
Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 131

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 132

JavaFX Graphics
Tips & Tricks
Richard Bair
Java Client Architect

CAUTION !

WRITE CLEAN CODE, THEN PROFILE!
The content of this session represents the
state-of-the-art as of JavaFX 2.2. JavaFX 8

already optimizes some of the issues
demonstrated in this session.

Syllabus
Performance #'s
Rules for good performance
Tips n' Tricks

mem(N) <
mem(M)

 1K
 * N

 Occ
lusio

n Cullin
g

 Dirty
 Area

 Manag
ment

0%

100%

200%

Windows Linux Mac OS X

Chrome FireFox IE 9

Safari JavaFX JavaFX Canvas

GUIMark 2 Vector

0%

100%

200%

Windows Linux Mac OS X

Chrome FireFox IE 9

Safari JavaFX JavaFX Canvas

GUIMark 2 Bitmap

0%

50%

100%

Windows Linux Mac OS X

Chrome FireFox IE 9 Safari

JavaFX

GUIMark 2 Text
Ra

te
Lim

ite
d

at
60

fps

0%

50%

100%

Vector Bitmap Text

JavaFX 2.2 JavaFX 8

FX 2.2 vs. FX 8 Approx.

Rule #1: Do Less Work

Use Fewer Nodes

Picking

Layout

CSS Rendering

Dirty Regions

Smaller Systems require a much more
intense round of performance tuning.
But surprisingly, time is often spent

where you least expected!

Execute Less Code

Every line counts
Extra method calls add up

- On some systems, excessive inlining is expensive
- Excessive method invocations are expensive
- So reduce unnecessary method calls!

Reduce Method Calls

@Override

protected double computePrefWidth(double height) {

 return getInsets().getLeft() + 200 +

 getInsets().getRight();

}

Reduce Method Calls

@Override

protected double computePrefWidth(double height) {

 return getInsets().getLeft() + 200 +

 getInsets().getRight();

}

 final Insets insets = getInsets();

Reduce Method Calls

@Override

protected double computePrefWidth(double height) {

 return insets.getLeft() + 200 + insets.getRight();

}

 final Insets insets = getInsets();

What limits you?

Fill rate (nearly 100% certainty)
Geometry rate (not likely)
CSS Overhead (possible)
Layout computation time (maybe)
System I/O (good chance)

Fill Rate

Buttons Ar
e

Drawn with

multiple

layers

Fill Rate
> 90% visible pixels are drawn multiple times!

Improving Fill Rate

- Only draw what has changed
- Dirty Regions!
 - Scene Graph does this automatically!
- Limit use of (some) effects
- Limit use of non-rectangular non-axis
 aligned clips
- Reduce Overdraw

Reducing Overdraw

- Use Image Skinning
- Automatic Region Texture Cache (FX 8)
- Background Fills consolidated
- Simplify the Style (Metro, Android)
- Reduce # of overlapping Nodes
- Reduce # of Nodes
 - Will have NO EFFECT!

Occlusion Culling

Sup
po

se
gre

en

bec
om

es
pur

ple

Occlusion Culling

Sup
po

se
gre

en

bec
om

es
pur

ple

We h
ave

 to

dra
w t

he

fol
low

ing
 di

rty

are
a

This requ
ires

drawing all
of

red, yellow
,

purple,
and

blue in
side the

dirty are
a

Occlusion Culling

Sup
po

se
blu

e

bec
om

es
gre

en

Now
 th

e d
irty

reg
ion

 is
thu

s

We only
have

to draw the

purple
and

green b
ecause

there a
re no

visible
red or

yellow parts

Occlusion Culling

By not drawing (culling) things that won't be
visible, we reduce overdraw and increase

rendering performance

CSS Costs
- Parsing a stylesheet
- Whenever the id / style class changes,
 the node and potentially all child nodes
 must be updated
- Pseudo-class state changes are typically
 very fast -- unless you have children
 who's state depends on a parent's
 selector!

CSS Horror Show

.parent:hover .child { ... }

Horrible! If the parent's hover changes we
visit each child and recompute the style!

CSS Horror Show

.parent .child { ... }

Yikes! When we encounter a node with
the .child style class, we must walk up the
entire scene graph looking for a .parent!

CSS Horror Show

node.setStyle("-fx-background-color:blue;")

The "style" property is very convenient, but
don't over-do it. We have to fire up the CSS
parser whenever we encounter a style, and
the internal processing is heavier.

CSS Honor Show

.parent > .child { ... }

Alright! When matching .child, we only have
to check the immediate ancestor to see if
it has .parent

CSS Honor Show

.child:hover { ... }

Handling pseudo-classes for child matches
is dead easy and super fast!

Tip: Avoid Structure Changes

Changing the scene graph requires re-
applying CSS.

Requires "structural integrity checks"

Use toFront / toBack (we've optimized this)

Tip: Use FXCollections

Shoot for minimal notification overhead
 - setAll vs. clear & addAll
 - avoid multiple add calls
FXCollections.sort()
 - sends "permutation" change events
 - "permutations" are handled by separate
 fast paths

Tip: Virtualization

ListView is blistering fast
 - Reuses Nodes, keeps memory usage,
 CSS changes, layout changes,
 invalidations, and everything else to
 the minimum!
Reuse ListView for all your virtualization
needs!

Tip: Manual Layout

Extend Region
 - (almost) Always implement
 computePrefWidth, computePrefHeight
 - implement layoutChildren()

Custom layout can cut corners over the
built in layout containers

Layout
JavaFX Asks:
 - "How wide / tall would you like to be?"
 - "How wide / tall is the biggest you would
 allow?"
 - "What is your smallest sensible width / height?"
 - "Is your width dependent on your
 height, or vice versa?"
 - "What is your baseline?"
 - "What should I consider your 'natural' position,
 width, and height?"
 - "Can you be resized?"

Layout

These questions are all asked for each
node during layout.

JavaFX asks a lot of questions.

Content Bias

contentBias = HORIZONTAL | VERTICAL
HORIZONTAL = height depends on width
VERTICAL = width depends on height
null = width and height are independent

Ma
jo
r T

ip!

Content Bias

(contentBias = null) is by far the fastest
- All computed pref / min width / height
 are cached

Content Bias

(contentBias = HORIZONTAL) is common
for text with a wrapping width (where
height depends on width)

Content Bias

contentBias != null isn't actually well
supported in the built-in layouts. Its a
bug :-(

Doh!

Rule #2: Know Your Device

NVidia GForce GTX 690
Cores = 3072
Fill Rate = 234 Billion / Sec
Mem Bandwidth = 384 Gbps
Max Power = 300W
Min Sys Power = 650W

NVidia GForce 310
Cores = 16
Mem Bandwidth = 8 Gbps
Max Power = 30.5W
Min Sys Power = 300W

PowerVR SGX 543MP3
Cores = 3

JavaFX gives you a single development
platform and a single set of APIs, but
which APIs you can and can't use is
going to depend on the inherent

performance characteristics of the
device.

Rule of Thumb:

20K-100K Nodes on Desktop
500-1000 Nodes on Embedded
100-200 Nodes on Small Embedded (320x200)

It really just depends on your hardware

Tip: Cache

Lots 'o
work to
draw

If nothing's changing, by George, cache it!

Draw
once to
image

Draw a bazillion
times to screen

Backfires if the
node is changing

a lot!

Tip: Cache Hint

Set CacheHint to SPEED when rotating,
scaling for better performance!

Tip: -Djavafx.pulseLogger=true
PULSE: 1 [250ms:989ms]
T12 (8ms): CSS Pass
T12 (2ms): Layout Pass
T12 (151ms): Waiting for previous rendering
T12 (2ms): Copy state to render graph
T10 (24ms): Dirty Opts Computed
T10 : 2 different dirty regions to render
T10 (54ms): Painted
T10 (4ms): Painted
Counters:
 Nodes rendered: 70
 Nodes visited during render: 143
 Parent#layout() on clean Node: 2
 Parent#layout() on dirty Node: 122

Tip: -Djavafx.pulseLogger=true
PULSE: 1 [250ms:989ms]
T12 (8ms): CSS Pass
T12 (2ms): Layout Pass
T12 (151ms): Waiting for previous rendering
T12 (2ms): Copy state to render graph
T10 (24ms): Dirty Opts Computed
T10 : 2 different dirty regions to render
T10 (54ms): Painted
T10 (4ms): Painted
Counters:
 Nodes rendered: 70
 Nodes visited during render: 143
 Parent#layout() on clean Node: 2
 Parent#layout() on dirty Node: 122

Pulse Count &
Duration & Time
since last pulse

Various events
(two threads)

Various
counters

CAUTION !

WRITE CLEAN CODE, THEN PROFILE!
The preceding were general guidelines and
principles to guide in performance tuning.

Don't overdo it or you will have an
unmaintainable mess.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1352

