting” Hash Table Details
- State-Based Reasoning?

- Resize

. Performance

- Q&A

@ Sun 2007 JavaOneSM Conference | Session TS-2862 | 3 java.sun.com/javaone



@ Sun

Hash Tables

. Constant-time key-value mapping
- Fast arbitrary function
- Extendable, defined at runtime

- Used for symbol tables, DB caching, network
access, url caching, web content, etc.

- Crucial for large business applications
. >1MLOC

- Used in very heavily multi-threaded apps
- >1000 threads

2007 JavaOneSM Conference | Session TS-2862 | 4



@ Sun

Implementations

Java Platform’s HashTable
Single threaded; scaling bottleneck

HashMap
Faster but NOT multi-thread safe

java.util.concurrent.ConcurrentHashMap
Striped internal locks; 16—way the default

Azul, IBM, Sun sell machines >100cpus
Azul has customers using all CPUs in same app
Becomes a scaling bottleneck!

2007 JavaOne®M Conference | Session TS-2862 | 5 java.sun.com/javaone



JavaOne

A Lock-Free Hash Table

- No locks, even during table resize
- No spin-locks
- No blocking while holding locks
- All CAS spin-loops bounded
- Make progress even if other threads die...

- Requires atomic update instruction:

- CAS (Compare-And-Swap)
LL/SC (Load-Linked/Store-Conditional, PPC only),
or similar

. Uses sun.misc.Unsafe for CAS

@ Sun 2007 JavaOneSM Conference | Session TS-2862 | 6 java.sun.com/javaone



@ Sun

A Faster Hash Table

. Slightly faster than j.u.c for 99% reads < 32 CPUs

Faster with more CPUs (2x faster)

- Even with 4096—way striping
- 10x faster with default striping

3x Faster for 95% reads (30x vs default)
8x Faster for 75% reads (100x vs default)
Scales well up to 768 CPUs, 75% reads

- Approaches hardware bandwidth limits

2007 JavaOneSM Conference

Session TS-2862 | 7



JavaOne

Agenda

- Motivation

- “Uninteresting” Hash Table Details
- State-Based Reasoning?

- Resize

. Performance

- Q&A

@ Sun 2007 JavaOneSM Conference | Session TS-2862 | 8 java.sun.com/javaone



Some “Uninteresting” Details

- Hashtable: A collection of Key/Value pairs
- Works with any collection

- Scaling, locking, bottlenecks of the collection
management responsibility of that collection

- Must be fast or O(1) effects kill you
- Must be cache-aware

- I'll present a sample Java platform solution
. But other solutions can work, make sense

2007 JavaOneSM Conference | Session TS-2862 | 9



JavaOne

“Uninteresting” Details

. Closed Power-of-2 Hash Table

- Reprobe on collision
. Stride—1 reprobe: Better cache behavior

- Key and value on same cache line

. Hash memoized
. Should be same cache lineas K+ V
- But hard to do in pure Java code

- No allocation on get() or put()
- Auto-resize

@ Sun 2007 JavaOneSM Conference | Session TS-2862 |

10

a.sun.com/javaone



JavaOne

Example get() Code

- 1idx = hash = key.hashCode() ;

- while( true ) { // reprobing loop

. idx &= (size-1); // limit idx to table size
. k = get key(idx); // start cache miss early
. h = get hash(idx); // get memoized hash

. if( k == key || (h == hash && key.equals(k)) )
. return get val(idx);// return matching value
. if( k == null ) return null;

. idx++; // reprobe

@ Sun 2007 JavaOneSM Conference | Session TS-2862 | 11 java.sun.com/javaone



JavaOne

“Uninteresting” Details

Could use prime table + MOD

- Better hash spread, fewer reprobes
- But MOD is 30x slower than AND

- Could use open table
- put() requires allocation
- Follow 'next' pointer instead of reprobe
- Each 'next' is a cache miss
- Lousy hash -> linked-list traversal

- Could put Key/Value/Hash on same cache line
- Other variants possible, interesting

@ Sun 2007 JavaOneSM Conference | SessionTS-2862 | 12 java.sun.com/javaone



JavaOne

Agenda

- Motivation

- “Uninteresting” Hash Table Details
. State-Based Reasoning!

- Resize

. Performance

- Q&A

@ Sun 2007 JavaOneSM Conference | Session TS-2862 | 13 java.sun.com/javaone



JavaOne

Ordering and Correctness

- How to show table mods correct?
- put, putlfAbsent, change, delete, etc.

- Prove via: Fencing, memory model, load/store
ordering, “happens-before”?

- Instead prove* via state machine

- Define all possible {Key,Value} states
. Define Transitions, State Machine

- Show all states “legal”

* Warning: hand-wavy proof follows

@ Sun 2007 JavaOneSM Conference | Session TS-2862 | 14 java.sun.com/javaone



JavaOne

@ Sun

State-Based Reasoning

- Define all {Key,Value} states and transitions

- Don’t Care about memory ordering:
- get() can read Key, Value in any order
- put() can change Key, Value in any order
- put() must use CAS to change Key or Value
- But not double-CAS

- No fencing required for correctness!

- (sometimes stronger guarantees are wanted
and will need fencing)

- Proof is simple!

2007 JavaOneSM Conference | Session TS-2862 | 15 java.sun

.com/javaone



JavaOne

Valid States

- A Key slot is:
« null—empty
. K—some Key; can never change again

- A Value slot is:
» null—empty
. T—tombstone, for deleted values
- V—some Values

- A state is a {Key,Value} pair
. A transition is a successful CAS

@ Sun 2007 JavaOneSM Conference | Session TS-2862 | 16 java.sun.com/javaone



JavaOne

State Machine

deleted key

Partially inserted K/V pair

Partially inserted K/V pair - Standard K/V pair
Reader-only state

’SI_Q_’._’ 2007 JavaOneSM Conference | Session TS-2862 | 17 java.sun.com/javaone



JavaOne

Some Things to Notice

- Once a key is set, it never changes
- No chance of returning value for wrong key
- Means keys leak; table fills up with dead keys
- Fixin a few slides...

- No ordering guarantees provided!
- Bring your own ordering/synchronization

- Weird {null,V} state meaningful but uninteresting
- Means reader got an empty key and so missed
- But possibly prefetched wrong value

@ Sun 2007 JavaOneSM Conference | SessionTS-2862 | 18 java.sun.com/javaone



JavaOne

@ Sun

Some Things to Notice

. There is no machine-wide coherent state!

- Nobody guaranteed to read the same state
- Except on the same CPU with no other writers

- No need for it either
Consider degenerate case of a single key

. Same guarantees as:
- Single shared global variable
- Many readers and writers, no synchronization
- l.e., darned little

2007 JavaOneSM Conference | Session TS-2862 | 19 java.sun.com/javaone



JavaOne

Example put(key,newval) Code

. idx = hash = key.hashCode() ;

- while( true ) { // Key-Claim stanza

. idx &= (size-1);

. k = get key(idx); // State: {k,?}

. if( k == null && // {null,?} -> {key,?}
. CAS key(idx,null, key) )

. break; // State: {key,?}

. h = get hash(idx); // get memoized hash

. if( k == key || (h == hash && key.equals(k)) )

. break; // State: {key,?}

. idx++; // reprobe

@ Sun 2007 JavaOneSM Conference | Session TS-2862 | 20 java.sun.com/javaone



JavaOne

Example put(key,newval) Code

- // State: {key,?}

- oldval = get val(idx); // State: {key,oldval}
« // Transition: {key,oldval} -> {key,newval}

- if( CAS wval(idx,oldval, newval) ) {

. // Transition worked

. ... // Adjust size

- } else {

. // Transition failed; oldval has changed

. // We can act “as if” our put() worked but
. // was immediately stomped over

« '}

« return oldval;

@ Sun 2007 JavaOneSM Conference | Session TS-2862 | 21 java.sun.com/javaone



JavaO

A Slightly Stronger Guarantee

Probably want "happens-before” on Values
java.util.concurrent provides this

Similar to declaring that shared global 'volatile'

Things written into a value before put()
Are guaranteed to be seen after a get()

Requires st/st fence before CAS'ing Value
“Free” on Sparc, X86

Requires Id/ld fence after loading Value
“Free” on Azul

2007 JavaOneSM Conference | Session TS-2862 | 22



JavaOne

Agenda

- Motivation

- “Uninteresting” Hash Table Details
- State-Based Reasoning!

- Resize

. Performance

- Q&A

@ Sun 2007 JavaOneSM Conference | Session TS-2862 | 23 java.sun.com/javaone



JavaOne

Resizing the Table

- Need to resize if table gets full
- Or just re-probing too often

- Resize copies live K/V pairs
- Doubles as cleanup of dead keys
- Resize (“cleanse”) after any delete
- Throttled, once per GC cycle is plenty often

- Alas, need fencing, ‘happens before’

- Hard bit for concurrent resize and put():
- Must not drop the last update to old table

@ Sun 2007 JavaOneSM Conference | Session TS-2862 | 24 java.sun.com/javaone



JavaOne

Resizing

- Expand State Machine
. Side-effect: Mid-resize is a valid state

- Means resize is:
- Concurrent—readers can help, or just read and go
. Parallel—all can help
- Incremental—partial copy is OK

- Pay an extra indirection while resize in progress
- S0 want to finish the job eventually

. Stacked partial resizes OK, expected

@ Sun 2007 JavaOneSM Conference | SessionTS-2862 | 25 java.sun.com/javaone



JavaOne

get/put During Resize

- get() works on the old table
- Unless see a sentinel

put() or other mod must use new table

- Must check for new table every time
- Late writes to old table ‘happens before’ resize

- Copying K/V pairs is independent of get/put

- Copy has many heuristics to choose from:

- All touching threads, only writers, unrelated
background thread(s), etc

@ Sun 2007 JavaOneSM Conference | SessionTS-2862 | 26 java.sun.com/javaone



JavaOne

@ Sun

ew State: “use new table
Sentinel

- X: Sentinel used during table-copy
- Means: not in old table, check new

- A Key slot is:
. null, K
. X—"use new table”, not any valid key
- null-K OR null - X

- Avalue slot is:
. null, T,V
. X—"use new table”, not any valid Value
- null->{TV}*-> X

2007 JavaOneSM Conference | Session TS-2862 |

27

a.sun.com/javaone



JavaOne

State Machine—OlId Table

Deleted key

Empty

check newer table

copy {K,V} into

change newer table

Partially inserted Standard K/V pair
K/V pair
States {X,T/V/X} not possible

’Sf_f_.?._’ 2007 JavaOne®M Conference | Session TS-2862 | 28 java.sun.com/javaone



JavaOne

State Machine: Copy One Pair

empty

’Sf_f_?._’ 2007 JavaOneSM Conference | Session TS-2862 | 29 java.sun.com /javaone



JavaOne

State Machine: Copy One Pair

empty
) &
dead or partially inserted
1 AKX}

’Sf_f_?._’ 2007 JavaOneSM Conference | Session TS-2862 | 30 java.sun.com /javaone



JavaOne

State Machine: Copy One Pair

empty
) o

dead or partially inserted

1 KX}

alive, but old

T

old table

new table

’Sf_fj’._’ 2007 JavaOne®M Conference | Session TS-2862 | 31 java.sun.com/javaone



JavaOne

Copying Old to New

- New States V', T'—primed versions of V, T
- Prime’d values in new table copied from old
- Non-prime in new table is recent put()
- "happens after” any prime’d value
- Engineering: wrapper class, steal a bit (C)

- Must be sure to copy late-arriving old-table write

Attempt to copy atomically
- May fail and copy does not make progress
- But old, new tables not damaged

- Prime allows 2-phase commit

@ Sun 2007 JavaOneSM Conference | Session TS-2862 | 32 java.sun.com/javaone



JavaOne

New States: Prime’d

- A Key slot is:
. null, K, X

- A Value slot is:
- null, T,V, X
- T.V'—primed versions of T and V
. 0Old things copied into the new table
. "2-phase commit”
« null - {T"V} ->{T,V}*-> X

- State machine again...

@ Sun 2007 JavaOneSM Conference | Session TS-2862 | 33 java.sun.com/javaone



JavaOne

State Machine—New Table
e L X nully
Deleted key

check newer table

copy in from
older table

copy {K,V} into
newer table

Partially inserted Standard K/V pair
K/V pair
States {X,T/T'/NVIV'/X} not possible

’SI_,‘{._’ 2007 JavaOne®M Conference | Session TS-2862 | 34 java.sun.com/javaone



JavaOne

State Machine—New Table
Deleted key

check newer table

--------
S e

.

Y

o

copy'in from
older table

copy {K,V} into
newer table

Partially inserted Standard K/\‘(‘p’éir
K/V pair .-............---‘.---‘
States {X,T/T'/NVIV'/X} not possible

’SI_,‘{._’ 2007 JavaOne®M Conference | Session TS-2862 | 35 java.sun.com/javaone



JavaOne

State Machine—New Table
Deleted key

check newer table

"""""""""""""
,,,,,,
s
IS
IS

---------
P *
“
*

o

copy'in from
older table

copy {K,V} into
newer table

Partially inserted Standard K/\‘Lp’éir
K/V palr "'-......._..-_-_::'::........____-_‘_.-I"
States {X,T/T'/NVIV'/X} not possible

’SI_,‘{._’ 2007 JavaOne®M Conference | Session TS-2862 | 36 java.sun.com/javaone



JavaOne

State Machine: Copy One Pair

K,V'in new table
X in old table

R EN
29oUd4

partial copy copy
complete

’SI_I.‘{._’ 2007 JavaOneSM Conference | Session TS-2862 | 37 java.sun.com/javaone



JavaOne

@ Sun

Some Things to Notice

- Old value could be Vor T
. orV'or T (if nested resize in progress)

- Skip copy if new Value is not prime'd
- Means recent put() overwrote any old Value

- If CAS into new fails
- Means either put() or other copy in progress
- S0 this copy can quit

- Any thread can see any state at any time
- And CAS to the next state

2007 JavaOneSM Conference | Session TS-2862 | 38

a.sun.com/javaone



JavaOne

Agenda

- Motivation

- “Uninteresting” Hash Table Details
. State-Based Reasoning?

- Resize

- Performance

- Q&A

@ Sun 2007 JavaOneSM Conference | Session TS-2862 | 39 java.sun.com/javaone



JavaOne

@ Sun

Microbenchmark

- Measure insert/lookup/remove of strings

- Tight loop: No work beyond HashTable itself and test
harness (mostly RNG)

- "Guaranteed not to exceed” numbers
- All fences; full ConcurrentHashMap semantics

- Variables:
- 99% get, 1% put (typical cache) vs 75/25
- Dual Athalon, Niagara, Azul Vega1, Vega2
- Threads from 1 to 800
- NonBlocking vs 4096-way ConcurrentHashMap
- 1K entry table vs 1M entry table

2007 JavaOne®M Conference | Session TS-2862 | 40 java.sun.com/javaone



AMD 2.4Ghz—2(HT) CPUs

JavaOne

30

25

20

M-ops/sec
r‘n

10

@Sun

1K Table 1M Table
30
NB-99 s
. CHM-99
20
O
// NB-75 @
, ) ——— 8-15
o
=
\/-% 10
; NB
- CHM
1 2 3 4 5 & 7 8 1 2 3 4 s 7 8
Threads Threads
2007 JavaOneSM Conference | Session TS-2862 | 41

java.sun.com/javaone



JavaOne

Niagara—S8x4 CPUs

80

Ul (@) N
o o o

M-ops/sec
I
o

®Sun

1K Table 1M Table
80
70
60
CHM—-99, NB—99

u 50
Q
(7]
/\P/—M' m
7 2
____________ e 75,NB-75 =

16 24 32 40 48 56 64 0 8 16 24 32 40 48 56 64

Threads Threads
2007 JavaOneSM Conference | Session TS-2862 | 42 java.sun.com/javaone



Azul Vegal—384 CPUs

JavaOne

1K Table 1M Table
500 500
NB—99 |
400 / 400
& 300 o 300
n wn
S~ ~~
0 wn
o o
2 2
> 200+ S 200
1 00 ..... 100 .............
CHM-75
0 - : : ‘ 0 - : : ‘
0 100 200 300 400 0 100 200 300 400
Threads Threads
’Sf,‘ﬂ 2007 JavaOneSM Conference | Session TS-2862 | 43 java.sun.com/javaone



Azul Vega2—768 CPUs

JavaOne

1K Table 1M Table
1200 1200
N B—y
1000 1000
800 800
(®)
0]
9} wn
e @
n 600 o 600
8 T S
o =
= 400- 400 NB
200 200
: CHM
O T T 7 . T T T | O N T ITTTTTTIIET] IETETTIEIET] IEEEEEEEIEE ). T T T |
0O 100 200 300 400 500 600 700 800 0O 100 200 300 400 500 600 700 80
Threads Threads
@ Sun 2007 JavaOneSM Conference | Session TS-2862 | 44 java.sun.com/javaone



JavaOne

@ Sun

Summary

. A faster lock-free HashTable

Faster for more CPUs

Much faster for higher table modification rate

State-Based Reasoning:

- No ordering, no JMM, no fencing

Any thread can see any state at any time
- Must assume values change at each step

State graphs really helped coding and debugging
Resulting code is small and fast

2007 JavaOneSM Conference

Session TS-2862 | 45

a.sun.com/javaone



JavaOne

Summary

. Obvious future work:
. Tools to check states
. Tools to write code

- Seems applicable to other data structures as well

- Code available at:
« https://sourceforge.net/projects/high-scale-lib

. See also TS-2220,
Testing Concurrent Software

 http://www.azulsystems.com/blogs/clift/

@ Sun 2007 JavaOneSM Conference | Session TS-2862 | 46 java.sun.com/javaone



JavaOne

2007 JavaOne®M Conference | Session TS-2862 | 47 iaua.sun.com/jauaone/sf



&

AZUL

SYSTEMS®
JavaOne

Dr CIiff Click

Distinguished Engineer
Azul Systems
blogs.azulsystems.com/cliff

TS-2862

2007 JavaOne®M Conference | Session TS-2862 | java.sun.com/javaone



