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Our Goal

To give you tips on how to write readable
and clean code that makes the most out 
of the garbage collector (in terms of 
throughput, responsiveness, etc.).
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The One Thing You Should Remember

Everything should be made as simple as 
possible, but not simpler.”
—Albert Einstein

“
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Garbage Collection
● Find and reclaim unreachable objects

● Anything not transitively reachable from the application 
roots (thread stacks, static fields, etc.)

● Automatic and safe
● Easiest if the object graph is “frozen”

● Stop-the-world pauses
● Variety of approaches

● Compacting/non-compacting
● Algorithms: copying, mark-sweep, mark-compact, etc.
● Allocation: linear, free lists, etc.
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Generational Garbage Collection 
(1/2)
● Keeps young and old objects separately

● In spaces called generations
● The weak generational hypothesis

● Most new objects will die young
● Concentrate effort on young generation

● Need to keep track of old-to-young pointers
● Reference update tracking on old objects (write barrier)

● Eventually, have to also collect the old generation
● Different GC algorithms for each generation

● “Use the right tool for the job”
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Generational Garbage Collection 
(2/2)

Young Generation

Old Generation

Object Promotion

Object AllocationTrack These
(Remembered Set)
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Incremental Garbage Collection
● Tries to decrease/minimize GC disruption
● GC works at the same time as the application

● The object graph is being mutated while the GC works
● GC needs to be notified about object graph mutations

● Reference update tracking (write barrier)

● If only old generation is incremental
● No need to track updates on young objects
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Creating Work for the GC
● Allocation

● But, typically, super fast
● Maybe more expensive for non-compacting GCs

● Higher allocation rate implies more frequent GCs
● Live data size

● More work for the GC to find what is live
● Reference field updates

● More overhead on the application, …
● And it also creates more work for the GC

● Especially on generational/incremental GCs
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Programming Tips
● Object allocation
● Large objects
● Pointer nulling
● Explicit GCs
● Data structure sizing
● NUMA
● Object pooling
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Object Allocation (1/2)
● Typically, object allocation is very cheap!

● 10 native instructions in the fast common case
● No remembered set overhead on new objects
● C/C++ has faster allocation? Not!

● Reclamation of new objects is very cheap too!
● Young GCs in generational systems

● So
● Do not be afraid to allocate small objects for 

intermediate results
● GCs love small, immutable objects
● Generational GCs love small, short-lived objects
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Object Allocation (2/2)
● We do not advise

● Needless allocation
● More frequent allocations will cause more frequent GCs

● We do advise
● Using short-lived immutable objects instead of

long-lived mutable objects
● Using clearer, simpler code with more allocations 

instead of more obscure code with fewer allocations
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Large Objects
● Very large objects are:

● Expensive to allocate (maybe not through the fast path)
● Expensive to initialize (zeroing)
● Can cause performance issues

● Large objects of different sizes can cause 
fragmentation
● For non-compacting or partially-compacting GCs

● Avoid if you can
● And, yes, this is not always possible or desirable
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Reference Field Nulling
● Nulling references rarely helps the GC

● The GC does fine by itself!
● Best Case: mostly worthless clutter in your code
● Worst Case: introduces a bug 

(it may reveal itself later)
● Exceptions

● Array-based data structures
● e.g., the implementation of the ArrayList class
● In this case, you’re managing your own memory…
● So please, let the standard libraries do that!

● Avoiding finalizer-induced memory retention
● Avoid finalizers as much as possible (more on this later)
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Local Variable Nulling
● Local variable nulling is not necessary

● The JIT can do liveness analysis

void foo() {
int[] array = new int[1024];
populate(array);
print(array); // last use of array in method foo()
array = null; // unnecessary!
// array is no longer considered live by the GC
...

}
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Explicit GCs (1/2)
● Avoid them!

● Applications do not have enough information
● GC does (knows allocation/promotion rate, etc.)
● System.gc() at the wrong time

● Hurts performance with no benefit

● Exceptions
● Between well-defined application phases (maybe)
● When performance does not matter (e.g., late at night)

● Java HotSpot™ virtual machine
● System.gc() does a stop-the-world full GC
● Use -XX:+DisableExplicitGC to ignore System.gc()
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Explicit GCs (2/2)
● Incremental GCs

● Designed to avoid full GCs…
● But System.gc() does exactly that!

● In the Java HotSpot virtual machine (CMS)
● -XX:+ExplicitGCInvokesConcurrent

● Beware
● Libraries that call System.gc()

● Run FindBugs over your libraries to check for that
● Java™ RMI calls System.gc() for its distributed

GC algorithm
● Decrease its frequency, or invoke concurrent, or both!
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Data Structure Sizing (1/2)
● Array-based data structures

● Avoid frequent re-sizing
● e.g., this will allocate the associated array twice

ArrayList<String> list = new ArrayList<String>();
list.ensureCapacity(1024);

● The preferred version
● (Part of periodic audits of the Java Platform, 

Standard Edition (Java SE) libraries)
ArrayList<String> list = new ArrayList<String>(1024);
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Data Structure Sizing (2/2)
● Additionally, try to size data structures as 

realistically as possible

ArrayList<String> list = new 
ArrayList<String>(1024);

● If 1M strings are added to it:
● Several array-resizing operations will take place
● They will allocate several large-ish arrays
● They will cause a lot of array copying
● They might cause fragmentation issues on

non-compacting GCs
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NUMA
● Asymmetric memory access

● Each CPU accesses its local memory faster
● e.g., large SPARC® computers, Opteron™

● What we try to do
● Allocate objects to memory of allocating CPU/thread

● Something to consider
● Allocating thread also manipulates the objects too
● You might see a performance benefit

● Avoiding thread ‘hops’ is a good idea anyway



2007 JavaOneSM Conference   |   Session TS-2906   | 23

Object Pooling (1/3)
● Legacy of older VMs with terrible

allocation performance
● Remember

● Generational GCs love short-lived,
immutable objects…

● Not long-lived, highly mutable objects
● Unused objects in pools

● Are like a bad tax
● Are live; the GC must process them
● Provide no benefit; the application does not use them
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Object Pooling (2/3)
● List of issues

● Sizing
● Too small: allocate anyway
● Too large: too much footprint overhead + pressure on GC

● Safety
● Reintroduce malloc/free mistakes

● Scalability
● Must allocate/de-allocate efficiently
● synchronized defeats the VM’s fast allocation mechanism

● Compatibility
● Incompatible with most standard libraries
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Object Pooling (3/3)
● Exceptions

● Objects that are expensive to allocate and/or initialize
● Objects that represent scarce resources
● Examples

● Threads pools
● Database connection pools

● Caveats to the exceptions
● Use existing libraries wherever possible
● Can you write a better thread pool than Doug Lea?
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Finalization Description
● Finalization

● Essentially, a postmortem hook 
● Allows cleanup when GC finds an object unreachable
● Typically used to reclaim native resources

● Finalizable objects
● Have a non-trivial finalize() method
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Allocation/Reclamation
● Finalizable object allocation

● Much slower
● The VM must track finalizable objects

● Finalizable object reclamation
● It takes at least two GC cycles

● The GC cycles are slower too
● First cycle identifies object as garbage

● Enqueues object on finalization queue
● Second cycle reclaims space after finalize() completes

● Unless finalize() resurrects the object!
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Finalizers vs. Destructors
● Beware

● Finalizers are not like C++ destructors!
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Finalizers vs. Destructors
● Beware

● Finalizers are not like C++ destructors!
● Let us repeat this again

● Finalizers are not like C++ destructors!
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Finalizers vs. Destructors
● Beware

● Finalizers are not like C++ destructors!
● Let us repeat this again

● Finalizers are not like C++ destructors!
● No guarantees

● When they will be called
● Whether they will be called
● The order in which they will be called

● The closest concept to a destructor
● Finally clause
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Finalizers and Memory Retention
● Finalizable objects

● Are retained longer
● Along with everything reachable from them
● finalize() is an application-defined method

● It may access any field

● More pressure on the GC
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“Sneaky” Memory Retention
● You do not have to explicitly use finalizers

● To be affected by finalization-induced heap pressure
● Library classes you extend might define finalizers

● Below, buffer will survive at least two GC cycles
● In Java Development Kit (JDK™) 1.5 and earlier

class MyFrame extends JFrame {
private byte[] buffer = new byte[16 * 1024 * 1024];
...

}
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Avoid Unnecessary Memory 
Retention
● Split the object

● Finalize only what is necessary

class MyFrame {
private JFrame frame;
private byte[] buffer = new byte[16 * 1024 * 1024];
...

}
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Finalization and Scarce Resources
● Finalization to reclaim scarce resources

● GC required before object is finalized
● GCs triggered by memory usage
● Memory is usually plentiful
● The scarce resources will be exhausted before 

memory
● Recommendation: explicit management

● Pool scarce resources
● Return scarce resources to pool explicitly

● Finalization as a last resort!
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finally {
● Using finalization has a score of other issues

● e.g., synchronization
● Enumerated nicely in:

● Destructors, Finalizers, and Synchronization
● By Hans Boehm, POPL 2003

● Finalization, threads, and the Java technology
memory model
● By Hans Boehm, TS-3281, 2005 JavaOneSM conference

}
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Reference Objects
● Purpose

● Postmortem hooks, more flexible than finalization
● Three types of reference objects

● Weak references
● Soft references
● Phantom references

● All three
● Can enqueue the reference object…
● On a designated reference Queue…
● When the GC finds its referent to be unreachable
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Reference Objects: Illustration 
(1/2)

ReferentReference

ref  = new WeakReference(foo, rq);

fooref
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rq

Reference Objects: Illustration 
(1/2)

Reference enqueued
on Reference Queue

Reference
Queue

GC found Referent dead
and cleared Reference

ref

Reference Referent

foo
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Weak References (1/2)
● Uses

● Tell me if the object has been reclaimed
by the GC”

● Do not retain this object because
of this reference”

● get() returns
● The referent, if not reclaimed
● null, otherwise

● Referent is cleared by the GC

“

“
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Weak References (2/2)
● Using weak references you can implement a 

flexible version of finalization that allows you to…
● Prioritize object “finalization,”
● Decide when to run object “finalization,”
● Stop objects from being considered for “finalization,”
● Be unaffected by the VM’s finalization queue,
● Etc.

● See link below for a code sketch
● http://www.devx.com/Java/Article/30192



2007 JavaOneSM Conference   |   Session TS-2906   | 43

Soft References (1/2)
● Uses

● Only reclaim this object if there is
memory pressure”

● get() returns
● The referent, if not reclaimed
● null, otherwise

● Referent is cleared by the GC

“
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Soft References (2/2)
● Implementing soft reference policy is tricky

● Hard to make informed decisions
● How much data reachable from each reference?

● Prohibitively expensive to calculate
● How expensive to recreate?

● OK for quick and simple caches
● Remember: create strong references to data you

want to keep
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Phantom References
● Uses

● Keep some data around after the object 
becomes unreachable so that I can use that 
data to clean up after the object”

● get() returns
● null, always

● Referent is not cleared by the GC
● The GC will retain the referent until

● It is explicitly cleared by the user, …
● Or the reference object becomes unreachable

“
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Memory Leaks, Eh?
● But, the GC is supposed to fix memory leaks!
● The GC will collect all unreachable objects
● But, it will not collect objects that are 

still reachable
● Memory leaks in garbage collected heaps

● Objects that are reachable but unused
● Unintentional object retention
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Memory Leak Types
● “Traditional” memory leaks

● Heap keeps growing, and growing, and growing…
● OutOfMemoryError

● “Temporary” memory leaks
● Heap usage is  temporarily very high, then it decreases
● Bursts of frequent GCs
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Memory Leak Sources
● Objects in the wrong scope
● Lapsed listeners
● Exceptions change control flow
● Instances of inner classes
● Metadata mismanagement
● Use of finalizers/reference objects
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Objects in the Wrong Scope (1/2)
● Below, names really local to doIt()

● It will not be reclaimed while the instance of Foo is live

class Foo {
private String[] names;
public void doIt(int length) {

if (names == null || names.length < length)
names = new String[length];

populate(names);
print(names);

}
}
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Objects in the Wrong Scope (2/2)
● Remember

● Generational GCs love short-lived objects

class Foo {
public void doIt(int length) {

String[] names = new String[length];
populate(names);
print(names);

}
}
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Lapsed Listeners (1/2)
● Event listeners (Swing, AWT, etc.)

{
ImageReader reader = new ImageReader();
cancelButton.addActionListener(reader);
reader.readImage(inputFile);
// reader is still reachable as long as
// cancelButton remains reachable

}
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Lapsed Listeners (2/2)
● Need to explicitly remove it

● When the listener object is not used any more

{
ImageReader reader = new ImageReader();
cancelButton.addActionListener(reader);
reader.readImage(inputFile);
cancelButton.removeActionListener(reader);

}
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Exceptions Change Control Flow 
(1/2)
● Beware

● Thrown exceptions can change control flow

try {
ImageReader reader = new ImageReader();
cancelButton.addActionListener(reader);
reader.readImage(inputFile);
cancelButton.removeActionListener(reader);

} catch (IOException e) {
// if thrown from readImage(), reader will not
// be removed from cancelButton's listener set

}
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Exceptions Change Control Flow 
(2/2)
● Always use finally blocks

ImageReader reader = new ImageReader();
cancelButton.addActionListener(reader);
try {

reader.readImage(inputFile);
} catch (IOException e) {

...
} finally {

cancelButton.removeActionListener(reader);
}
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Instances of Inner Classes
● Instances of inner classes have an

implicit reference to the outer instance

class ImageReader {
class CancelListener implements ActionListener { ... }
public ImageReader(JButton cancelButton) {

CancelListener listener = new CancelListener();
cancelButton.addActionListener(listener);
// instance of CancelListener also 'holds onto'
// the outer instance of ImageReader too

}
}
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Metadata Mismanagement (1/2)
● Sometimes, we want to:

● Keep track of object metadata
● In a separate map

class ImageManager {
private Map<Image,File> map =

new HashMap<Image,File>();
public void add(Image image, File file) { ... }
public void remove(Image image) { ... }
Public File get(Image image) { ... }

}
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Metadata Mismanagement (2/2)
● What happens if we forget to call remove(image)?

● The image and file will never be removed from the map
● Very common source of memory leaks

● We want:
● The map to notice that the key is not reachable…
● And purge the corresponding entry

● That’s exactly what a WeakHashMap does

private Map<Image,File> map =
new WeakHashMap<Image,File>();
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Use of Finalizers/Reference 
Objects
● Both finalizers and reference objects

● Can delay the reclamation of objects…
● As well as everything reachable from them

● Due to slow processing/long length of:
● Finalization queue
● Reference queues

● Temporary heap usage spikes
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Memory Leak Detection Tools
● Many tools to choose from
● “Is there a memory leak”?

● Monitor VM’s heap usage with jconsole and jstat
● “Which objects are filling up the heap?”

● Get a class histogram with jmap or
● -XX:+PrintClassHistogram and Ctrl-Break

● “Why are these objects still reachable?”
● Get reachability analysis with jhat
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Conclusions
● We covered a series of tips on how to write

● Simpler
● More readable
● More GC-friendly code

● You do not have to follow our advice
● But you will get better GC performance if you do
● We have helped a lot of customers with these tips
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…And Don’t Forget!

Everything should be made as simple as 
possible, but not simpler.”
—Albert Einstein

“
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For More Information (1/2)
● Memory management white paper

● http://java.sun.com/j2se/reference/whitepapers/
● Destructors, Finalizers, and Synchronization

● http://portal.acm.org/citation.cfm?id=604153 
● Finalization, Threads, and the Java Technology 

Memory Model
● http://developers.sun.com/learning/javaoneonline/2005/

coreplatform/TS-3281.html
● Memory-retention due to finalization article

● http://www.devx.com/Java/Article/30192
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For More Information (2/2)
● FindBugs

● http://findbugs.sourceforge.net
● Heap analysis tools

● Monitoring and Management in 6.0
● http://java.sun.com/developer/technicalArticles/J2SE/monitoring/

● Troubleshooting guide
● http://java.sun.com/javase/6/webnotes/trouble/

● JConsole
● http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html
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