
PROJECT FORTRESS: A NEW
PROGRAMMING LANGUAGE FROM SUN
LABS
Christine H. Flood
Programming Language Research Group
Sun Microsystems Laboratories

TS-5206

2008 JavaOneSM Conference | java.sun.com/javaone | 2

Project Fortress Background Information

Originally funded by DARPA as part of their High
Productivity Computing Systems (HPCS) project .

As of March 2008 we have an open source parallel
reference interpreter which is a full implementation
of the Fortress 1.0 specification.

However some of the features I discuss in this talk
are not part of the 1.0 Spec.

2008 JavaOneSM Conference | java.sun.com/javaone | 3

Project Fortress:
To boldly go where no programming language
has gone before.

 Not Exactly...

2008 JavaOneSM Conference | java.sun.com/javaone | 4

Project Fortress:
To seek out great programming language
design ideas and make them our own.

2008 JavaOneSM Conference | java.sun.com/javaone | 5

Java™ Programing Language's Big Ideas
(In My Humble Opinion)

“Write Once Run Anywhere”
Garbage Collection
Safety
Portable multithreading

2008 JavaOneSM Conference | java.sun.com/javaone | 6

Agenda

Top Ten Big Fortress Ideas

2008 JavaOneSM Conference | java.sun.com/javaone | 7

Fortress Big Idea #10:

Contracts

2008 JavaOneSM Conference | java.sun.com/javaone | 8

Fortress Big Idea #10: Contracts

Requires
Ensures
Invariants

2008 JavaOneSM Conference | java.sun.com/javaone | 9

Fortress Big Idea #9:

Dimensions and Units

2008 JavaOneSM Conference | java.sun.com/javaone | 10

Big Idea #9: Dimensions and Units

Dimensions as types
Prevent errors such as adding kilometers to a variable in

miles.

See:
Object-oriented units of measurement
Eric Allen, David Chase, Victor Luchangco, Jan-Willem Maessen, Guy L.
Steele
OOPSLA '04:

2008 JavaOneSM Conference | java.sun.com/javaone | 11

Fortress Big Idea #8:

Traits and Objects

2008 JavaOneSM Conference | java.sun.com/javaone | 12

Big Idea #8: Traits and Objects

Multiple vs. single inheritance
Single inheritance is limiting.
Multiple inheritance is complicated.

Java programming language works around this by having
single inheritance augmented by interfaces.

Traits and Objects solve this problem by having multiple
inheritance of methods, but not fields.

2008 JavaOneSM Conference | java.sun.com/javaone | 13

Big Idea #8: Traits and Objects

Person

Cowboy
Artist

ArtistCowboy

If both Cowboy and Artist define a draw method, then this is a compile
time error in Fortress unless Cowboy Artist has a more specific method
that covers them both. There must be one most specific method.

Objects with fields are the leaves of the hierarchy and therefore multiple
inheritance is not an issue.

Multiple Inheritance Diamond
Problem

2008 JavaOneSM Conference | java.sun.com/javaone | 14

Big Idea #8: Traits and Objects
Extends and comprises enhance

readability

2008 JavaOneSM Conference | java.sun.com/javaone | 15

Fortress Big Idea #7:

Functional Methods

2008 JavaOneSM Conference | java.sun.com/javaone | 16

Big Idea #7: Functional Methods

Sometimes you want to define methods which have self not
be the first parameter.

This allows you to define methods in subtypes for cleaner
code.

2008 JavaOneSM Conference | java.sun.com/javaone | 17

Fortress Big Idea #6:

Parametric Polymorphism

2008 JavaOneSM Conference | java.sun.com/javaone | 18

Big Idea #6: Parametric Polymorphism
Subtype polymorphism allows code

reuse.

2008 JavaOneSM Conference | java.sun.com/javaone | 19

Big Idea #6: Parametric Polymorphism
Parametric polymorphism allows safe code

reuse.

2008 JavaOneSM Conference | java.sun.com/javaone | 20

Fortress Big Idea #5:

Generators and Reducers

2008 JavaOneSM Conference | java.sun.com/javaone | 21

Big Idea #5: Generators and Reducers

Reducers such as ∑ (or SUM) and MAX are defined by
libraries.

Reducers are driven by generators.

Generators may have serial or parallel implementations.

Distribution of generator guides parallelism of reducer.

2008 JavaOneSM Conference | java.sun.com/javaone | 22

Big Idea #5: Generators and Reducers

This is an example from our pod demo.
We are finding the most common words in a document in parallel.

The first line creates a mapping from words to occurrence counts.

The second line inverts the mapping so we can find the top n most
common words in the document.

rs.lines() and (x,y) <- database are parallel generators.
The big operators are reducers.

2008 JavaOneSM Conference | java.sun.com/javaone | 23

Fortress Big Idea #4:

Mathematical Syntax

2008 JavaOneSM Conference | java.sun.com/javaone | 24

Big Idea #4: Mathematical Syntax
Fortress syntax looks more like a math text book than a traditional

programming language.

Goal: What you write on your whiteboard works.

2008 JavaOneSM Conference | java.sun.com/javaone | 25

Big Idea #4: Mathematical Syntax (NAS CG
Kernel)Specification: Fortress Code:

2008 JavaOneSM Conference | java.sun.com/javaone | 26

Big Idea #4: Mathematical Syntax

do j=1,naa+1

 q(j) = 0.0d0

 z(j) = 0.0d0

 r(j) = x(j)
 p(j) = r(j)

 w(j) = 0.0d0

 enddo
 sum = 0.0d0

 do j=1,lastcol-firstcol+1

 sum = sum + r(j)*r(j)

 enddo
 rho = sum

 do cgit = 1,cgitmax

 do j=1,lastrow-firstrow+1

 sum = 0.d0
 do k=rowstr(j),rowstr(j+1)-1

 sum = sum + a(k)*p(colidx(k))

 enddo
 w(j) = sum

 enddo

 do j=1,lastcol-firstcol+1

 q(j) = w(j)
 enddo

do j=1,lastcol-firstcol+1

 w(j) = 0.0d0
 enddo

 sum = 0.0d0

 do j=1,lastcol-firstcol+1

 sum = sum + p(j)*q(j)
 enddo

 d = sum

 alpha = rho / d

 rho0 = rho
 do j=1,lastcol-firstcol+1

 z(j) = z(j) + alpha*p(j)

 r(j) = r(j) - alpha*q(j)

 enddo
 sum = 0.0d0

 do j=1,lastcol-firstcol+1

 sum = sum + r(j)*r(j)
 enddo

 rho = sum

 beta = rho / rho0

 do j=1,lastcol-firstcol+1
 p(j) = r(j) + beta*p(j)

 enddo

 enddo

do j=1,lastrow-firstrow+1

 sum = 0.d0
 do k=rowstr(j),rowstr(j+1)-1

 sum = sum + a(k)*z(colidx(k))

 enddo

 w(j) = sum
 enddo

 do j=1,lastcol-firstcol+1

 r(j) = w(j)

 enddo
 sum = 0.0d0

 do j=1,lastcol-firstcol+1

 d = x(j) - r(j)

 sum = sum + d*d
 enddo

 d = sum

 rnorm = sqrt(d)

Comparison: NAS NPB 2.3 Serial
Code

2008 JavaOneSM Conference | java.sun.com/javaone | 27

Big Idea #4: Mathematical Syntax
Which would you rather write?

do j=1,naa+1

 q(j) = 0.0d0

 z(j) = 0.0d0

 r(j) = x(j)

 p(j) = r(j)

 w(j) = 0.0d0

 enddo

 sum = 0.0d0

 do j=1,lastcol-firstcol+1

 sum = sum + r(j)*r(j)

 enddo

 rho = sum

 do cgit = 1,cgitmax

 do j=1,lastrow-firstrow+1

 sum = 0.d0

 do k=rowstr(j),rowstr(j+1)-1

 sum = sum +
a(k)*p(colidx(k))

 enddo

 w(j) = sum

 enddo

 do j=1,lastcol-firstcol+1

 q(j) = w(j)

 enddo

do j=1,lastcol-firstcol+1

 w(j) = 0.0d0

 enddo

 sum = 0.0d0

 do j=1,lastcol-firstcol+1

 sum = sum + p(j)*q(j)

 enddo

 d = sum

 alpha = rho / d

 rho0 = rho

 do j=1,lastcol-firstcol+1

 z(j) = z(j) + alpha*p(j)

 r(j) = r(j) - alpha*q(j)

 enddo

 sum = 0.0d0

 do j=1,lastcol-firstcol+1

 sum = sum + r(j)*r(j)

 enddo

 rho = sum

 beta = rho / rho0

 do j=1,lastcol-firstcol+1

 p(j) = r(j) + beta*p(j)

 enddo

 enddo

do j=1,lastrow-firstrow+1

 sum = 0.d0

 do k=rowstr(j),rowstr(j+1)-1

 sum = sum + a(k)*z(colidx(k))

 enddo

 w(j) = sum

 enddo

 do j=1,lastcol-firstcol+1

 r(j) = w(j)

 enddo

 sum = 0.0d0

 do j=1,lastcol-firstcol+1

 d = x(j) - r(j)

 sum = sum + d*d

 enddo

 d = sum

 rnorm = sqrt(d)

2008 JavaOneSM Conference | java.sun.com/javaone | 28

Big Idea #4: Mathematical Syntax
NAS CG Kernel (ASCII)

conjGrad(A: Matrix[\Float\], x: Vector[\Float\]):
 (Vector[\Float\], Float) = do
 cgit_max = 25
 z: Vector[\Float\] := 0
 r: Vector[\Float\] := x
 p: Vector[\Float\] := r
 rho: Float := r^T r
 for j <- seq(1:cgit_max) do
 q = A p
 alpha = rho / p^T q
 z := z + alpha p
 r := r - alpha q
 rho0 = rho
 rho := r^T r
 beta = rho / rho0
 p :=r + beta p
 end
(z, ||x - A z||)
end

2008 JavaOneSM Conference | java.sun.com/javaone | 29

Big Idea #4: Mathematical Syntax

Why don't all programming languages look like math?
• Parsing
• Type inference
• Overloading

2008 JavaOneSM Conference | java.sun.com/javaone | 30

Big Idea #4: Mathematical Syntax

See:
Better Extensibility through Modular Syntax
Robert Grimm
PLDI 2006

Parsing
Unicode enabled
Requires a PackRat parser. We use Rats!
Whitespace-sensitive grammar
Example: juxtaposition is an operator

a b
Means a times b if a and b are numeric types. It's perfectly natural to

mathematicians, revolutionary to computer programmers.

2008 JavaOneSM Conference | java.sun.com/javaone | 31

Fortress Big Idea #3:

Transactional Memory

2008 JavaOneSM Conference | java.sun.com/javaone | 32

Big Idea #3: Transactional Memory

Programming with locks is hard, often inefficient,
and error prone.

Transactions are simple and easy to reason about.

As with GC, let the run time system do the heavy lifting,
not the application programmer or library writer.

2008 JavaOneSM Conference | java.sun.com/javaone | 33

Big Idea #3: Transactional Memory

2008 JavaOneSM Conference | java.sun.com/javaone | 34

Big Idea #3: Transactional Memory

Fortress requires:

Software Transactional Memory

Hardware transactional memory takes advantage of a processors cache
to keep track of accesses.

We may have multiple threads cooperating in a single transaction.

Nested Transactions

Mixing atomic and non-atomic accesses to the same data.

2008 JavaOneSM Conference | java.sun.com/javaone | 35

Big Idea #3: Transactional Memory

See:
A flexible framework for implementing software transactional memory
Maurice Herlihy, Victor Luchangco, Mark Moir
OOPSLA 2006

Download the source code for DSTM2:
http://www.sun.com/download/products.xml?id=453fb28e

Implementation
Built on Top of DSTM2.

All mutable values are represented by Reference Cells and
may be a part of a transaction.

2008 JavaOneSM Conference | java.sun.com/javaone | 36

Big Idea #3: Transactional Memory

Reference Cell

Status update via compare and set

Node

Writer Transaction

Readers

Value

Old Value

Status: [Active, Committed, Aborted]

List of Reader Transactions

2008 JavaOneSM Conference | java.sun.com/javaone | 37

Big Idea #3: Transactional Memory Example

Thread 1 Thread 2

After these two threads run, the values of (x,y) are
either (3,7) or (30,70).

2008 JavaOneSM Conference | java.sun.com/javaone | 38

Big Idea #3: Transactional Memory Example

Thread 1

Reference Cell x

Node

Writer Transaction

Readers

Value = 3

Old Value = 0

Transaction 1: Status = Active

Null

Thread 2
discovers
conflict with
Thread 1

2008 JavaOneSM Conference | java.sun.com/javaone | 39

Big Idea #3: Transactional Memory

Contention Managers
Current strategy

Transaction created by the lowest numbered thread
wins.

Losers backoff via spin and retry.

One transaction always makes progress.

2008 JavaOneSM Conference | java.sun.com/javaone | 40

Big Idea #3: Transactional Memory

Why not have per transaction read sets instead of
per object read sets?

A transaction would keep track of every value it read and
then prior to committing updates it would validate that the
read values haven't changed.

Validating the reads before a commit may take a long time;
we can't block other threads for that long.

2008 JavaOneSM Conference | java.sun.com/javaone | 41

Fortress Big Idea #2:

Implicit Parallelism

2008 JavaOneSM Conference | java.sun.com/javaone | 42

Big Idea #2: Implicit Parallelism

[As multicore processor chips become ubiquitous,]
“what we are seeing is not a gradual shift but a
cataclysmic shift from the sequential world to one in
which every processor is parallel. In a small number of
years, if your language does not support parallelism,
that language will just wither and die.”

—John Mellor-Crummey, Rice University
(Computerworld, March 12, 2007)

2008 JavaOneSM Conference | java.sun.com/javaone | 43

Big Idea #2: Implicit Parallelism
tuples

for loops

also do

2008 JavaOneSM Conference | java.sun.com/javaone | 44

Big Idea #2: Implicit Parallelism Work Stealing

The work is quickly distributed among threads (T1, T2, T3, and T4)

The darker boxes represent work that was stolen by idle threads

If machine is busy work stays local.

T1: 1#1024

T1: 1#512 T2: 513#512

T1: 1#256 T3: 257#256 T2: 513#256 T4: 769#256

2008 JavaOneSM Conference | java.sun.com/javaone | 45

Big Idea #2: Implicit Parallelism

Implementation
Work Stealing Queues

Built on top of Doug Lea's jsr166y forkjoin library.
Work is pushed onto a per thread deque.

Unsynchronized local pushes and pops most of the time.
Idle threads may steal work from the top of another thread's deque.
The cost of packaging up work and making it available to steal is

minimal.

See:
Thread Scheduling for Multiprogrammed Multiprocessors
Arora, Blumofe, Plaxton
SPAA 1998

2008 JavaOneSM Conference | java.sun.com/javaone | 46

Big Idea #2: Implicit Parallelism

Tasks are units of interpreter work which are put on
deques
We have three types:
• EvaluatorTask primordial task
• TupleTasks tuples and desugaring for loops
• SpawnTasks fair threads

Fair threads are for when you really want a separate OS
level thread.

2008 JavaOneSM Conference | java.sun.com/javaone | 47

Big Idea #2: Implicit Parallelism

When you write:

We generate an array of TupleTasks which we pass to the
current FortressTaskRunner.
tupleTask.forkJoin(tasks);

This will push one on the queue, and work on the other one.
Once these two tasks are completed the task runner may
move on to the next statement.

2008 JavaOneSM Conference | java.sun.com/javaone | 48

Fortress Big Idea #1:

Growable

2008 JavaOneSM Conference | java.sun.com/javaone | 49

Big Idea #1: Growable

Rome wasn't built in a day.

Modern languages are huge and need to evolve over time.

Fortress was designed from the beginning to have a small
fixed core with strong support for library writers.

See:
Steele, “Growing a Language” keynote talk, OOPSLA 1998;
Higher-Order and Symbolic Computation 12, 221–236 (1999)

2008 JavaOneSM Conference | java.sun.com/javaone | 50

Big Idea #1: Growable

Gets desugared into a library call with
1.A generator clause 1#1024
2.A loop body doSomething(i)

The library code is responsible for recursively subdividing
the loop iterations and generating tuple tasks.

This means that if you want to change the generator to
exploit new hardware, you can do it at the Fortress
language level in a library.

2008 JavaOneSM Conference | java.sun.com/javaone | 51

Big Idea #1: Growable

Also Defined in Libraries:
• Almost all types:

• Booleans
• Arrays
• Lists
• Matrices
• Sets

• Operators
• + - < >

• Generators and Reducers

2008 JavaOneSM Conference | java.sun.com/javaone | 52

Open Source Community

Source code available online
projectfortress.sun.com

Come take it for a spin, or pitch in and help us grow.

2008 JavaOneSM Conference | java.sun.com/javaone | 53

Project Fortress Contributors:

Eric Allen
David Chase
Joao Dias
Carl Eastlund
Christine Flood
Joe Hallett
Yuto Hayamizu
Scott Kilpatrick
Yossi Lev
Victor Luchangco

Jan-Willem Maessen
Cheryl McCosh
Janus Dam Nielsen
Andrew Pitonyak
Sukyoung Ryu
Dan Smith
Michael Spiegel
Guy L. Steele Jr.
Sam Tobin-Hochstadt
<Your Name Here>

2008 JavaOneSM Conference | java.sun.com/javaone | 54

Summary

Project Fortress is a new Open Source High Productivity
Programming Language aimed at multi-processors with
the following features:
1.Growable
2.Implicit Parallelism
3.Transactional Memory
4.Mathematical Syntax
5.Generators and Reducers
6.Parametric Polymorphism
7.Functional Methods
8.Traits and Objects
9.Dimensions and Units
10.Contracts

2008 JavaOneSM Conference | java.sun.com/javaone | 55

References

Steele, “Growing a Language” keynote talk, OOPSLA 1998;
Higher-Order and Symbolic Computation 12, 221–236 (1999)

Thread Scheduling for Multiprogrammed Multiprocessors
Arora, Blumofe, Plaxton
SPAA 1998

Better Extensibility through Modular Syntax
Robert Grimm
PLDI 2006

A flexible framework for implementing software transactional
memory
Maurice Herlihy, Victor Luchangco, Mark Moir
OOPSLA 2006

Object-oriented units of measurement
Eric Allen, David Chase, Victor Luchangco, Jan-Willem Maessen, Guy L.
Steele
OOPSLA '04:

2008 JavaOneSM Conference | java.sun.com/javaone | 56

For More Information

Fortress Language Specification
• research.sun.com/projects/plrg/

Reference Implementation
• projectfortress.sun.com

• Note not www.projectfortress.sun.com.
Come see our Demo Pod on the Pavilion floor
Other related JavaOne Talks:
• TS-6316 Transactional Memory in Java Technology-Based Systems
• TS-6206 JVM Machine Challenges and Directions in the Multicore Era
• TS-6256 Toward a Coding Style for Scalable Nonblocking Data Structures

http://www.projectfortress.sun.com/

2008 JavaOneSM Conference | java.sun.com/javaone | 57

Christine H. Flood
Project Fortress: A New Programming
Language from Sun Labs

TS-5206

