
Spearfish: Real-time Java-Based
Underwater Tracking of Large

Numbers of Targets
Robert A. Cross, Ph.D.

Functional Team Leader:

Underwater Tracking and Display Systems

Naval Undersea Warfare Center Division, Newport

DISTRIBUTION STATEMENT “A”: Approved for Public Release; distribution is unlimited

Summary
•  Spearfish is 100% Java: Windows + Linux
•  Deployed and in use right now at Navy

ranges
•  It tracks to fine-grained accuracy at depth
•  It tracks large numbers of targets
•  It can post-process a data set quickly

– 100x real time on commodity hardware
•  We eat our own dog food

– This is software that we take to sea

Missions Supported

•  Training (e.g., “war games”): post-exercise
tactical analysis and range safety

•  Test and evaluation: absolute and relative
accuracy critical

•  Novel systems: reconfigure existing
capabilities to support new requirements

Problems

•  The ocean is deep and dark
•  The ocean is great at absorbing energy
•  The ocean makes plenty of noise already
•  The test or exercise is designed to meet

operational requirements
– Not tracking convenience

Range Systems Overview

•  Pingers emit
•  Hydrophones listen
•  Signal processors

detect
•  Tracking localizes

and tracks
•  Spearfish:

Underwater Tracking
and Display

Glossary
•  Ping: An encoded signal carrying a data

payload
•  Pinger: Transmits pings
•  Sound speed profile: The speed of sound

at depth
– On the order of 1500 m/s

•  Hydrophone: An underwater microphone
•  Detection report: a data packet from the

signal processor
– Ping X arrived at hydrophone Y at time T

High-level Goals

•  Range safety
•  Detect and track range participants
•  Graceful scaling and degradation
•  Alert on error conditions
•  Accuracy: relative and absolute
•  Real-time

Real-time? Multiple types

•  Timing: accuracy and precision
–  Sub-millisecond time-tagging (signal processors)
–  Track accuracy is bound by both

•  Latency
–  Dominated by transmission through the water

•  Interface
–  Multithreaded data-flow architecture
–  Don’t delay the processing to update the screen (and

vice-versa)

High Level Tracking Components

•  Initial configuration
–  Hydrophone locations
–  Environmental

conditions
•  Input

–  Detection reports from
signal processing

•  Output
–  Target location at a

particular time

Hydrophones

Signal processor

Tracking

Location

Acoustics

Components: Pingers

•  A ping is an encoded acoustic signal
•  Data payload: target ID, ping sequence id

and, sometimes, depth
•  A pinger emits pings on a specific

frequency at a fixed repetition rate
•  Directional bias: dependent on

construction and installation

Components: Splash

•  A splash is
anything that is not
a ping

•  Examples:
– Broadband impacts
– Mechanical

transients
– Active emissions
– Mammals

Components: Hydrophones and
Signal Processing

•  Hydrophone detects sound
•  Signal processing receives voltage
•  Converts ping (or splash) sound to detection

report
– Ping data payload + time of arrival at hydrophone

•  Limitations
– Noise in water => corruption or loss of data
– False alarm rate => spurious detections
– Bad angles, long range => reduced signal => loss

of data

Components: Tracking
•  Tracking receives

raw data
•  Validation: sifts out

the valid reports
•  Localization:

combines detection
reports, hydrophone
locations, sound
velocity
– TSPI: Time Space

Position Information

Raw detection
reports

Validation

Localization

One TSPI

Sound
velocity
profile

Components: Tracking

•  Sound speed
– Approx. 1500 m/s

•  Doppler:
– 1 knot = 0.51 m/s

•  Transmit-receive
latency
– Track delay

Raw
detection
reports

Validation

Localization

One TSPI

Sound
velocity
profile

Track
delay

Doppler

Components: Tracking
•  Data flow must be

deterministic
– Two runs with same

data => exact same
output

•  Sound transit delay
requires a time
window to capture
relevant data

•  Fundamentally
single-threaded

Raw detection
reports

Validation

Localization

One TSPI

Sound
velocity
profile

Validation: Removes Extraneous
Data

•  Per pinger across all
phones

•  Eliminate possibly
bad data

•  Remaining is “valid”
•  Single-threaded?

–  But each phone is
independent…

–  Determinism overrides
possible performance

Validation: Sequenced and
Framing

•  Sequenced Pingers:
–  Up to 12 targets

•  Framed
–  A TID and FID pair
–  TID = 1 – 12
–  FID = TID – 12
–  Up to 63 simultaneous

targets

Localization: Where?

•  Input: Validated data
•  Context:

–  A known set of
hydrophone locations

–  Ping ordering
–  Sound velocity profile

•  Times of arrival at
hydrophones +
context = position

A

B

C

D

E

Localization: Hyperbolic

•  We do NOT know the
time of emission

•  TDOA = Time
difference of arrival at
two phones

•  Hyperbola = possible
positions that would
have identical TDOAs

A B

Localization: Spherical
•  We DO know the time

of emission
–  Given enough time, we

can predict
•  Spherical radius =

(TOA – TOE) / C
–  TOA = Time of arrival
–  TOE = Time of

emission
–  C = average sound

speed over path

A B

Two possible solutions

Effective Sound Velocity

•  Sound never
travels in straight
lines

•  Path varies with
sound speed at
depth

•  Tracing all the
possible ray paths
is infeasible

Effective Sound Velocity
•  ESV = straight line

distance / elapsed
transit time

•  Pre-computed table
captures ray traces
– A useful engineering

approximation
– Trades space and

accuracy for speed
– Per-month, per-day

or per-operation

Spherical Tracking

•  Time of emission is
known

•  Geometric options:
– 3D = 3 degrees of

freedom
– 2D fixed depth =

operator specified
– 2D encoded = on-

board depth sensor
transmits

A

B

C

D

E

Spherical Tracking

•  2-phones are
ambiguous
– Operator can

specify left or right
solution

– Tracking can derive
from context

A

B

C

D

E

Spherical Tracking

•  3-phones are
unambiguous in 2D
– Sufficient for fixed

or encoded depth
– Still ambiguous in

3D

A

B

C

D

E

Spherical Tracking

•  4-phones
– Unambiguous in

3D
– Error-tolerant in 2D
– High residual =>

drop D’s detection

A

B

C

D

E

Spherical Tracking

•  5-phones
– Can optimize

geometry for best
2D solution

– Error tolerant in 3D
– High residual =>

drop D’s detection

A

B

C

D

E

Hyperbolic Tracking

•  TOE = unknown
•  Curves = paths of

equal TDOA
•  Requires one more

phone than
spherical
– E.g., 3 phones

required for 2D
track

A

B

C

Standard Tracking Scenarios

•  Normal running: sub, target, surface ship
track easily on range

•  Launch: two pingers in close proximity,
which one wins?

•  End of run: could go vertical, directional
bias reduces sound at phone

•  On surface: noisy, rolling, perhaps vertical

User Interface

•  Intentional
redundancy
– Many slices of

same data
– Many ways to get

there from here
– Many interaction

options

Raw detection
reports

Validation

Localization

One TSPI

Ping Monitor
View

Hyd Views

Spearfish
Main

Worldwind

E
ve

nt
B

us

Swing Application
Framework

User Interface: Spearfish
•  Spearfish Manager = the main window

– Displays current trackers and controls settings
– Changes to tracker => tracker control EB topic

User Interface: Ping Monitor
View

•  Raw detection report EB topic
•  Is tracking receiving data?
•  Is tracking receiving valid data?

User Interface: HydTextView
•  Raw and validated

detection report
topics
– Filtered by tracker
– Time of arrival
– Quality
– Telemetry
– Validity = color
– Hydrophone

User Interface: HydGraphView

•  Raw and validated
detection report
topics
– Time series of

same data
– Quality = height
– Oldest on left,

newest on right

User Interface: HydStripView

•  Same data as
other HydViews
– Single hydrophone
– X-axis: Arrival time
– Y-axis: Fraction of

rep rate
– Later pings appear

higher on chart

Concurrency: 1.0 to 7
•  Java 1.0 to 7

–  Initial work began in
mid 90s

– Under continuous
development since

•  Correctness
reminder:
– No data loss
– GUI & processing

should not interfere

Raw detection
reports

Validation

Localization

One TSPI

Ping Monitor
View

Hyd Views

Spearfish
Main

Worldwind

E
ve

nt
B

us

Swing Application
Framework

Concurrency: RMI vs EventBus
•  RMI = GUI and

processing impact

display() {
// RMI call blocks GUI
validation.getDR();
// Processing and
// Swing threads
// coupled
chart.showDR();

}

Raw detection
reports

Validation

Localization

One TSPI

Ping Monitor
View

Hyd Views

Spearfish
Main

Worldwind

E
ve

nt
B

us

Swing Application
Framework

Concurrency: RMI vs EventBus
•  EventBus = send data fast,

display as / when possible
–  Some contention but

locking slows processing

onEvent(dr) { // EB thread
 // Contention
 list.add(dr);

}
display() { // Swing thread

// Contention
timeSeries.add(list);
chart.display(timeSeries);

}

Raw detection
reports

Validation

Localization

One TSPI

Ping Monitor
View

Hyd Views

Spearfish
Main

Worldwind

E
ve

nt
B

us

Swing Application
Framework

Concurrency: CopyOnWrite
•  CopyOnWrite

–  No corruption
–  No locking

onEvent(dr) { // EB thread
 // No contention
 cowList.add(dr);

}
display() { // Swing thread

// Diff copy from above
timeSeries.add(cowList);
chart.display(timeSeries);

}

Raw detection
reports

Validation

Localization

One TSPI

Ping Monitor
View

Hyd Views

Spearfish
Main

Worldwind

E
ve

nt
B

us

Swing Application
Framework

Concurrency: invokeLater()
•  SwingUtilities.invokeLater()

–  Decoupling of data & display
–  Display when feasible
–  Processing to runs ahead

onEvent(dr) { // EB thread
 cowList.add(dr);
 SwingUtilities.invokeLater(
 new Runnable() {
 run() { // Swing thread

timeSeries.add(cowList);
chart.display(timeSeries);
});

}

Raw detection
reports

Validation

Localization

One TSPI

Ping Monitor
View

Hyd Views

Spearfish
Main

Worldwind

E
ve

nt
B

us

Swing Application
Framework

Concurrency: Basics?
•  Why discuss relatively basic concurrency

mechanisms?
•  Large Java software systems’ concurrency

correctness is tends to be inversely
proportional to age
–  1997 = Doug Lea’s first edition
–  Large software = large refactoring cost

•  Java 7: remediation without heavy refactoring
or third party resources
– E.g., CopyOnWrite + invokeLater() => more

correct without large changes to structure

Live Demonstration

•  UNCLASSIFIED
•  Data is fictional
•  Surface vs. Sub Exercise
•  Six weapons launched
•  2 knot surface current
•  Total time = 16:40 (run at > 5x speed)

Demo

Bob Cross

Robert.a.cross1@navy.mil

Naval Undersea Warfare Center

Public Affairs Office
1176 Howell Street
Newport, RI, 02841
(401) 832-7742

