
Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 1

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 2 2 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

The following is intended to outline our general
product direction. It is intended for information
purposes only, and may not be incorporated into
any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be
relied upon in making purchasing decisions.
The development, release, and timing of any
features or functionality described for Oracle’s
products remain at the sole discretion of Oracle.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 3

Why There’s No Future in
Java Futures
Brian Oliver

 Senior Principal Solutions Architect

Mark Falco
 Consulting Member Technical Staff

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 4

Introduction to Java Futures

§ This talk is not about…
–  The future of Java
–  Future predictions about the future of Java

§  It’s about concurrent software development with Java
–  ie: the java.util.concurrent package

Clarification…

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 5

Introduction to Java Futures

§  “A Future represents the result of an asynchronous computation.”

§  “Methods are provided to check if the computation is complete, to wait
for its completion, and to retrieve the result of the computation.”

§  “The result can only be retrieved using the method ‘get’ when the
computation has completed, blocking if necessary until it is ready.”

java.util.concurrent.Future (from the Java Documentation)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 6

Introduction to Java Futures

Type Method & Description

V get()
Waits if necessary for the computation to complete*, and then retrieves its result.

V get(long timeout, TimeUnit unit)
Waits if necessary* for at most the given time for the computation to complete, and
then retrieves its result, if available.

boolean cancel(boolean mayInterruptIfRunning)
Attempts to cancel execution of this task.

boolean isCancelled()
Returns true if this task was cancelled before it completed normally.

boolean isDone()
Returns true if this task completed.

java.util.concurrent.Future (from the Java Documentation)

* unless an exception is thrown

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 7

Introduction to Java Futures

§ Consider the following:

/**  
 * Provides a mechanism to search an archive.  
 */"

interface ArchiveSearcher { "

 /**"

 * Search an archive for some artifact, returning the result location."

 */"

 String search(String artifact); "

}"

java.util.concurrent.Future

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 8

Introduction to Java Futures

void showSearch(final String artifact,  
 ExecutorService executor,  
 final ArchiveSearcher searcher) throws InterruptedException {  
 
 Future<String> future = executor.submit(new Callable<String>() {  
 public String call() {  
 return searcher.search(artifact);  
 }});"

 
 displayOtherThings(); // do other things while searching"

 
 try {  
 displayText(future.get()); // use future  
 } catch (ExecutionException ex) {  
 cleanup();  
 }  
}"

Asynchronous Search Example

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 9

Introduction to the Java ExecutorService

§ Most instances of Java Futures come from Java ExecutorServices

§  “An Executor … provides methods to manage termination and methods
that can produce a Future for tracking progress of one or more
asynchronous tasks.”

§ And by “tracking progress” we mean isDone, isCancelled
(not percentage complete)

java.util.concurrent.ExecutorService

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 10

Introduction to the Java ExecutorService
java.util.concurrent.ExecutorService (selected methods)

Type Method & Description

Future<T> submit(Callable<T> task)
Submits a value-returning task for execution and returns a Future
representing the pending results of the task.

Future<?> submit(Runnable task)
Submits a Runnable task for execution and returns a Future representing that
task.

<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
Executes the given tasks, returning a list of Futures holding their status and
results when all complete.

<T> T invokeAny(Collection<? extends Callable<T>> tasks)
Executes the given tasks, returning the result of one that has completed
successfully (i.e., without throwing an exception), if any do.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 11

Styles of adoption – Blocking

Future<Double> f = executor.submit(task);"

"

// do something else for a while (or nothing at all)"

"

Double d = f.get(); // block!"

Blocking wastes a thread L

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 12

Styles of adoption - Polling

Future<Double> f = executor.submit(task);"

"

while (!f.isDone()) { // poll"

 // do something else for awhile (or nothing)"

 }"

"

Double d = f.get());

Polling wastes a core L

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 13

ExecutorService… is just gets worse

List<Future<Double>> futures = service.invokeAll(tasks);"

double total = 0; "

for (Future f : futures) {"

" " "total += f.get(); //block, block, block …"

 }"

double avg = total / tasks.size();"

proceed(avg);"

Go parallel and block L

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 14

Typical Requirements For “going async”.

§ Perform a task in the background and we either…
a.  Don’t care if or when it completes
b.  Do care if and/or when it completes, in which case…

i.  We do something with the result (or exception)
ii.  We don’t care about the result (or exception)
In Summary:
We want to do something after a task has completed, perhaps with the
result… ie: A Continuation!

§ This is not exactly what Futures or ExecutorServices provide

Let’s step back a minute… what do you really do?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 15

Introduction to Continuations

§  “a continuation is an abstract representation of the control state of a
computer program”

§ Useful for representing “control mechanisms in programming
languages such as exceptions, generators, co-routines, and so on.”

§  ie: Continuations are a way to represent “do this after completion of a
task”.

(Wikipedia)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 16

What’s Missing?

§ ExecutorService methods should take a “callback” or an “observer” to
notify upon completion of a task

–  Allows us to know about completion (when it occurs)
–  Allows us to proceed immediately with other work (not wait)
–  Removes the need for blocking for results
–  Removes the need for polling of results
–  Allows for continuation style processing (good for Java 8)

A callback from the Future…

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 17

Updating Async APIs for callbacks

§ Asynchronous methods should always return void but take an
ObservableFuture
"
Future<T> executor.submit(Callable<T> task);"

 thus becomes
<T> void executor.invoke(Callable<T> task, ObservableFuture<T>);  
"

§ When a task has completed, the executor “notifies” the supplied
ObservableFuture."

"

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 18

Introducing ObservableFutures

interface ObservableFuture<T> extends Future<T> {"

" void onResult(T);"

" void onFailure(Exception);"

" }"

A simple solution

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 19

Using Observable Futures

void showSearch(final String artifact,  
 ExecutorService executor,  
 final ArchiveSearcher searcher) throws InterruptedException {  
 
 ObservableFuture<String> future = new ObservableFuture<String>() {  
 public void onResult(String result) { displayTest(result); }  
 public void onFailure(ExecutionException e) { cleanup(); }  
 };  
 
 executor.submit(new Callable<String>() {  
 public String call() {  
 return searcher.search(artifact);  
 }}, future);"

 
 displayOtherThings(); // do other things while searching  
}"

Improved Asynchronous Search Example

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 20

Using Async APIs with callbacks

§  It is what happens after invocation that matters…

–  Previously we were doing a:
" " "future.get();"

" " "… now we do …
" " "return;"

§  With ObservableFutures, we’re now non-blocking and non-polling!
"

"

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 21

Continuations are key

§ Rather than block and wait for a result, when one is provided to you,
you process or act upon it (ie: Event Driven!)

§ ObservableFuture becomes a Continuation

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 22

AggregatingFuture

class AggregatingFuture<T> impl ObservableFuture<T> {"

" " "void onResult(T result) {"

 synchronized (sharedResults) {"

 sharedResults.add(result);"

" " " " " if (sharedResults.size() == cRequired) {"

 proceed(aggregate(sharedResults));"

 }"

 }"

 }  
}"

 "

Last Future result proceeds with calculation

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 23

The big problem with ObservableFutures!

§  In our example we didn’t implement all of the Future methods!
Oops! Where’s cancel(), isCancelled(), get(), isDone()…

 
interface ObservableFuture<T> extends Future<T> { … }"

"

ObservableFuture<String> future = new ObservableFuture<String>() {  
 public void onResult(String result) { displayTest(result); }  
 public void onFailure(ExecutionException e) { cleanup(); }  
};  
"

§ Do we actually need the other methods?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 24

Introducing Collectors

interface Collector<T> {"

" void add(T);"

" void flush() default { };"

}"

A more flexible option

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 25

Collector

§ This combination permits map reduce style processing
–  (if that’s what you’re into)

Basics

Type Method & Description

<T> void add(T result)
Called by asynchronous implementations to provide (potentially a partial) result.

void flush()
Called by asynchronous implementations to signal it’s time to process previously
added results.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 26

Using Collectors

void showSearch(final String artifact,  
 ExecutorService executor,  
 ArchiveSearcher searcher) throws InterruptedException {  
 
 Collector<String> collector = new Collector<String>() {  
 public void add(String result) { displayTest(result); }  
 };  
 
 executor.submit(new Callable<String>() {  
 public String call() {  
 return searcher.search(artifact);  
 }}, collector);"

 
 displayOtherThings(); // do other things while searching  
}"

Improved Asynchronous Search Example

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 27

Supporting Exceptions?

§ How does an implementation “notify” a Collector about an Exception?
§ Poor

–  Collector<?> + instanceof Exception"

§ Better
–  Collector.onFailure(ExecutionException e)"

§ Best
interface Result<T> {"

" "T get() throws ExecutionException; //does not block!"

}  
…"

<T> void submit(Task, Collector<Result<T>>);"

"

Ok, this is getting a bit harder

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 28

Using Result Collectors for Execeptions
void showSearch(final String artifact,  
 ExecutorService executor,  
 final ArchiveSearcher searcher) throws InterruptedException {  
 
 Collector<Result<String>> collector = new Collector<Result<String>>() {  
 public void add(Result<String> result) {  
 try {  
 displayTest(result.get());  
 } catch (ExecutionException e) { cleanup(); }  
 }  
 };  
 
 executor.submit(new Callable<String>() {  
 public String call() {  
 return searcher.search(artifact);  
 }}, collector);"

 
 displayOtherThings(); // do other things while searching  
}"

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 29

Supporting Cancellation / Interruption?

§ Not all types of work can or should be cancelled / interrupted
–  Futures actually allow this! L

§ How to cancel / interrupt?
–  Should the “request” to interrupt be on the “task” or on the “result”?

§ How to know if a task was cancelled / interrupted?
–  Represented via CancelledException from Result.get()"
–  Represented via InterruptedException from Result.get()  

§ Future.cancel()is optional!

Please stop!!!

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 30

Introducing Interruptable

interface Interruptable {"

 void interrupt(); "

 boolean isInterrupted();  
}"

"

class InterruptableCallable<T> implements Callable<T>, Interruptable {"

…"

}"

"

Class InterruptableRunnable implements Runnable, Interruptable {"

…"

}"

"

Use a “wrapper” to support cancellation and interruption

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 31

Changes to Result

interface Result<T> {"

 T get() throws ExecutionException,  
 CancelledException,  
 InterruptedException"

}"

"

"

Interruptable task = new InterruptableCallable(callable);"

executor.submit(task, collector);"

"

// do stuff… oops must interrupt!"

task.interrupt();"

Interruption indicated via Exceptions

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 32

Supporting Timeouts?

§ A task must execute with in a certain period of time, after which you
give up!

§ Similar solution to Interruptable… but add parameter to executor.
–  Represented via TimedOutExecption from Result.get()  

void submit(Callable<T>, Collector<T>, int timeout, TimeUnit timeoutUnit);  
 
 
interface Result<T> {"

 T get() throws ExecutionException, InterruptedException  
 CancelledException, TimedOutException  
}"

"

You only have so much time to do this…

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 33

Supporting Progress Feedback

§ Two forms of progress?
–  Declared progress from serial set of tasks.
–  Inferred progress from multiple parallel tasks

§ One solution?
–  Represent Progress as a Result with more “fidelity”

 
 
interface Progress<T> extends Result<T> {"

 int getPercentageComplete();"

 long getTimeRemaining(TimeUnit unit);"

}"

"

How much work has been done?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 34

Replace Callables and Runnables with Tasks

§  Introduce Task
–  Provides a Collector to the Task
–  The Task can then provide Results (and Progress) or flush()
–  Provide wrapper and/or support for Callables and Runnables;

/**  
 * An task to be performed asynchronously, the result of  
 * which is placed in the provided Collector.  
 */  
interface Task<T> {  
 void execute(Collector<? extends Result<T>> collector);  
}"
"

Cleaning up the API… do we really need Callables/Runnables?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 35

Using Collectors with Multiple Results

abstract class AggregatingCollector<X, Y> implements Collector<X> {"

 private List<X> results;  
 . . . "  
 void add(X result) {  
 results.add(result);  
 }  
"

 void flush() {  
 proceed(aggregate(results));  
 }  
 
 abstract Y aggregate(List<X> results);  
 
 abstract void proceed(Y result);  
}"

Go parallel and continue

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 36

FutureCollector

class FutureCollector<T> implements Future<T>, Collector<Result<T>> {  
 private T result = null;  
 
 void synchronized add(Result<T> result) {  
 this.result = result;  
 notifyAll();  
 }"

 
 T synchronized get() throws … {  
 while (result == null) {  
 wait();  
 }  
 return result.get();  
 }  
 …"

}"

Futures “we’re not dead yet”… You can have it both ways… J

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 37

The CollectorExecutorService
Perhaps it should be like this?

Type Method & Description

void submit(Task<T> task, Collector<? Extends Result<T>> collector)
Submits a task for execution, the result of which is added to the provided
collector. A null collector indicates no result is required.

void submit(Task<T> task, Collector<? Extends Result<T>> collector, long
timeout, TimeUnit timeUnits)
Submits a task for execution, the result of which is added to the provided
collector. A null collector indicates no result is required. The result must be
provided with in the specified time, otherwise a TimedOutException will be
added as the result.

void invokeAll(Collection<? extends Task<T>>, Collector<? extends
Result<T>>)
Executes the given tasks, added each result into the provided collector. A null
collector indicates no result is required.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 38

Questions

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 39

Session Day/Time Location
Distributed Caching to Data Grids: The Past, Present and
Future of Scalable Java

Monday
3:00 – 4:00

Parc 55
Market Street

Sharding Middleware to Achieve Elasticity and High
Availability in the Cloud

Wednesday
1:00 – 2:00

Parc 55
Market Street

Using the New javax.cache Caching Standard Thursday
11:00 – 12:00

Parc 55
Cyril Magnin 1

NoSQL Usage Patterns in Java Enterprise Applications Thursday
3:30 – 4:30

Parc 55
Mission

Sessions of Interest

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 40

Join the Coherence Community
http://coherence.oracle.com

@OracleCoherence

facebook.com/OracleCoherence

blogs.oracle.com/OracleCoherence

Oracle Coherence Users

youtube.com/OracleCoherence

coherence.oracle.com/display/CSIG
Coherence Special Interest Group

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 13 41

