
Finagle your application to
prevent outages using Twitter’s

Finagle

Presenters: Brian Ko and Mike Pallas, Behr Paint Company

Behr Paint

RPC History
•  Corba

•  EJB

•  Web Services (eg. SOAP)

•  JMS

•  REST

•  ESB

•  RPC Servers (eg. Finagle, Akka, etc.)

Finagle
Provides Service instances via clients. 
Exposes Service instances via servers. 
Adds behavior, is largely configurable 
Retrying, connection pooling, load balancing, rate limiting,
monitoring, stats keeping, … 
Codecs implement wire protocols. 
Manages resources for you.

Finagle
•  Most of Finagle is protocol agnostic.
•  Codecs for thrift, http, memcache, kestrel, redis, streaming HTTP,

generic multiplexer.
•  Supports many RPC styles: request/response, streaming, multiplexing.
•  Writing new codecs is easy.
•  Uses Netty for the event loop.
•  Scala and Java parity.

Finagle provides a robust implementation of:
○ connection pools, with throttling to avoid TCP
connection churn;
○ failure detectors, to identify slow or crashed hosts;
failover strategies, to direct traffic away from
unhealthy hosts;
○ load-balancers, including “least-connections” and
other strategies;
○ and back-pressure techniques, to defend servers
against abusive clients and dogpiling.

Additionally, Finagle makes it easier to build and deploy a
service that

•  publishes standard statistics, logs, and exception reports;

•  supports distributed tracing (a la Dapper) across
protocols;

•  optionally uses ZooKeeper for cluster management; and

•  supports common sharding strategies.

Finagle is Protocol Agnostic
•  Http

•  Streaming Http (Comet)

•  Thrift

•  Memcached/Kestrel

•  MySQL

•  More to come

Builders
ClientBuilder produces a Service Instance 
 
val client = ClientBuilder() 
.name(“httploadtest”) 
.codec(Http) 
.hosts("host1:80,host2:80,...") 
.hostConnectionLimit(10) 
.build()

ServerBuilder consumes a Service instance

val service: Service[HttpReq, HttpResp] 
val server = ServerBuilder() 
.name(“httpd”) 
.codec(Http) 
.bindTo(new InetSocketAddress(8080)) 
.build(service) 

server.close() // when done

Simple Http Server
Scala
val service: Service[HttpRequest, HttpResponse] = new Service[HttpRequest, HttpResponse] {  
 def apply(request: HttpRequest) = Future(new DefaultHttpResponse(HTTP_1_1, OK))  
}

val address: SocketAddress = new InetSocketAddress(10000)

val server: Server = ServerBuilder() 
 .codec(Http())  
.bindTo(address)  
.name("HttpServer")  
.build(service)

Java

Service<HttpRequest, HttpResponse> service = new Service<HttpRequest, HttpResponse>() {  
 public Future<HttpResponse> apply(HttpRequest request) {  
 return Future.value( 
 new DefaultHttpResponse(HttpVersion.HTTP_1_1, HttpResponseStatus.OK));  
 }  
};  
ServerBuilder.safeBuild(service, ServerBuilder.get()  
.codec(Http())  
.name("HttpServer")  
.bindTo(new InetSocketAddress("localhost", 10000)));

Simple Http Client
Scala

val client: Service[HttpRequest, HttpResponse] = ClientBuilder()  
.codec(Http())  
.hosts(address)  
.hostConnectionLimit(5)  
.build()

val request: HttpRequest = new DefaultHttpRequest(HTTP_1_1, GET, "/")  
val responseFuture: Future[HttpResponse] = client(request)  
onSuccess {  
 response => println("Received response: " + response)  
}

Java

Service<HttpRequest, HttpResponse> client = ClientBuilder.safeBuild(ClientBuilder.get()  
 .codec(Http())  
.hosts("localhost:10000")  
.hostConnectionLimit(5));

HttpRequest request = new DefaultHttpRequest(HttpVersion.HTTP_1_1, HttpMethod.GET, "/");
client.apply(request).addEventListener(new FutureEventListener<HttpResponse>() {  
 public void onSuccess(HttpResponse response) {  
 System.out.println("received response: " + response);  
 }  
 public void onFailure(Throwable cause) {  
 System.out.println("failed with cause: " + cause);  
 }  
});

Finagle extends the stream-oriented Netty model to provide
asynchronous requests and responses for remote procedure calls
(RPC). Internally, Finagle manages a service stack to track
outstanding requests, responses, and the events related to them.
Finagle uses a Netty pipeline to manage connections between
the streams underlying request and response messages. The
following diagram shows the relationship between your RPC
client or server, Finagle, Netty, and Java libraries:

Finagle objects are the building blocks of RPC clients and
servers:

•  Future objects enable asynchronous operations
required by a service
•  Service objects perform the work associated with a
remote procedure call
•  Filter objects enable you to transform data or act on
messages before or after the data or messages are
processed by a service
•  Codec objects decode messages in a specific protocol
before they are handled by a service and encode
messages before they are transported to a client or
server.

Future Objects
 In Finagle, Future objects are the unifying abstraction for all

asynchronous computation. A Future represents a computation that has
not yet completed, which can either succeed or fail. The two most
basic ways to use a Future are to:

•  block and wait for the computation to return

•  register a callback to be invoked when the computation
eventually succeeds or fails

 Rather than passing a callback to a dispatch routine, a dispatch routine
returns a Future which is a promise for the result in the future.

val f: Future[String]

//wait indefinitely 
val result = f.get() 
 
//wait 1 second 
val result = f.get(1.second)

// In this simple example, we create a block for a request to complete. 
// Since there is not timeout specified, it will wait forever.  
val request: HttpRequest = new DefaultHttpRequest(HTTP_1_1, GET, "/")  
val responseFuture: Future[HttpResponse] = client(request)

 // In this example, the value of responseFuture will not be available 
// until the scheduled job assigns it a value. 
val responseFuture: Future[String] = executor.schedule(job)

// A promise is a writeable Future 
val p = new Promise[Int]

Simple Futures

Futures with timeouts

In this example, it waits 1 second for the response, but you don’t know if it was
successful or timed out.

val request: HttpRequest = new DefaultHttpRequest(HTTP_1_1, GET, "/")  
val responseFuture: Future[HttpResponse] = client(request)
println(responseFuture(1.second))

A timeout Filter

class TimeoutFilter[Req, Res](
 timeout: Duration, util.Timer)
 extends Filter[Req, Res, Req, Res]
{
 def apply
 request: Req, service: Service(Req, Res)
): Future[Res] = {
 service(request).timeout(timer, timeout) {
 Throw(new TimedoutRequestException)
 }
 }
 }

A timeout Filter can be implemented on the Client side or on the Server side and is completely
independent of protocol.

Promise with Error Handling
def make() = {  
...  
val promise = new Promise[Service[Req, Rep]]
...  
{ case Ok(myObject) =>  
...  
promise() = myConfiguredObject 
 case Error(cause) =>  
 promise() = Throw(new ... Exception(cause))  
 case Cancelled =>  
 promise() = Throw(new WriteException(new ...Exception))  
 } 
 promise  
}

Codec
A Codec object encodes and decodes wire protocols, such as HTTP. You can
use Finagle-provided Codec objects for encoding and decoding the Thrift, HTTP,
memcache, Kestrel, HTTP chunked streaming (ala Twitter Streaming) protocols.
You can also extend the CodecFactory class to implement encoding and
decoding of other protocols.

Create you own Codec
class StringCodec extends CodecFactory[String, String] {
 def server = Function.const {
 new Codec[String, String] {
 def pipelineFactory = new ChannelPipelineFactory {
 def getPipeline = {
 val pipeline = Channels.pipeline()
 pipeline.addLast("line",
 new DelimiterBasedFrameDecoder(
 100, Delimiters.lineDelimiter: _*))
 pipeline.addLast("stringDecoder",
 new StringDecoder(CharsetUtil.UTF_8))
 pipeline.addLast("stringEncoder",
 new StringEncoder(CharsetUtil.UTF_8))
 pipeline
 }
 }
 }
 }
…

cont.
 def client = Function.const {
 new Codec[String, String] {
 def pipelineFactory = new ChannelPipelineFactory {
 def getPipeline = {
 val pipeline = Channels.pipeline()
 pipeline.addLast("stringEncode",
 new StringEncoder(CharsetUtil.UTF_8))
 pipeline.addLast("stringDecode",
 new StringDecoder(CharsetUtil.UTF_8))
 pipeline
 }
 }
 }
}
}

Callbacks
val f: Future[String]
f onSuccess { s =>
 println(“got string “+s)
} onFailure { exc =>
 exc.printStackTrace()
}

Filter Objects
It is useful to isolate distinct phases of your application into a pipeline.
For example, you may need to handle exceptions, authorization, and
other phases before your service responds to a request. A Filter
provides an easy way to decouple the protocol handling code from the
implementation of the business rules. A Filter wraps a Service and,
potentially, converts the input and output types of the service to other
types.

A SimpleFilter is a kind of Filter that does not convert the request and
response types.

Simple Filter Example
class Authorize extends SimpleFilter[HttpRequest, HttpResponse] {  
 def apply(request: HttpRequest, continue: Service[HttpRequest, HttpResponse]) = { 
 if ("shared secret" == request.getHeader("Authorization")) {  
 continue(request)  
 } else {  
 Future.exception(new IllegalArgumentException("You don't know the secret"))  
 }  
 }  
 }

Filters to transform requests and
responses

class RequireAuthentication(val p: ...)  
 extends Filter[Request, HttpResponse, AuthenticatedRequest, HttpResponse]  
 {  
 def apply(request: Request, service: Service[AuthenticatedRequest, HttpResponse]) = {  
 p.authenticate(request) flatMap { 
 case AuthResult(AuthResultCode.OK, Some(passport: OAuthPassport), _, _) =>  
 service(AuthenticatedRequest(request, passport))  
 case AuthResult(AuthResultCode.OK, Some(passport: SessionPassport), _, _) => 
 service(AuthenticatedRequest(request, passport))  
 case ar: AuthResult =>  
 Trace.record("Authentication failed with " + ar)  
 Future.exception(new RequestUnauthenticated(ar.resultCode))  
 }  
 }  
}

Sequential Composition
A flatMap is the most important Combinator. The method signature tells the
story: given the successful value of the future f must provide the next Future.
The result of this operation is another Future that is complete only when both
of these futures have completed. If either Future fails, the given Future will
also fail. This implicit interleaving of errors allow us to handle errors only in
those places where they are semantically significant. flatMap is the standard
name for the combinator with these semantics.  

def auth(token: String): Future[Long] 
def getUser(id:Long) : Future[User] 
def getUser(token: String): Future[User]

def getUser(token: String): Future[User] = 
 auth(token) flatMap { id => 
 getUser(id) 
 }

Concurrent Composition
Concurrent combinators are available to convert a
sequence of Futures into a Future of sequence. Three
of the common ones are collect, join, and select.

collect

collect is the most straightforward one: given a set
of Futures of the same type, we are given a Future
of a sequence of values of that type. This future is
complete when all of the underlying futures have
completed, or when any of them have failed.

object Future {  
 …  
 def collect[A](fs: Seq[Future[A]]):
}

join
 
join takes a sequence of Futures whose types may be
mixed, yielding a Future[Unit] that is completely when all of
the underlying futures are (or fails if any of them do). This
is useful for indicating the completion of a set of
heterogeneous operations.
object Future {  
 …  
 def join(fs: Seq[Future[_]]): Future[Unit] 
 }

select

select returns a Future that is complete when the first of the
given Futures complete, together with the remaining
uncompleted futures.

object Future {  
 …  
 def select(fs: Seq[Future[A]]) : Future[(Try[A], Seq[Future[A]])]  
} 

Combining Combinators
Combining combinators allows for powerful and concise expression of operations
typical of network services. This hypothetical code performs rate limiting (in order to
maintain a local rate limit cache) concurrently with dispatching a request on behalf of
the user to the backend:

def serve(request: Request): Future[Response] = { 
 val userLimit: Future[(User, Boolean)] =  
 for {  
 user <- auth(request)  
 limited <- isLimit(user)  
 } yield (user, limited)  
 val done =  
 dispatch(request) join userLimit  
 done flatMap { case (rep, (usr, lim)) =>  
 if (lim) { 
 updateLocalRateLimitCache(usr)  
 Future.exception(new Exception("rate limited"))  
 } else {  
 Future.value(rep)  
 }  
 }  
}

Failover Detection and Clusters

An abstraction called a Cluster can be used to register
Clients and Servers. There can be several
implementations, the simplest is just a comma
separated lists of hosts. Failure detection will mark
hosts as dead.

A Directory is used to do dynamic registration on the
server side and dynamic discovery on the client side.

Ajax Example

$.post(url,
 JSON.stringify(myformsData),
 function(msg); {
//add handle for ok response
 alert(msg);
 },
 "json");

Questions/Examples
http://github.com/twitter/util

http://github.com/twitter/finagle

http://twitter.github.com/finagle

Finaglers@googlegroups.com

Example of a 200 line search engine using Finagle:

http://twitter.github.com/scala_school/
searchbird.html

