JavaOne

Garbage Collection-Friendly
Programming

John Coomes, Peter Kessler, Tony
Printezis

Java SE Garbage Collection Group
Sun Microsystems, Inc.
http://java.sun.com/

TS-2906

2007 JavaOne®M Conference | Session TS-2906 | java.sun.com/javaone

=

— 4

Java

JavaOne

Our Goal

2007 JavaOne®M Conference | Session TS-2906 | java.sun.com/javaone

JavaOne

The One Thing You Should Remember

2007 JavaOneSM Conference | Session TS-2906 | 3

JavaOne

Agenda

Garbage Collection Concepts
Programming Tips

Problems With Finalization
Using Reference Objects
Memory Leak Avoidance
Conclusions

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 4 java.sun.com/javaone

JavaOne

Agenda

Garbage Collection Concepts
Programming Tips

Problems With Finalization
Using Reference Objects
Memory Leak Avoidance
Conclusions

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 5 java.sun.com/javaone

JavaOne

Garbage Collection

- Find and reclaim unreachable objects

- Anything not transitively reachable from the application
roots (thread stacks, static fields, etc.)

. Automatic and safe

- Easiest if the object graph is “frozen”
. Stop-the-world pauses

Variety of approaches

- Compacting/non-compacting

- Algorithms: copying, mark-sweep, mark-compact, etc.
- Allocation: linear, free lists, etc.

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 6 java.sun.com/javaone

g

~~(Generational Garbage Collection
(1/2)

Keeps young and old objects separately
In spaces called generations

The weak generational hypothesis
Most new objects will die young

Concentrate effort on young generation
Need to keep track of old-to-young pointers
Reference update tracking on old objects (write barrier)

Eventually, have to also collect the old generation

Different GC algorithms for each generation
“Use the right tool for the job”

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 7 java.sun.com/javaone

JEU! generailflonal %5ar!!age EOH@CEIOH

(2/2)

Track These
(Remembered Set)

Old Generation

’SI!E._’._’ 2007 JavaOneSM Conference | Session TS-2906 | 8 java.sun.com/javaone

JavaOne

Incremental Garbage Collection

- Tries to decrease/minimize GC disruption

- GC works at the same time as the application
- The object graph is being mutated while the GC works

- GC needs to be notified about object graph mutations
- Reference update tracking (write barrier)

. If only old generation is incremental
- No need to track updates on young objects

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 9 java.sun.com/javaone

JavaOne

Creating Work for the GC

- Allocation
- But, typically, super fast

- Maybe more expensive for non-compacting GCs
- Higher allocation rate implies more frequent GCs

. Live data size
. More work for the GC to find what is live

- Reference field updates
- More overhead on the application, ...

- And it also creates more work for the GC
. Especially on generational/incremental GCs

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 10 java.sun.com/javaone

JavaOne

Agenda

Garbage Collection Concepts
Programming Tips

Problems With Finalization
Using Reference Objects
Memory Leak Avoidance
Conclusions

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 11 java.sun.com/javaone

@Sun

Programming Tips

- Object allocation

- Large objects

- Pointer nulling

- Explicit GCs

- Data structure sizing
- NUMA

- Object pooling

2007 JavaOneSM Conference

Session TS-2906 | 12

JavaOne

@ Sun

Object Allocation (1/2)

- Typically, object allocation is very cheap!
- 10 native instructions in the fast common case
- No remembered set overhead on new objects
. C/C++ has faster allocation? Not!

- Reclamation of new objects is very cheap too!
- Young GCs in generational systems

.« SO

- Do not be afraid to allocate small objects for
iIntermediate results

. GCs love small, immutable objects
- Generational GCs love small, short-lived objects

2007 JavaOneSM Conference | Session TS-2906 | 13 java.sun.com/javaone

JavaOne

Object Allocation (2/2)

- We do not advise
- Needless allocation
- More frequent allocations will cause more frequent GCs
- We do advise

- Using short-lived immutable objects instead of
long-lived mutable objects

- Using clearer, simpler code with more allocations
instead of more obscure code with fewer allocations

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 14 java.sun.com/javaone

JavaOne

Large Objects

- Very large objects are:
- Expensive to allocate (maybe not through the fast path)
- Expensive to initialize (zeroing)
. Can cause performance issues

- Large objects of different sizes can cause
fragmentation

- For non-compacting or partially-compacting GCs

- Avoid if you can
- And, yes, this is not always possible or desirable

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 15 java.sun.com/javaone

JavaOne

Reference Field Nulling

- Nulling references rarely helps the GC
- The GC does fine by itself!
. Best Case: mostly worthless clutter in your code

- Worst Case: introduces a bug
(it may reveal itself later)

- Exceptions

- Array-based data structures
. e.g., the implementation of the ArrayList class
- In this case, you’re managing your own memory...
. So please, let the standard libraries do that!

- Avoiding finalizer-induced memory retention
- Avoid finalizers as much as possible (more on this later)

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 16 java.sun.com/javaone

JavaOne

Local Variable Nulling

- Local variable nulling is not necessary
- The JIT can do liveness analysis

void foo () {
int[] array = new int[1024];
populate (array) ;
print (array); // last use of array in method foo /()
array = null; // unnecessary!

// array is no longer considered live by the GC

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 17 java.sun.com/javaone

JavaOne

Explicit GCs (1/2)

- Avoid them!

- Applications do not have enough information
- GC does (knows allocation/promotion rate, etc.)
- System.gc() at the wrong time
- Hurts performance with no benefit
- Exceptions
- Between well-defined application phases (maybe)
- When performance does not matter (e.g., late at night)

. Java HotSpot™ virtual machine
- System.gc() does a stop-the-world full GC
- Use -XX: +D|sabIeEpr|C|tGC to ignore System. gc()

@.'ﬁh’h’ 2007 JavaOneSM Conference | Session TS-2906 | 18 a.sun.com/javaone

Explicit GCs (2/2)

- Incremental GCs
- Designed to avoid full GCs...
. But System.gc() does exactly that!

- In the Java HotSpot virtual machine (CMS)
» -XX:+ExplicitGClnvokesConcurrent

. Beware

- Libraries that call System.gc()
- Run FindBugs over your libraries to check for that

. Java" RMI calls System.gc() for its distributed
GC algorithm

. Decrease its frequency, or invoke concurrent, or both!

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 19 java.sun.com/javaone

JavaOne

Data Structure Sizing (1/2)

- Array-based data structures
- Avoid frequent re-sizing

- e.g., this will allocate the associated array twice

ArrayList<String> list = new ArrayList<String>();
list.ensureCapacity (1024) ;

- The preferred version

- (Part of periodic audits of the Java Platform,
Standard Edition (Java SE) libraries)

ArrayList<String> list = new ArraylList<String>(1024);

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 20 java.sun.com/javaone

JavaOne

Data Structure Sizing (2/2)

- Additionally, try to size data structures as
realistically as possible

ArraylList<String> list = new
ArrayList<String>(1024);

. If 1M strings are added to it:
- Several array-resizing operations will take place
- They will allocate several large-ish arrays
- They will cause a lot of array copying

- They might cause fragmentation issues on
non-compacting GCs

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 21 java.sun.com/javaone

JavaOne

NUMA

- Asymmetric memory access
- Each CPU accesses its local memory faster
. e.g., large SPARC® computers, Opteron™

- What we try to do
- Allocate objects to memory of allocating CPU/thread

- Something to consider
- Allocating thread also manipulates the objects too
- You might see a performance benefit

- Avoiding thread ‘hops’ is a good idea anyway

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 22 java.sun.com/javaone

JavaOne

Object Pooling (1/3)

- Legacy of older VMs with terrible
allocation performance

- Remember

. Generational GCs love short-lived,
Immutable objects...

- Not long-lived, highly mutable objects

- Unused objects in pools
- Are like a bad tax
- Are live; the GC must process them
- Provide no benefit; the application does not use them

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 23 java.sun.com/javaone

JavaOne

Object Pooling (2/3)

- List of issues
. Sizing
- Too small: allocate anyway
. Too large: too much footprint overhead + pressure on GC
. Safety

. Reintroduce malloc/free mistakes

- Scalability
- Must allocate/de-allocate efficiently
. synchronized defeats the VM'’s fast allocation mechanism

- Compatibility

- Incompatible with most standard libraries

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 24 java.sun.com/javaone

JavaOne

Object Pooling (3/3)

- EXxceptions
- Objects that are expensive to allocate and/or initialize
- Obijects that represent scarce resources

. Examples
- Threads pools
. Database connection pools

. Caveats to the exceptions
- Use existing libraries wherever possible
- Can you write a better thread pool than Doug Lea?

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 25 java.sun.com/javaone

JavaOne

Agenda

Garbage Collection Concepts
Programming Tips

Problems With Finalization
Using Reference Objects
Memory Leak Avoidance
Conclusions

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 26 java.sun.com/javaone

JavaOne

Finalization Description

- Finalization
. Essentially, a postmortem hook
. Allows cleanup when GC finds an object unreachable
- Typically used to reclaim native resources

- Finalizable objects
- Have a non-trivial finalize() method

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 27 java.sun.com/javaone

JavaOne

Allocation/Reclamation

- Finalizable object allocation
- Much slower
- The VM must track finalizable objects

- Finalizable object reclamation
. It takes at least two GC cycles
. The GC cycles are slower too

. First cycle identifies object as garbage
- Enqueues object on finalization queue

. Second cycle reclaims space after finalize() completes
- Unless finalize() resurrects the object!

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 28 java.sun.com/javaone

JavaOne

Finalizers vs. Destructors

. Beware
. Finalizers are not like C++ destructors!

’SI!E._’._’ 2007 JavaOne®M Conference | Session TS-2906 | 29 java.sun.com/javaone

JavaOne

Finalizers vs. Destructors

. Beware
. Finalizers are not like C++ destructors!

- Let us repeat this again
. Finalizers are not like C++ destructors!

Q.‘fi_.‘a_’._’ 2007 JavaOne®M Conference | Session TS-2906 | 30 java.sun.com/javaone

JavaOne

Finalizers vs. Destructors

. Beware
. Finalizers are not like C++ destructors!

- Let us repeat this again
. Finalizers are not like C++ destructors!

- No guarantees

- When they will be called
- Whether they will be called
- The order in which they will be called

- The closest concept to a destructor
- Finally clause

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 31 java.sun.com/javaone

JavaOne

Finalizers and Memory Retention

- Finalizable objects
- Are retained longer
- Along with everything reachable from them

. finalize() is an application-defined method
. It may access any field

- More pressure on the GC

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 32 java.sun.com/javaone

JavaOne

“Sneaky” Memory Retention

- You do not have to explicitly use finalizers
- To be affected by finalization-induced heap pressure
- Library classes you extend might define finalizers

- Below, buffer will survive at least two GC cycles
- In Java Development Kit (JDK™) 1.5 and earlier

class MyFrame extends JFrame ({
private byte[] buffer = new byte[l6 * 1024 * 1024];

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 33 java.sun.com/javaone

E,mgvmg Hnnecessary H emory

Retention

- Split the object

- Finalize only what is necessary

class MyFrame {
private JFrame frame;
private byte[] buffer = new byte[l6 * 1024 * 1024];

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 34 java.sun.com/javaone

JavaOne

Finalization and Scarce Resources

- Finalization to reclaim scarce resources
- GC required before object is finalized
. GCs triggered by memory usage
- Memory is usually plentiful

. The scarce resources will be exhausted before
memory

- Recommendation: explicit management
. Pool scarce resources
- Return scarce resources to pool explicitly

- Finalization as a last resort!

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 35 java.sun.com/javaone

JavaOne

finally {

- Using finalization has a score of other issues
. €.g., synchronization

- Enumerated nicely in:

- Destructors, Finalizers, and Synchronization
- By Hans Boehm, POPL 2003

- Finalization, threads, and the Java technology
memory model

. By Hans Boehm, TS-3281, 2005 JavaOne®*M conference

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 36 java.sun.com/javaone

JavaOne

Agenda

Garbage Collection Concepts
Programming Tips

Problems With Finalization
Using Reference Objects
Memory Leak Avoidance
Conclusions

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 37 java.sun.com/javaone

JavaOne

Retference Objects

- Purpose
. Postmortem hooks, more flexible than finalization

- Three types of reference objects
- Weak references
. Soft references
. Phantom references

. All three

. Can enqueue the reference object...
- On a designated reference Queue...
- When the GC finds its referent to be unreachable

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 38 java.sun.com/javaone

JEEW.UM E C % CIrence %; E] cC ES : ! ! !US Era %lOn

(1/2)

Reference Referent

ﬁ II-II>

ref = new WeakReference(foo, rq);

’SE,‘H 2007 JavaOne®M Conference | Session TS-2906 | 39 java.sun.com /javaone

JEEM, E C ! CIrence %g E] cC ES : ! ! !US Era %lOn

(1/2)

Reference enqueued GC found Referent dead

on Reference Queue and cleared Reference

Reference Reernt

bpr—————

ﬁ

Reference
Queue

’Sf_ff._’ 2007 JavaOne®M Conference | Session TS-2906 | 40 java.sun.com/javaone

Weak References (1/2)

. Uses

. “Tell me if the object has been reclaimed
by the GC”

- “Do not retain this object because
of this reference”

- get() returns
. The referent, if not reclaimed
. null, otherwise

- Referent is cleared by the GC

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 41 java.sun.com/javaone

JavaOne

Weak References (2/2)

- Using weak references you can implement a
flexible version of finalization that allows you to...

- Prioritize object “finalization,”

- Decide when to run object “finalization,”

- Stop objects from being considered for “finalization,”
- Be unaffected by the VM'’s finalization queue,

. Etc.

. See link below for a code sketch
 http://www.devx.com/Java/Article/30192

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 42 java.sun.com/javaone

JavaOne

Soft References (1/2)

. Uses

- “Only reclaim this object if there is
memory pressure”

- get() returns
. The referent, if not reclaimed
. null, otherwise

- Referent is cleared by the GC

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 43 java.sun.com/javaone

JavaOne

Soft References (2/2)

- Implementing soft reference policy is tricky

. Hard to make informed decisions
- How much data reachable from each reference?
. Prohibitively expensive to calculate
- How expensive to recreate?

- OK for quick and simple caches

- Remember: create strong references to data you
want to keep

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 44 java.sun.com/javaone

JavaOne

Phantom Retferences

. Uses

- “‘Keep some data around after the object
becomes unreachable so that | can use that
data to clean up after the object”

- gel() returns
- hull, always

- Referent is not cleared by the GC

- The GC will retain the referent until
. It is explicitly cleared by the user, ...
- Or the reference object becomes unreachable

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 45 java.sun.com/javaone

JavaOne

Agenda

Garbage Collection Concepts
Programming Tips

Problems With Finalization
Using Reference Objects
Memory Leak Avoidance
Conclusions

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 46 java.sun.com/javaone

JavaOne

Memory Leaks, Eh?

- But, the GC is supposed to fix memory leaks!
- The GC will collect all unreachable objects

- But, it will not collect objects that are
still reachable

- Memory leaks in garbage collected heaps
- Objects that are reachable but unused
- Unintentional object retention

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 47 java.sun.com/javaone

JavaOne

Memory Leak Types

- “Traditional” memory leaks
- Heap keeps growing, and growing, and growing...
- OutOfMemoryError

- “Temporary” memory leaks
- Heap usage is temporarily very high, then it decreases
- Bursts of frequent GCs

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 48 java.sun.com/javaone

JavaOne

Memory Leak Sources

- Objects in the wrong scope

- Lapsed listeners

- Exceptions change control flow

- Instances of inner classes

- Metadata mismanagement

- Use of finalizers/reference objects

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 49 java.sun.com/javaone

JavaOne

Objects 1n the Wrong Scope (1/2)

- Below, names really local to dolt()
. It will not be reclaimed while the instance of Foo is live

class Foo {
private String[] names;
public void doIt(int length) {
if (names == null || names.length < length)
names = new String[length];
populate (names) ;

print (names) ;

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 50 java.sun.com/javaone

JavaOne

Objects 1n the Wrong Scope (2/2)

- Remember
- Generational GCs love short-lived objects

class Foo {
public void doIt(int length) {
String[] names = new String[length];
populate (names) ;

print (names) ;

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 51 java.sun.com/javaone

JavaOne

Lapsed Listeners (1/2)

- Event listeners (Swing, AWT, etc.)

ImageReader reader = new ImageReader();
cancelButton.addActionlistener (reader) ;
reader.readImage (inputFile) ;

// reader is still reachable as long as

// cancelButton remains reachable

#.Ti,‘ﬂ 2007 JavaOneSM Conference | Session TS-2906 | 52 java.sun.com/javaone

JavaOne

Lapsed Listeners (2/2)

- Need to explicitly remove it
- When the listener object is not used any more

{

ImageReader reader = new ImageReader() ;
cancelButton.addActionListener (reader) ;
reader.readImage (inputFile) ;

cancelButton.removeActionListener (reader) ;

¢."fﬂ.ﬁ 2007 JavaOneSM Conference | Session TS-2906 | 53 java.sun.com/javaone

—]

Jav

~-Exceptions

(1/2)

- Beware
- Thrown exceptions can change control flow

angc L ontro oW

try {

ImageReader reader = new ImageReader() ;
cancelButton.addActionlListener (reader) ;
reader.readImage (inputFile) ;
cancelButton.removeActionListener (reader) ;

} catch (IOException e) {
// if thrown from readImage (), reader will not

// be removed from cancelButton's listener set

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 54 java.sun.com/javaone

S,

jau::-i

& Sun

~EXceptions
(2/2)

- Always use finally blocks

ImageReader reader = new ImageReader () ;

cancelButton.addActionListener (reader) ;

try {
reader.readImage (inputFile) ;

} catch (IOException e) {

} finally {

cancelButton.removeActionListener (reader) ;

2007 JavaOne®M Conference | Session TS-2906 | 55

angc L ontro oW

java.sun.com/javaone

JavaOne

Instances of Inner Classes

- Instances of inner classes have an
implicit reference to the outer instance

class ImageReader ({
class Cancellistener implements ActionListener { ... }
public ImageReader (JButton cancelButton) {
Cancellistener listener = new Cancellistener() ;
cancelButton.addActionlListener (listener) ;
// instance of Cancellistener also 'holds onto'

// the outer instance of ImageReader too

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 56 java.sun.com/javaone

JavaOne

Metadata Mismanagement (1/2)

. Sometimes, we want to:
- Keep track of object metadata
- In a separate map

class ImageManager {
private Map<Image,File> map =
new HashMap<Image,File>() ;
public void add(Image image, File file) { ... }
public void remove (Image image) { ... }

Public File get (Image image) { ... }

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 57 java.sun.com/javaone

JavaOne

Metadata Mismanagement (2/2)

- What happens if we forget to call remove(image)?
- The image and file will never be removed from the map
- Very common source of memory leaks

- We want:
- The map to notice that the key is not reachable...
- And purge the corresponding entry

- That’'s exactly what a WeakHashMap does

private Map<Image,File> map =
new WeakHashMap<Image,File> () ;

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 58 java.sun.com/javaone

~~Use of Finalizers/Reference
Objects

- Both finalizers and reference objects
- Can delay the reclamation of objects...
- As well as everything reachable from them

- Due to slow processing/long length of:
- Finalization queue
- Reference queues

- Temporary heap usage spikes

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 59 java.sun.com/javaone

;

JavaOne

Memory Leak Detection Tools

Many tools to choose from

“Is there a memory leak”?
Monitor VM'’s heap usage with jconsole and jstat

“Which objects are filling up the heap?”
Get a class histogram with jmap or
-XX:+PrintClassHistogram and Ctrl-Break

“Why are these objects still reachable?”
Get reachability analysis with jhat

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 60 java.sun.com/javaone

JavaOne

Agenda

Garbage Collection Concepts
Programming Tips

Problems With Finalization
Using Reference Objects
Memory Leak Avoidance
Conclusions

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 61 java.sun.com/javaone

JavaOne

Conclusions

- We covered a series of tips on how to write
- Simpler
- More readable
- More GC-friendly code

- You do not have to follow our advice
- But you will get better GC performance if you do
- We have helped a lot of customers with these tips

@ Sun 2007 JavaOneSM Conference | Session TS-2906 | 62 java.sun.com/javaone

=%

...And Don’t Forget!

2007 JavaOne®M Conference | Session TS-2906 | 63 java.sun.com/javaone

JavaOne

For More Information (1/2)

- Memory management white paper
« http://java.sun.com/j2se/reference/whitepapers/

- Destructors, Finalizers, and Synchronization
 http://portal.acm.org/citation.cfm?id=604153

- Finalization, Threads, and the Java Technology
Memory Model

» http://developers.sun.com/learning/javaoneonline/2005/
coreplatform/TS-3281.html

- Memory-retention due to finalization article
» http://www.devx.com/Java/Article/30192

@ Sun 2007 JavaOneSM Conference | SessionTS-2906 | 64 java.sun.com/javaone

JavaOne

For More Information (2/2)

- FindBugs

 http:/ffindbugs.sourceforge.net

- Heap analysis tools

- Monitoring and Management in 6.0
 http://java.sun.com/developer/technicalArticles/J2SE/monitoring/

- Troubleshooting guide
. http://java.sun.com/javase/6/webnotes/trouble/

- JConsole
- http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html

*.Ti,‘ﬂ 2007 JavaOneSM Conference | Session TS-2906 | 65 java.sun.com/javaone

JavaOne

Acknowledgments

- Many thanks to Brian Goetz

’SI_!I.E‘._’ 2007 JavaOne®M Conference | Session TS-2906 | 66 java.sun.com /javaone

JavaOne

John Coomes, Peter Kessler, Tony Printezis

2007 JavaOne®M Conference | Session TS-2906 | 67 java.sun.com/javaone

JavaOne

Garbage Collection-Friendly
Programming

John Coomes, Peter Kessler, Tony Printezis

Java SE Garbage Collection Group
Sun Microsystems, Inc.
http://java.sun.com/

TS-2906

2007 JavaOne®M Conference | Session TS-2906 | java.sun.com/javaone

