
Http/2
Hadi Hariri



What is this?



The World Wide Web in 1996



Internet Users

1993 - 14M

Source http://www.internetlivestats.com/internet-users/

http://www.internetlivestats.com/internet-users/


Users by Country

Source http://www.internetlivestats.com/internet-users/

http://www.internetlivestats.com/internet-users/


Better User Experiences and Visuals



The World Wide Web Today



by Fantasy



It’s all good. Everything runs smooth



Everyone has more bandwidth



Nielsen’s Law of Bandwidth

Source http://www.nngroup.com/articles/law-of-bandwidth/

1984 - 300 bps 

50% Growth per Year

http://www.nngroup.com/articles/law-of-bandwidth/


Bandwidth by Country

Source Akamai 2014 Rankings - Wikipedia

Position Country Speed (Mbps)
1 South Korea 25.3
2 Hong Kong 16.3
3 Japan 15
4 Switzerland 14.5
… … …
12 United States 11.5
13 Belgium 11.4
… … …
24 Germany 8.7 
… … …
28 Spain 7.8 
… … …
30 Australia 6.9 
31 France 6.9 
… … …
55 Bolivia 1.1 



Mobile Networks

Source Akamai State of the Internet Q1 2015

Region Average Speed (Mbps)

Europe 20.4

North America 9.6

Asia Pacific 8.8

South America 7.0

Africa 4.8



So why we dumping HTTP 1.1?



The problem is no longer bandwidth



It’s the Latency, Stupid

Source https://rescomp.stanford.edu/~cheshire/rants/Latency.html, Stuart Cheshire May 1996

https://rescomp.stanford.edu/~cheshire/rants/Latency.html


• Bandwidth  
In computing, bandwidth is the bit-rate of available or consumed information 
capacity expressed typically in metric multiples of bits per second. Variously, 
bandwidth may be characterized as network bandwidth, data bandwidth, or 
digital bandwidth. 

• Latency 
Latency is a time interval between the stimulation and response, or, from a 
more general point of view, as a time delay between the cause and the effect 
of some physical change in the system being observed.



Latency

Source Mike Belshe Study 2010

https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2


Latency

Source https://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/

https://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/


And latency is per connection



Typical Web Page



Loading



Waterfall

http://www.webpagetest.org/result/150917_HE_CE5/1/details/

http://www.webpagetest.org/result/150917_HE_CE5/1/details/


The 7 OSI Layers

Application

Presentation

Session

Transport

Network

Data Link

Physical

HTTP

TCP, UDP



All runs on TCP



TCP’s 3-Way Handshake

Client Server

SYN

SYN ACK

ACK

0ms

95 ms



How TCP works

• Flow Control 

• Slow Start 

• Head of Line Blocking



HTTP 0.9 - 1991

GET /index.htm 

<HTML> 

 <HEAD> 

  … 

</HEAD> 

<BODY> 

  … 

</BODY> 

</HTML>



HTTP 1.0 - 1996

GET /index.htm HTTP/1.0 

User-Agent: Netscape 

Accept: text/html 

HTTP/1.0 200 OK 

Content-Type: text/html 

<HTML> 

 <HEAD> 

  … 

</HEAD> 

<BODY> 

  … 

</BODY> 

</HTML>



HTTP 1.1 - 1999

GET /index.htm HTTP/1.0 

User-Agent: Netscape 

Accept: text/html 

Connection: close* 

HTTP/1.0 200 OK 

Content-Type: text/html 

<HTML> 

 <HEAD> 

  … 

</HEAD> 

<BODY> 

  … 

</BODY> 

</HTML>

*Connection default: keep-alive



New Optimization Possibilities



Keep Alive

• Using a single connection to send multiple successive 
requests 

• Pipelining Requests 

• Send several requests together 

• Head of line blocking issues 

• Mostly abandoned by browsers



Multiple Connections

• Use multiple TCP Connections to perform parallel requests 

• Limited to 6 connections 

• Domain Sharding 

• More DNS lookups 

• Still creates overhead on client/server with many open 
connections



Other techniques to minimize requests

• Inlining resources 

• No Cache usage 

• Encoding overhead 

• Concatenating and Spriting resources 

• Cache Issues 

• Delay in processing



The culprit is HTTP on TCP

• Http 1.1 chatty  

• TCP is not made for chatty protocols 

• TCP has slow start and head of line blocking



Http/2



It’s about performance!



In a few words

• Binary Communication 

• Compression and optimization techniques 

• No change in HTTP semantics 

• Not compatible with HTTP 1.x but can be used on top of it



Is it SPDY?



Binary Framing

Http/2

GET /index.htm HTTP/1.0 

User-Agent: Netscape 

Accept: text/html 

<html>…</html> 

HEADER FRAME

DATA FRAME



Http/2 Upgrade (h2c)

Client Server
Upgrade: h2c 
HTTP-2 Settings: base64(setttings)

HTTP 1.1 101 
Connection: Upgrade 
Upgrade: h2c



Http/2 TLS + ALPN (h2)

Client Server

SYN

SYN ACK

ACK

TLS Handshake

ALPN



Connection

Http/2

STREAM

HEADER FRAME DATA FRAMERequest Message

HEADER FRAME DATA FRAMEResponse Message

STREAM

HEADER FRAME DATA FRAME

HEADER FRAME DATA FRAME

Request Message

Response Message



A Frame

Type

Flags

Payload

Length

Response Message

ID



Frame Types

• DATA 

• HEADER 

• WINDOW_UPDATE 

• SETTINGS 

• PRIORITY 

• RST_STREAM 

• PUSH_PROMISE 

• PING 

• GOAWAY 

• CONTINUATION



In Action



In Action



Proper Multiplexing

• Allows interleaving of different requests and responses 

• Bidirectional 

• Each frame has a unique identifier 

• Eliminates head-of-line blocking 

• Single connection for parallel processing

HEADER 3 DATA 3HEADER 1 DATA 1



Header Compression

• Uses HPACK 

• Huffman code for encoding headers 

• An index table is maintained between client and server 

• CRIME prevented use of zlib



Priorities

• Define priorities of different streams 

• Each stream has a weight and dependencies



Flow Control

• Multiplexing requires ability of flow control 

• WINDOW_UPDATE



Server Push

• Replaces inlining of resources 

• PUSH_PROMISE from server (even numbered streams) 

• Allows for caching 

• Allows for cancelation by client



Security

• Not forced 

• TLS implemented by all supported browsers



Current Status

• May 2015 RFC 7540 

• May 2015 RFC 7541 (HPACK)



Browser Support



Implementations

• Servers: H2O, Warp, Netty, Lucid, Jetty… 

• Clients: Jetty, Netty, Curl, OkHttp… 

• Tomcat planned for 9



Demo Sites

• https://http2.akamai.com/ 

• http://www.http2demo.io/

https://http2.akamai.com/
http://www.http2demo.io/


Tooling

• Curl 

• Chrome Tools 

• Wireshark 

• WebPageTest



How does it affect our applications?



Mostly transparent



A process of un-optimization



Rollback…

• Multiple TCP Connections 

• Domain Sharding 

• Concatenation and Spriting 

• Inlining



What about API’s?

• For our HTTP API’s, no more concerns about chatty API’s 

• Library usage will expose some of the lower level aspects



Not all roses…

• Adding transport level complexity to application level 

• TLS requirements 

• How will Push really work?  

• What about Priorities?



More information

• Starting point: https://github.com/http2 

• High Performance Browser Networking by Ilya Grigorik

https://github.com/http2


Thank you
@hhariri - mail@hadihariri.com


