First, Do No Harm:
Deferred Checked Exception
Handling Promotes Reliability

Duane Buck, Ph.D.
Professor of Computer Science
Otterbein University
dbuck@otterbein.edu

© TemplatesWise.com

Overview of Talk

Advantages of exceptions over return codes
Motivation for designating checked exceptions

Why exception handling is best deferred
 Why checked exceptions are controversial
* Dealing with checked exceptions while debugging

Refactoring exception handling
 Taxonomies of exceptions and handlers
* Selecting the appropriate type of handler

Hybrid error reporting through validity queries

Return Codes vs. Exceptions

Return codes have the issue that they must
always be checked, even if no problem is
expected.

If used exclusively, this means the majority of
the program code would be checking return
codes.

If any go unchecked, it can lead to debugging
problems and aberrant behavior.

Exceptions were motivated by the above
problems experienced when using return codes.

* Goodenough, J. B. Exception handling: issues and a
proposed notation. Communications of the ACM,

Return Codes vs. Exceptions

Exceptions are always handled if they occur, even if
not explicitly.

e A conscious choice must be made to ignore them.
Debugging is easier with exceptions because of the
above.

Exceptions reduce error handling code volume.
* A default handler may handle all irrecoverable exceptions.

* Because they can do non-local transfer, they are great for
overcoming the limitations of structured programming.

But, harder to use than return codes.
e Structured if/else coding is easier for many programmers.

* For this reason, return codes are still common in APIs for
recoverable errors.

Return Codes vs. Exceptions

* Exceptions have the advantage for unexpected
APl errors, because the programmer does
nothing and enjoys the benefits.

* Using exceptions for expected errors is sometimes
necessary but means those exceptions will have to be
explicitly handled, which is not popular with many
application programmers.

* Return codes are still popular in APIs for errors
that are expected because they are easier to use
than exception handlers.

* Using return codes for unexpected errors forces
programmers to do unnecessary work that is error

prone.

Motivation for Checked Exceptions

* Reporting errors with exceptions was
nearly a blissful state of affairs.

 The only problem that it was up to API
designers to document expected
exceptions, and up to the
programmer to read the
documentation.

* Otherwise, an expected exception would
trigger the default handler, reporting it
as a bug.

* For this reason, the designers of Java
created the checked exception for
problems arising “outside of the

4 immediate control of the program”
Wwhich therefore should be expected.

Motivation for Checked Exceptions

* Checked exceptions provide a direct
line of communication between the
API| designer and the application
programmer.

* |f an exception is checked, it can
happen even within a bug-free
program, and therefore it should be
dealt with in the context of the
program, and not reported as a bug.

Why Exception Handling
Should be Deferred

* Direct-path
* There exists paths through the application’s
instructions as services are requested and
satisfied by an API
* A path that ultimately this results in the
application providing one of its functions is
referred to here as a “direct-path.”

* Alternative processing

* Some API requests may not be satisfied, for
various reasons, and require processing which
is not considered part of a direct-path.

* Because there are two types of coding, each
| one should be developed independently, for
AAA A A the several reasons to follow.

)

‘

Tl

Two Types of Concern

* Direct-path
* Application domain.
* Concern is focused on the functionality being

implemented.
e Alternative processing

* May be either application or implementation
domain.

* Concern is focused on the user experience.

Two Scopes

* Direct-path
* Method being coded.

e Alternative processing

* Potentially the entire system.

Two Skill Sets

* Direct-path

e Structured programming.
o Sequential
o Alteration
o Iteration

e Alternative processing

e Unstructured programming.
o Control may “goto” many places.

o All methods that may be on the stack have to be
prepared to “rollback” things in progress.

Two Levels of Interest

* Direct-path
* Has high interest as the method is developed.
 Critical for the application to be of any value.

* Alternative processing

* Lower level of interest as the method is first being
developed.

* Unnecessary for initial debugging.

Checked Exceptions Controversy

* Checked exceptions would have been widely
accepted and included in other languages, except
that they became controversial because of an
unfortunate decision.

* The designers of Java thought checked exceptions
were such a good idea that they would force
programmers to take “advantage” of them.

* But, they did not realize the significant advantages

of deferred error coding and refactoring during the
development lifecycle.

Checked Exceptions Controversy

(continued)

* Many people don’t like checked exceptions, but
can’t give convincing arguments why.

* This is because they were actually a good idea, so
it’s hard to argue against them.

* The fact is they are helpful after the direct-path has
been rewritten and debugged.

* Before that time, enforcing the “catch or specify”
requirement is likely not only to be a nuisance, but
harmful to the development process and ultimately
may negatively impact reliability.

Error Code Refactoring Methodology

 The goal of the direct-path phase is
to implement the core capability.

* The default exception handler is relied

on to “report and abort” if any error
arises.

* The goal of the error-refactoring
phase is to remediate expected

exceptions that may block the
direct-path.

Error Code Refactoring Methodology
The direct-path Phase

* We must “catch or specify” each checked
exception using the principle “First, do no
harm.”

 The Approaches (each have issues):

e Use the throws Exception clause on each method.

* A method “body” is surrounded by a try/catch
block that catches Exception.

* Individual method invocations are surrounded by
a try/catch block.

Error Code Refactoring Methodology

The direct-path Phase
Using “throws Exception”

* Disadvantage:

* The invoker must also “catch or specify”
Exception, so you can’t use this technique
without potentially impacting other methods.

* Advantages:

 Very clean looking code.
* No additional work per method invocation.

Error Code Refactoring Methodology

The direct-path Phase
Whole Method try/catch Exception

* Disadvantage:

 When refactoring, all checked exceptions are
exposed simultaneously when the block is
removed.

* Advantages:

* No additional work per method invocation.
* Does not impact any other method.

Error Code Refactoring Methodology

The direct-path Phase
Method Invocation try/catch

e Disadvantage:

* Ugly looking code.

* Must add a try/catch block for each method invoked.
* Advantages:

e Can be done at any time during the development process
without impacting other methods.

* You know what methods are being thrown during the
direct-path phase so you can think about it.

* You can refactor and handle one exception at a time.

Error Code Refactoring Methodology:

The direct-path Phase
Recommendation for Method Invocation

try |
aMethodThrowingCheckedException () ;

} catch (ex)
{throw new
RuntimeException (ex) ; }

* It acts most like the compiler only gave a warning.
* You can see what is ahead of you as you look at the
direct-phase code.

* You can delete the surrounding block and refactor the
handling of the one checked exception.

Error Code Refactoring Methodology

The handler-refactoring Phase

 For each method, for each checked
exception, we must design an appropriate
handler.

* We must also design handlers for each
misclassified RuntimeException that we
encountered during debugging.

 We implement and test one handler at a
time.
* Our experience debugging may help with triggering the
exceptions.

Taxonomies of Exceptions and Handlers

 There are four types of exceptions.

 There are three types of handlers.

* This yields twelve combinations.

— Some combinations do not make
sense.

Taxonomy of Exceptions

Program bug
* Not expected once debugged
 Example: Use of null reference.

System error
* Not expected because it’s irrecoverable
 Example: out-of-memory error.

Environment fault
* Expected because it is not controllable.
 Example: a network outage.

Application domain error
* Expected because it is not controllable.
* Example: incorrect user input.

Taxonomy of Handlers

* “message/terminate”
* The default hander is an example.

* “message/rollback”

* The domain function requested is not
completed, but the system continues to
process additional user requests.

* “retry/fallback”

* The application retries the failed action
attempting to complete the request.

e After a limited number of failed attempts, it
falls back to one of the above.

Exception/Handler Combinations

information, and
inform IT and the
user.

Type of message/ message/ retry/

Handler » terminate rollback fallback
= |program Report Report debugging | Report debugging
-%_ bug debugging information. information. Use
Q information. Inform user. alternate
o ® Inform user. iImplementation.
B o system error| Report N/A, continued |N/A, continued
o debugging execution is risky. | execution is risky.
=3
=
=

Expected Exception
Types

environment | Report to IT. Report to IT. Attempt retries and/
fault Inform user. Inform user of the | or alternate
Issue; rollback implementation;
and continue w/o |then terminate or
repairr. rollback.
application | Inform user. Inform user and |N/A, Same input
domain allow them to try | will get same resul.
error

again.

Hybrid error reporting

e Clearly, the optimal case would be if
all exceptions were unexpected.

* |tis possible to make more exceptions
unexpected!

* If the APl can provide a pretest to
determine the validity of a request
before it is made, then that error
becomes unexpected.

Hybrid Error Reporting

* Pretests have become popular in newer additions
to the Java API, such as Scanner.

* Pretest methods allow the programmer to decide
if they want to handle the possible error with an
if/else or with an exception handler, by not
testing!

* A pretest method “provides cover” for the API
designer to throw a runtime exception for an
otherwise expected situation, which otherwise
should be a checked exception under the
guideline!

Conclusion
Exception handlers are best coded
independently from the direct-path.

This supports “First, do no harm” so that
the system may be reliably debugged.

As a second phase, the exception handlers
are developed.

In practice, the above naturally happens,
except in Java because of the “catch or
specify” requirement.

A workaround was presented for Java.

First, Do No Harm:
Deferred Checked Exception
Handling Promotes Reliability

Duane Buck, Ph.D.
Professor of Computer Science
Otterbein University
dbuck@otterbein.edu

© TemplatesWise.com

