
Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 1

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 2

JAX-RS-ME
Michael Lagally
Principal Member of Technical Staff, Oracle

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 3

CON4244 JAX-RS-ME

JAX-RS-ME: A new API for RESTful web clients on JavaME
  This session presents the JAX-RS-ME API that was developed for Java ME.
  JAX-RS-ME defines a client API for Java ME based on JSR339 to consume web

services using REST concepts from Java.
  The API provides a higher level abstraction than HTTP to:

- access Web resources
- transmit arbitrary (MIME-) types
- transmit Java objects

  The API encapsulates web concepts such as: target, path, invocation, request,
response, entity, headers

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 4

Program Agenda

  What is REST and why is it important ?

  JAX-RS-ME
–  Architecture, Principles, Model

  JAX-RS-ME examples

  How does it work ?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 5

What is REST ?

 REST (REpresentational State Transfer)
 = A model for distributed services in service-oriented architectures (SOA)

  Principle: A system is a set of distributed, reusable, decoupled services
  Earlier technologies are DCE, CORBA, Java RMI, SOAP based Web-services

 Typically people think “Rest over HTTP”

 Nearly every web service is "REST”
-> every simple http request fits this model.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 6

Why is REST important ?

 REST is the most popular
interface for WebServices

  > 4400 REST services
  1350 SOAP services
  150 XML-RPC services

  Source: Web services directory:
http://www.programmableweb.com/apis/directory/1?protocol=REST

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 7

REST Principles

  Addressable resources
–  Each service/object is a resource that is addressable with a URI

  A uniform small interface
–  HTTP methods (GET, PUT, POST, DELETE, …)

  Representation-oriented
–  A single resource can have different external representations (e.g. HTML, XML, JSON, …)

  Stateless communication
–  Easy scalability, no session context required

  Hypermedia As the Engine Of Application State (HATEOAS)
–  Hypermedia and hyperlinks model the state and transitions of an application

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 8

JAX-RS-ME

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 9

JAX-RS-ME

 Client API for Java ME to use REST-based Web Services
 Subset of the client part of JSR 339 (JAX-RS 2.0 Client + Server API)
 A higher level API Framework (above HTTP)
 Enables transmitting of arbitrary Java types
 Agnostic from the external representation (e.g. JSON, XML)

–  Client and server use HTTP Content Negotiation
 The API encapsulates REST and Web concepts such as:

–  WebTarget, URI, Path, Invocation, (HTTP) Request, (HTTP) Response,
Entity, Request headers, Response headers

What is it ?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 10

JAX-RS-ME Architecture

Client Application
(e.g. MIDlet, IMlet, CLDC “main”)

JAX-RS-ME

Configurable
Types Client WebTarget Invocation

Provider
Framework Filters Interceptors Entity

providers

CLDC

Application-supplied
Providers

Applications

Platform

Services

Shared Library

Platform providers
("provider plugins")

MIDP / IMP / EP

ServiceLoader

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 11

Why is JAX-RS useful for Java ME clients ?

 A lightweight Java API to use all REST based Web Services from feature-
phones and small embedded devices

 Based on HTTP, small API, limited footprint
 An extensible framework for serialization / de-serialization of Java types

–  PUT / GET Java objects over HTTP
–  Out-of-the-box support for simple types (byte[], String, InputStream, …)

  “Fluent” API style allows expressive chaining of method calls
 API hides protocol- and content representation details from the application

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 12

HTTP Response

HTTP Request

The JAX-RS model

Client

Java Object
o1

Java Object
o2

External
Representation

of o1 (XML,
JSON, …)

JAX-RS framework

o2=Target.invoke(o1)

Server

Object
o1

Object o2

Target

External
Representation

of o2

processing

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 13

JAX-RS-ME examples

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 14

Example 1

// Receive an instance of a UserClass via JSON
Client client = ClientFactory.newClient();
// start with the remote server …
WebTarget target = client.target("http://example.com");
// … and address a remote resource
target = target.path(”<aWebResourceforJSON>”);
// Create a request which expects a JSON response
Invocation inv= target.request(MediaType.APPLICATION_JSON_TYPE).buildGet();
// Invoke the request
Response res = inv.invoke();
// Access the response object
UserClass uc1 = res.readEntity(UserClass.class);

Receive via JSON

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 15

Example 1a

// Receive an instance of a UserClass via JSON
Client client = ClientFactory.newClient();
// Get the response by invoking the GET method
Response res = client.target ("http://example.com").path(”<aWebResourceForJSON>”).

 request(MediaType.APPLICATION_JSON_TYPE).buildGet().invoke();
// Access the response object
UserClass uc1 = res.readEntity(UserClass.class);

Fluent Style = chaining method calls
Benefit: More expressive, more compact source code

Receive via JSON in “Fluent Style”

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 16

Example 2

// Receive an instance of a UserClass via JSON
Client client = ClientFactory.newClient();
// start with the remote server …
WebTarget target = client.target("http://example.com");
// … and address a remote resource
target = target.path(”<aWebResourceforJSONorXML>”);
// Create a request which expects a JSON or XML response
Invocation inv= target.request(MediaType.APPLICATION_JSON_TYPE,

MediaType.APPLICATION_XML_TYPE).buildGet();
// Invoke the request
Response res = inv.invoke();
// Access the response object
UserClass uc1 = res.readEntity(UserClass.class);

Receive via JSON or XML

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 17

Example 3

// Send an instance of a UserClass via JSON
UserClass uco=new UserClass (…);
Client client = ClientFactory.newClient();
// Create a WebTarget instance
WebTarget target=client.target("http://example.com").path(”<aWebResourceforJSON>");
// Create an Entity for the UserClass instance in JSON
Entity entity = Entity.json(uco);
// invoke the POST method
Response res = target.request().buildPost(entity).invoke();
// check the response status
if (res.getStatusEnum()!=Response.Status.OK) { /* error handling */ }

Send via JSON

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 18

Example 4

// Send an instance of a UserClass via JSON
UserClass uco=new UserClass (…);
Client client = ClientFactory.newClient();
// Create a WebTarget instance
WebTarget target=client.target("http://example.com").path(”<aWebResourceforXML>");
// Create an Entity for the UserClass instance in JSON
Entity entity = Entity.xml(uco);
// invoke the POST method
Response res = target.request().buildPost(entity).invoke();
// check the response status
if (res.getStatusEnum()!=Response.Status.OK) { /* error handling */ }

Send via XML

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 19

Observations

 The method invocation is independent from the external representation
 Minimum changes required to adapt to other representation
 All details of the parsing / encoding process are separated from the

application
 An application just invokes methods on WebResources and passes

Java objects as parameters
 This works for simple objects, arrays, generic types
  “Fluent Style” permits chaining of methods into a single statement.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 20

How does it work ?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 21

JAX-RS-ME

  The API defines a client-side framework for:
–  Constructing remote object references (WebTarget)
–  Creating server requests
–  Invoking requests on the server
–  processing server responses
–  Converting between Java and external representation formats (e.g. XML, JSON, HTML, text)

  JAX-RS Operations are HTTP methods:
–  GET ≈ read
–  PUT ≈ write
–  POST ≈ add
–  DELETE ≈ delete

How does it work ?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 22

How to speak a common language between the client
and the server ?

  External representation format depends on common capabilities of the client and the
server

  Client indicates its capabilities via HTTP Content Negotiation
–  Mime/type (e.g. text/*, text/html, application/xml, application/json)
–  Language (e.g. en-us, es, fr)
–  Encoding (e.g. gzip, compress, deflate)

  The client maps Java objects to HTTP Requests / Responses and processes the HTTP
messages

  This mapping happens via an extensible Provider framework
  The framework can be configured with Configurable Types

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 23

Configurable Types

  JAX-RS-ME contains the following configurable types:
–  Client
–  WebTarget
–  Invocation.Builder
–  Invocation

 Per configurable type the providers and other properties can be
individually set

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 24

Providers

  JAX-RS-ME defines several provider types:
–  Entity Providers (MessageBodyReaders, MessageBodyWriters) mapping between

external representation(s) and Java object(s).

–  Entity Interceptors wrap around the read and write methods of the Entity providers.
Can be used for message encoding/decoding (e.g. gzip compression)

–  Filters provide an extension point before/after a request is dispatched to/from
transport layer.
Filters can be used to augment the Entity Providers (e.g. Logging)

JAX-RS-ME extension points

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 25

Provider invocation

  Dynamic provider lookup and usage
–  Entity providers are dynamically determined at runtime based on MIME type and Java type
–  If no Reader for a specific type can be found, a reader for the nearest supertype will be used
–  Filters and Interceptors are sorted based on a binding precedence

Extension of the framework

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 26

Provider deployment

  Provider Deployment
 Additional Providers can be created to adapt to other transport formats or new content types
 A single provider instance can have multiple roles, i.e. handle multiple Java types and external
representations

 Providers can be:
–  included in the platform
–  deployed as a service (via ServiceLoader)
–  bundled with the application

Extension of the framework

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 27

Entity Providers

  MessageBodyReaders convert a HTTP message body to a Java object
  Only 2 methods to implement (pseudocode):

	 public	 boolean	 isReadable(JavaType,	 MediaType)	 {	
	 //	 return	 true,	 if	 the	 writer	 can	 be	 used	 	
//	 to	 convert	 from	 MediaType	 to	 JavaType	

}	
public	 T	 readFrom(JavaType,	 MediaType,	 HTTPHeaders,	 InputStream)	 {	 	
	 //	 return	 an	 instance	 of	 JavaType	 by	 reading	 from	 an	 	
//	 InputStream	 in	 the	 appropriate	 MediaType	 format	

}	

MessageBodyReaders

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 28

Entity Providers

  MessageBodyWriters convert a Java object to a HTTP message body
  Only 3 methods to implement (pseudocode):
public	 boolean	 isWriteable(JavaType,	 MediaType)	 	

	 //	 return	 true	 if	 the	 writer	 can	 be	 used	 to	 convert	 	
//	 from	 JavaType	 to	 MediaType	 	

public	 long	 getSize(JavaType,	 MediaType)	 	

	 //	 return	 the	 length	 of	 the	 serialized	 form	 of	 JavaType	

public	 void	 writeTo(JavaObject,	 JavaType,	 MediaType,	 HTTPHeaders,	
OutputStream)	

	 //	 write	 an	 instance	 of	 the	 JavaObject	 to	 the	 OutputStream	
//	 in	 the	 appropriate	 MediaType	

MessageBodyWriters

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 29

Providers

  JAX-RS-ME defines various extension points:
–  Configuration

  Set of providers and other properties

–  Readers / Writers
  Enable handling of arbitrary Java types
  Enable adaptation to new payload formats

–  Filters and interceptors
  Can be used for additional processing of HTTP messages, e.g.

compression or mapping to other protocols

Readers & Writers, Filters and Interceptors

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 30

Standard entity providers

All JAX-RS-ME implementations support Readers, Writers for the the following types:

Java type Transfer encoding

byte[] All media types (*/*)

java.lang.String All media types (*/*)

java.io.InputStream All media types (*/*)

java.io.Reader All media types (*/*)

MultivaluedMap<String,String> (application/x-www-form-urlencoded) Form content

StreamingOutput All media types (*/*)MessageBodyWriter only

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 31

Summary

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 32

JAX-RS-ME

 Clean subset of JSR339
–  No additional classes / methods
–  Suitable for resource constrained phones and small embedded devices
–  Match the capabilities of the Java ME platform

 Enable reuse of (Java SE / EE) JAX-RS code

  Java ME applications can be written using a subset of the familiar
REST API from JSR339

Design Objectives

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 33

Java ME challenges

 No runtime annotations in Java ME
-> no annotation-based discovery of Providers (Readers, Writer, Filters,

Interceptors)
-> explicit registration from application / service is required

 No platform support for JAXB in Java ME
-> if required, the application can provide JAXB readers/writers

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 34

JAX-RS-ME for embedded

  JAX-RS-ME defines an abstract way of interacting with REST servers
 Protocols, encodings, etc. are hidden from the application
 For embedded/M2M there are other RESTful protocols (e.g. CoAP),

that could be used via the JAX-RS-ME API
 This requires a mapping via filters and interceptors

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 35

More information

  JSR 339
–  http://www.jcp.org/en/jsr/detail?id=339

  Jersey (Java EE JAX-RS implementation)
–  jersey.java.net

 Bill Burke: RESTful Java with JAX-RS
–  O’Reilly 2009, ISBN: 987-0-596-15804-0

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 36

Acknowledgements

 Many thanks to the JSR339 specification leads Santiago Pericas-
Geertsen and Marek Potociar for constructive help and advice.

 Many thanks go also to all the numerous people at Oracle,
who helped with contributions, support, feedback and invaluable
discussions.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 37

Safe Harbor Statement

The preceding is intended to outline our general product direction. It is
intended for information purposes only, and may not be incorporated
into any contract. It is not a commitment to deliver any material, code,
or functionality, and should not be relied upon in making purchasing
decisions.
The development, release, and timing of any features or functionality
described for Oracle’s products remains at the sole discretion of
Oracle.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 38

Graphic Section Divider

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 39

