
Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

Building Systems with Asynchronous
Microservices

Tim Ward http://www.paremus.com
info@paremus.com

http://www.paremus.com
mailto:info@paremus.com

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

•Senior Consulting Engineer, Trainer and Architect at Paremus

• 5 years at IBM developing WebSphere Application Server

• Container Implementations for Java EE and OSGi, including Blueprint, JPA, EJB and JTA

•OSGi Specification lead for JPA, Weaving Hooks and Asynchronous Services

•PMC member of the Apache Aries project

•Previous speaker at Java One, EclipseCon, Devoxx, Jazoon, JAX London,
OSGi Community Event...

•Author of Manning’s Enterprise OSGi in Action

• http://www.manning.com/cummins

Who is Tim Ward?
@TimothyWard

http://www.manning.com/cummins

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

What we’re going to cover

•Why is the World Going Asynchronous?

!

•Async Programming Primitives

!

•Making Synchronous Services Asynchronous

!

•Optimising Calls into Asynchronous Services

!

•Demo

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

New OSGi Specifications

The OSGi Core Release 6 Specification was released in June!
!
It’s available now at http://www.osgi.org/Specifications/HomePage!
!
!
There is also a public draft of OSGi Enterprise Release 6!
!
Available at http://www.osgi.org/Specifications/Drafts!

!
This draft contains the specifications we’re going to be talking about!!
!

The Enterprise specification is being wrapped up for final release in Q4

NEW

http://www.osgi.org/Specifications/Drafts

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

Why is the World Going Asynchronous?

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

Origins of Asynchronous Programming

Asynchronous Programming concepts have been with us for a long time!

User Interface EventHandler callbacks
“must not block the UI thread!”

The terms “Promise” and “Future” originate
from 1970s research papers

Proposed as mechanisms to handle
large-scale parallel execution

Many peopler think of Async Programming as “recently popular”…

•Asynchronous systems offer better performance

• This does assume that there isn’t a single bottleneck!

!

•Asynchronous Distributed systems typically scale better

• Less time spent waiting for high-latency calls

•More reasonable failure characteristics

!

•Parallelism is easier to exploit

!

•Network Infrastructure is intrinsically asynchronous

•Network Engineers have been working this way for decades

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

Advantages of Asynchronous Programming

100% 100%

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

Problems with Asynchronous Programming

Human brains aren’t really designed to cope with asynchronous logic

• Thought processes tend to be “do A”, then “do B” then “the result is C”

•Asynchronous Programming is only useful if the benefits of using it
outweigh the extra cognitive overhead

!

Synchronous calls offer a natural “brake” in RPC

•Asynchronous “Event Storms” can overwhelm remote systems, even using
a single client thread.

!

Deadlocks are still possible, and can be hard to diagnose

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

So what’s changed?

The latest asynchronous revolution seems to be sticking!

JavaScript has been a major
driver in the last 5-10 years, in a
single threaded environment.
Async is a necessity!

Multi-core is pervasive now,
request-level parallelism isn’t always
enough to max out hardware any
more

Commonly used OO languages are
becoming more “functional”

Java and C++ have added lambdas

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

Async Programming Primitives

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

Async Basics

The Promise is the primitive of Asynchronous Programming

Strictly, the OSGi (and most JavaScript) Promises are “Future” types as
they have no methods for resolving themselves

In both cases a Deferred type can create and resolve a default
Promise implementation

A “Promise” represents a delayed value that will be “resolved” in the future
“Resolving” a promise sets its value, or its failure

OSGi Promises are based on JavaScript
Promise concepts, but also significantly
influenced by Scala

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

The OSGi Promise

The Promise Contract (based on JavaScript Promises)

• The Promise is resolved or failed with a single value, at most once

• Listener callbacks are called at most once

•Promises remember their state (including their resolution / failure value)

•Promises behave the same way regardless of whether they are already
resolved or resolved in the future.

!

Promises can be treated as a shareable value type

• Effectively immutable (unless you created it!)

• Thread safe

•No need to unwrap it…

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

The Deferred

OSGi provides a default Promise implementation for clients to use

The Deferred is held by the provider of the Promise, and can be used to set
its value or failure

!

! ! final Deferred<Long> deferred = new Deferred<Long>();!!
! ! new Thread() {!
! ! ! public void run() {!
! ! ! ! try {!
! ! ! ! ! Long total = service.calculateDifficultSum();!
! ! ! ! ! deferred.resolve(total);!
! ! ! ! } catch (Exception e) {!
! ! ! ! ! deferred.fail(e);!
! ! ! ! }!
! ! ! }!
! ! }.start();!!
! ! Promise<Long> promise = deferred.getPromise();

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

Promise Callbacks

Promises do support “synchronous” usage similar to Java’s Future

• isDone(), getValue(), getFailure()

• The getXxx() methods block

!

It’s better to use Promises with callbacks (never block, remember?)

• then(Success) or then(Success, Failure)!
!

Success and Failure are both SAM interfaces, suitable for Lambda usage

then((p) -> success(p.getValue()), !
! (p) -> fail(p.getFailure()));!
!

Callbacks should be fast - Success can return a Promise for longer tasks

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

Chaining Promises

Basic chaining uses then(…), a new Promise is created that resolves when:

• the success callback returns null; or

• the success callback throws an error; or

• the Promise returned by the success callback resolves

!

Chaining allows you to compose sequences of events

•Promises are Monads

•Complex behaviours can be achieved without if/else branching

!

More complex functional chains are natively supported

• Filtering/Mapping values, recovering failures…

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

The Promises utility class

The Promises type provides number of common functions

•Creating Promises that are already resolved or failed

• Very useful when mapping / recovering promises

!

Another useful utility is Promises.all(Promise…)

• It creates a “latch” Promise that resolves when all others are complete

•Good for final clean up, or for notifying users about aggregate tasks

!

Remember that chains and latches work even if a Promise is already resolved!

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

A Chaining Example

Download an XML file, preferably from a mirror URL, and parse it using JAXB

! Promise<Library> promise = getMirror(libraryURL)!
! ! ! ! .fallbackTo(Promises.resolved(libraryURL))!
! ! ! ! .then((p) -> downloadFile(p.getValue()))!
! ! ! ! .map((p) -> (Library) JAXB.unmarshal(p, Library.class)));!
!
!
! public Promise<URL> getMirror(URL url)!
! ! throws Exception {!
! ! . . .!
! }!
! !
! public Promise<File> downloadFile(URL url) !
! ! throws Exception {!
! ! . . .!
! }!

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

Making Synchronous Services
Asynchronous

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

The OSGi service model

The OSGi service model is useful and widely used

!

!

!

!

Service objects are obtained from the Service Registry and invoked

• The call semantics depend upon the Service API

•Most APIs are synchronous in operation

!

OSGi Services can be transparent local representations of a remote resource

!
Consumer

!
Provider

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

The OSGi service model (2)

But I thought this talk was about µServices?

!

OSGi has been using the term µServices for a long time - but OK…

!

Micro Web Services follow a very similar pattern

• Find and bind using a registry (or well known locations if you must)

• Invoke methods on an object that map to actions on the service

!

Basically a Micro Web Service is a bigger, less-dynamic OSGi Service!

!

All of the rest of this talk applies to both OSGi µservices and Web Services

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

Question?

As a service client, how do I make an asynchronous call to a service?

• I can’t / don’t want to rewrite the service

• I’d prefer not to start threads or manage a thread pool

• I’d also like my code to stay as clean as possible

!

Ad-hoc solutions are messy, but have been the only choice up to now

!

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

The Async Service - Requirements

•Allow arbitrary OSGi services to be called asynchronously

• The call must be transparent to the backing service, no opt-in required

!

•Must support methods that have a return value, as well as void

!

•Must not rely on generated source, client-local interfaces or reflection

•Source gets out of sync, and is hard to maintain

•Reflection is just ugly!

!

•Must allow services that are already asynchronous to “hook-in” to the model

• This does require opt-in

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

Unit testing Mocks - Requirements

•Allow arbitrary Objects to be called, remembering the calls that are made

• The mocking must be transparent, no opt-in required

!

•Mocks must allow methods to return a specific value

!

•Must not rely on generated source, client-local interfaces or reflection

• The test code is using the real interfaces/objects

!
!
!

Notice any similarities?

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

How to use the Async Service

To make asynchronous calls on a service you need an Async Mediator

! MyService mediated = async.mediate(myService, MyService.class);!

!

Services can be mediated from a ServiceReference or the service object

• ServiceReference is better because the mediator can track availability

!

Clients then use the mediated object to make a normal method call

• This records the call, just like a mock would in a test

!

To begin the asynchronous task you pass the return value to async.call(T)

! Promise<Long> p = async.call(mediated.pianosInNYC());!

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

How to use the Async Service (2)

Void methods can be slightly trickier

• There’s a no-args version of call() which returns Promise<?>

•Promises for void methods resolve with null when they complete

!

If you don’t need the return state, then consider fire-and-forget

• The execute() method doesn’t return the value

• Fire-and-forget can be much more efficient*

!

The Async Service is Thread Safe, but mediators may not be

•Never share the Async object between Bundles, always get your own

• Failure to do the above can lead to class space errors and security flaws!

* More about this later!

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

Async Service Example

Perform two long running calls in parallel, then aggregate the result

! public void setAsync(Async async) {!
! ! this.async = async;!
! }!
! !
! public void setMyService(ServiceReference<MyService> myService) {!
! ! this.myService = myService;!
! }!
!
! public Long getCombinedTotal() throws Exception {!
! ! MyService mediated = async.mediate(myService, MyService.class);!
! ! !
! ! Promise<Long> bars = async.call(mediated.barsInNYC());!
!
! ! return async.call(mediated.pianosInNYC())!
! ! ! ! .flatMap((pVal) -> bars.map((bVal) -> pVal + bVal))!
! ! ! ! .getValue();!
! }

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

Optimising Calls into Asynchronous
Services

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

What if we can do better?

Sometimes there’s more to a service than meets the eye…

!

Some service implementations are asynchronous under the covers

• Blocking a thread from the Async Service to call these services is a waste!

!

We need to allow these services to provide a Promise to the Async Service

• Enter the AsyncDelegate interface!

!

Services that implement AsyncDelegate are given the opportunity to provide
their own Promise, bypassing the Async Service

null can be returned if the AsyncDelegate can’t optimise a particular call

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

Isn’t this a bit niche?

Implementing AsyncDelegate may seem like a micro-optimisation

• Short lived objects are cheap

• How many services does this really apply to?

!

Remote Services allows most OSGi services to be transparently remoted

• The details of the distribution mechanism are hidden

• If the distribution provider supports asynchronous communications then it

can optimise calls that it knows to be asynchronous

Distribution
Provider

Distribution
Provider

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

Further optimising our calls

Earlier we talked about fire-and-forget calls…

!

Fire and forget ignores return values, and offers no callback on completion

• Sometimes this gives you exactly what you need

• It can also be very heavily optimised by remote services!

!

!

!

!

Removing the return flow decreases work at both the local and remote ends

• It also significantly reduces the load on the network

Distribution
Provider

Distribution
Provider

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

Implementing your own AsyncDelegate

The AsyncDelegate interface defines two methods:

• Promise<?> async(Method, Object[]) throws Exception;

• boolean execute(Method, Object[]) throws Exception;

!

It’s only worth implementing if:

• You can optimise the asynchronous execution of one or more methods

• Your service is likely to be called asynchronously

!

Return null or false if the call can’t be optimised

Exceptions should only be thrown if the call is impossible (e.g. too few args)

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

Building a system from asynchronous
microservices

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

Designing an Async-safe API

•As we’ve seen, the service itself can have a standard synchronous API

•No need to return a Promise/Future

•No “duplicate interface” needed

!

•Arguments and return types should be thread safe and/or Immutable

•You were doing this anyway right?

!

• It turns out that most remote APIs fit this model very well

!

•Any existing microservice is likely to work

•Remote OSGi µServices will too

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

Building an application from Async services

•Using a mixture of synchronous and asynchronous services is possible

• Latch promises are a good way to wait for multiple results

!

•Hold on to the Promise, rather than the value

•You can register failure callbacks after-the-fact!

!

•Where possible, split big calls into smaller ones and aggregate in callbacks

• This lets load-balanced replicas work like a grid dispatch system

!

•Remember that retry/failure logic doesn’t have to be handled via try/catch

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

Demonstration: Building a system using
the Async Service

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

The Demo Application

A Simple JAX-RS app running in OSGi:

• Angular JS + HTML5 canvas for display

• REST service for Server-generated Fractal images

• Server Sent Events to stream the data

!

OSGi services provide scalable workers for the back end

Source code is available on GitHub:

	 https://github.com/paremus/examples/tree/master/fractal

!

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

Deploying to the Service Fabric

• An OSGi Cloud runtime.

• Highly modular and so highly evolvable

• Transparent scaling and load balancing

• Think Google ‘Kubernetes'++

• The Fabric dynamically deploys and
maintains OSGi or Docker artefacts
across a heterogenous environment.

• Adaptive, Self Managing / Self
Maintaining

Copyright © 2005 - 2014 Paremus Ltd.
May not be reproduced by any means without express permission. All rights reserved.

Building Systems with Asynchronous Microservices Sep 2014

• For more about OSGi...

• Specifications at http://www.osgi.org

• Enterprise OSGi in Action

• http://www.manning.com/cummins

!

• For Service Fabric examples and docs

• http://docs.paremus.com/

!

• For more about the demo (including source code)

• http://bit.ly/paremus-async

Questions?

Thanks!

http://www.paremus.com
info@paremus.com

http://www.osgi.org
http://www.manning.com/cummins
http://docs.paremus.com/
http://www.paremus.com
mailto:info@paremus.com

