
1

How would ESBs look like,
if they were done today?

Markus Eisele, @myfear
Developer Advocate
markus@jboss.org
October, 2015

“What’s right isn’t always popular.
What’s popular isn’t always right”
Howard Cosell

Application Server

Large Java EE / J2EE based applications

Application Server

EAR EAR EAR

WAR

JAR JAR JAR JAR

JAR JAR WAR

JAR JAR

EAM <?>

LoadBalancer

• Monolithic application – everything is package into a single .ear

• Reuse primarily by sharing .jars

• A “big” push to production once or twice a year

• Single database schema for the entire application

• >= 500k loc

• >= Heavyweight Infrastructure

• Thousands of Testcases

• Barely New Testcases

T
e

c
h

n
ic

a
lI

m
p

li
c

a
ti

o
n

s

5

• >= 20 Team Member

• The single .ear requiring a multi-month test cycle /

• Huge bug and feature databases

• User Acceptance Undefined

• Technical Design Approach

• Barely Business Components or Domains

• Requiring multiple team involvement & significant

oversight

T
e

a
m

 a
n

d
 Q

A
 I

m
p

li
c

a
ti

o
n

s

6

• Still changing requirements.

• New features tend to be HUGE!

• Cross-cutting concerns nearly impossible to

implement.

A
n

d
 e

v
e

n
 n

o
w

…

7

Why?

8

Technical Dept!

We’re lazy!

Inexperienced!

No education! Outdated Infrastructure!

We always did it like that.

Outdated Designpattern?

Grown application Outdated Runtimes!

9

Where did we go
from here?

10

We treated
everything as a

legacy system and
try to solve
integration
problems.

11

ENTERPRISE!

CENTRALIZE!

STANDARDS!

LICENSES!

INTEGRATION?

Enterprise Service Bus

Orchestration

12

• Still very large codebases

• Overloaded IDEs

• Hard to understand and modify

• Hard to test

• Complex dependencies

• Small Changes generate big Impact

• Difficult to scale

• Mostly not rewritten but “re-wired”

• Data Segmentation not defined

• Scaling difficult

T
e

c
h

n
ic

a
lI

m
p

li
c

a
ti

o
n

s

13

Hmmm … and
where are we

today?

14

15

Name it whatever you
like.

16

We’re decomposing
monoliths

and evolve them into
microservices
architectures.

17

Reduce Impact of Change by
Encapsulating Source of

Change

http://martinfowler.com/articles/microservices.html

18

How to find the
Right

Services?

19

Domain Driven Design

Bounded contexts

Designed For Automation

Designed for Failure

Independently Deployable

F
ro

m
S

c
ra

tc
h

20

Verb or Use Case
e.g. Checkout UI

Noun
e.g. Catalog product service

Single Responsible Principle e.g.
Unix utilities

E
v

o
lu

ti
o

n
F

ro
m

 E
x

is
ti

n
g

21

What did ESBs do?

22

• Monitor and control routing of message exchange

between services

• Resolve contention between communicating service

components

• Control deployment and versioning of services

• Marshal use of redundant services

• Cater for commodity services like

• event handling,

• data transformation and mapping,

• message and event queuing and sequencing,

• security or exception handling,

• protocol conversion and

• enforcing proper quality of communication

service

23

Let’s deconstruct the
$hit.

24

”Monitor and control routing of

message exchange between services”

25

• Not really anymore.
• “Services do one thing well”
• Bunch of different approaches to

service design and interaction.
• No centralized point of “control”

26

Aggregator Pattern
w or w/o Proxy

Chained Pattern Branch Pattern …..

27

”Resolve contention between

communicating service components”

28

“Smart endpoints and dumb pipes”
- Martin Fowler

http://martinfowler.com/articles/microservices.html

29

“Control deployment and

versioning of services”

30

- Deployment
- Configuration
- Profiles / App Packaging
- Service Discovery
- Versions
- Monitoring
- Governance

31

“Marshal use of redundant services”

32

“Decentralized Governance”
- Martin Fowler

http://martinfowler.com/articles/microservices.html#DecentralizedGovernanc
e

33

“Cater for commodity services”

34

• a lightweight service runtime
• Cross – Service Security
• Transaction Management
• Service Scaling
• Load Balancing
• Deployment
• Configuration
• Profiles / App Packaging
• Service Discovery
• Versions
• Monitoring
• Governance
• Failure Handling
• Asynchronous vs. Synchronous
• Cross – Service Logging
• ...

35

An approach.

36

Container

Container

Load
Balancer

ServiceAA DBClient Cache

A
P

I
G

a
te

w
a

y

S
e

c
u

ri
ty

Service
Registry

ContainerContainer

A
 p

o
ss

ib
le

 s
o

lu
ti

o
n

...

37

The Pieces

38

http://undertow.io/

39

http://www.apiman.io/

40

41

42

• Implemented with Docker and
Kubernetes

• Use any JVM (or any technology)

• Docker images, encourage static, well-
defined, well-tested deployments

• Provides networking, JVM isolation,
orchestration, auto-scaling, health
checks, cloud deployments

• Still in community!

• Supports OpenShift v3

Fabric8 V2

43

And keep in mind….

44

 Operations and development are skills, not
roles. Delivery teams are composed of
people with all the necessary skills.

 Delivery teams run software products - not
projects - that run from inception to
retirement

DevOps .. Is a culture.

45

Let’s take one
step at a time and

not solve
everything at

once.

aka “Evolutionary Design”

46

Easy As That?

47

• No silver bullet; distributed systems are *hard*

• Dependency hell, custom shared libraries

• Fragmented and inconsistent management

• Team communication challenges

• Health checking, monitoring, liveness

• Over architecting, performance concerns, things
spiraling out of control fast

WARNING: Challenges ahead!

48

 Complex Runtime: many moving parts
 Distributed Systems are inherently complex
 Services are deployed on multiple instances
 Decentralized Data (Distributed Transactions vs

eventual consistency)
 Communication between services (Network and

Configuration)
 Synchronous vs. Asynchronous vs. Messaging

Communication
 Communication overhead (n2n)
 Failure Handling (Circuit Breaker)
 Service-/Metadata Registry

WARNING: Challenges ahead!

49

?

Load Balancing

API Management

Configuration

Deployment

Monitoring

SecurityGovernance

Nodes

Cartridges

Versions Patches

Changes

50

And this is only the
beginning...

The industry is still
learning a lot.

51

52

Correct functional decomposition is
crucial for microservices:
• pretty hard to get right from the

start
• a modular system can evolve to

microservices
• balance the needs with the costs
• work on it evolutionary

Takeaway:

53

Are they here to stay?

54

Nobody knows.

55

Take with you today:

56

• There is no single successor to ESBs.
• The whole turned into pieces.
• We’re still evolving them.

57

http://bit.ly/virtualJBUG
@vJBUG

58

http://developers.redhat.com/promotions/distributed-javaee-architecture

59

61

http://www.lordofthejars.com/2014/07/rxjava-java8-java-ee-7-arquillian-bliss.html

http://www.lordofthejars.com/2014/09/defend-your-application-with-hystrix.html

http://techblog.netflix.com/2012/02/fault-tolerance-in-high-volume.html

http://martinfowler.com/articles/microservices.html

http://microservices.io/patterns/microservices.html

http://techblog.netflix.com/2013/01/optimizing-netflix-api.html

http://www.infoq.com/articles/microservices-intro

https://sites.google.com/a/jezhumble.net/devops-manifesto/

http://www.lordofthejars.com/2014/07/rxjava-java8-java-ee-7-arquillian-bliss.html
http://www.lordofthejars.com/2014/09/defend-your-application-with-hystrix.html
http://techblog.netflix.com/2012/02/fault-tolerance-in-high-volume.html
http://martinfowler.com/articles/microservices.html
http://microservices.io/patterns/microservices.html
http://techblog.netflix.com/2013/01/optimizing-netflix-api.html
http://www.infoq.com/articles/microservices-intro
https://sites.google.com/a/jezhumble.net/devops-manifesto/

