
what’s in the work?

CDI 2.0

@antoine_sd @JosePaumard#CDI2

Agenda

 Flashback on CDI 1.0, 1.1 and 1.2

 CDI 2.0 status

 Gathering feedback for CDI 2.0

 CDI 2.0 new features

 Questions and Feedback

Previously on CDI

CDI Timeline

Dec 2009 June 2013 Apr 2014 Sep 2014 2016

@antoine_sd @JosePaumard#CDI2

CDI 1.0 – December 2009

 A typesafe dependency injection mechanism

 A well-defined lifecycle for stateful objects

 The ability to decorate or to associate interceptors to

objects with a typesafe approach

 An event notification model

 An SPI allowing portable extensions

@antoine_sd @JosePaumard#CDI2

CDI 1.1 – June 2013

 CDI is automatically enabled in Java EE

 Introspection with bean, events, decorator and

interceptor metadata

 Ease access to CDI from non CDI code

 Work on interceptor for reuse by other Java EE specs

 SPI enhancement for portable extensions

@antoine_sd @JosePaumard#CDI2

CDI 1.2 – April 2014

 Clarifications in the spec
• Lifecycles

• Events

• Conversation scope

 Fix conflict with other JSR 330 frameworks

 OSGi support in the API

@antoine_sd @JosePaumard#CDI2

CDI 2.0 started 12 months ago

 JSR 365!
• First Java EE 8 JSR proposed and voted

 Weekly IRC meeting

 Regular release of Weld 3.0 Alpha (CDI 2.0 RI)

 We have a lot of community momentum

 Early Draft is around the corner

 Release expected in 2016 (Q2?)

@antoine_sd @JosePaumard#CDI2

EG members

 Pete Muir (Red Hat)

 Antoine Sabot-Durand (Red Hat)

 José Paumard

 John Ament

 David Currie (IBM)

 Anatole Tresch (Credit Suisse)

 Antonio Goncalves

 Thorben Janssen

 Raj. Hegde (JUG Chennai)

 Werner Keil

 Joseph Snyder (Oracle)

 Mark Paluch

 Florent Benoit (SERLI)

 Mark Struberg

 David Blevins (Tomitribe)

 George Gastaldi (Red Hat)

 Otavio Santana

@antoine_sd @JosePaumard#CDI2

We are open to the community!

@antoine_sd @JosePaumard#CDI2

Gathering

feedback for CDI

2.0

@antoine_sd @JosePaumard#CDI2

CDI 2.0 survey

260 participants

20 features to rate

@antoine_sd @JosePaumard#CDI2

Who answered?

69%

22%

9%

developer advanced developer framework developer

@antoine_sd @JosePaumard#CDI2

Who answered?

77%

15%

8%

Plain Java EE Servlet container Java SE

@antoine_sd @JosePaumard#CDI2

1st feature

 Asynchronous support

for events and method invocation

@antoine_sd @JosePaumard#CDI2

Other top requested features

 @Startup for CDI

 Bootstraping outside of Java EE

 AOP for custom beans

 Security support

 Observers ordering, better event control

 Access to metadata through SPI

CDI 2.0 new features

Java SE support

Using CDI outside of the

Java EE Container

@antoine_sd @JosePaumard#CDI2

Why that?

 To ease the testing of CDI applications

 To provide a mean of building new stacks

out of Java EE

 To boost CDI adoption for Spec working

already on Java SE

 First step before working on a CDI light

@antoine_sd @JosePaumard#CDI2

Java SE support will start in EDR1

 We specified API to boot CDI in Java SE:

 Desktop and non Java EE application can now use a

standard way to boot CDI

public static void main(String... args) {

CDIProvider provider = CDI.getCDIProvider();
CDI<Object> cdi = provider.initialize();
// retrieve a bean and do work with it
MyBean myBean = cdi.select(MyBean.class).get();
myBean.doWork();
// when done
cdi.shutdown();

}

@antoine_sd @JosePaumard#CDI2

What did we do?

CDI Specification

CDI Core
CDI for Java

EE

CDI for Java

SE

@antoine_sd @JosePaumard#CDI2

There’s still work to do

 What about built-in contexts activation in Java SE?
• RequestScope

• SessionScope

• ConversationScope

@antoine_sd @JosePaumard#CDI2

There’s still work to do

 What about bean discovery in Java SE?

 Annotated mode can be very costly

 Implicit bean archive even more (support is disable

now)

 What about support of multiple container in Java SE?

Modularity

Provide sub specs in CDI (called parts)

that can be used independently

Each part should have an implementation

@antoine_sd @JosePaumard#CDI2

Why that?

 To avoid the “bloated spec” syndrom

 Having parts will help CDI adoption

 Third party won’t have to implement

the whole spec if they don’t want to

@antoine_sd @JosePaumard#CDI2

Full CDI

- Events

- Normal scopes

- Interceptor & Decorator

- Advanced SPI

Modularity – 2 core parts

CDI Light

- Basic DI

- Producers

- Programmatic lookup

- Singleton and dependent scopes

- Basic SPI for integration

@antoine_sd @JosePaumard#CDI2

Modularity – challenges

 Will bring 4 subspec:
• CDI light for Java SE

• CDI full for Java SE

• CDI light for Java EE

• CDI full for Java EE

 Having an RI and TCK for each part can be an

important work

Enhancing events

Making a popular feature

even more popular!

@antoine_sd @JosePaumard#CDI2

Enhancing Events

 CDI events are a very loved feature!

For CDI 2.0, we plan to introduce :

 Asynchronous events

 Events ordering

@antoine_sd @JosePaumard#CDI2

Events in CDI 1.x: patterns

 Firing pattern:

@Inject
Event<Payload> event;

public void someCriticalBusinessMethod() {

event.fire(new Payload());
}

@antoine_sd @JosePaumard#CDI2

Events in CDI 1.x: patterns

 Observing pattern:

 Supports qualifiers and many other things

public void callMe(@Observes Payload payload) {

// Do something with the event
}

@antoine_sd @JosePaumard#CDI2

CDI 1.x: Sync / Async

 Sync / Async is not specified

 The immutable status of the payload is not specified

 Implementations use a Sync model

 The payload is mutated in some implementations /

framework

 Going async “blindly” might raise problems…

@antoine_sd @JosePaumard#CDI2

Events are sync in CDI 1

Right now:

 All the observers are called in the firing thread

 In no particular order (at least not specified)

 The payload may be mutated

@antoine_sd @JosePaumard#CDI2

Events and contexts

Contexts

 Two contexts are critical: transactions and HTTP

requests / sessions

 Events are aware of those contexts

 In an all-sync world, everything is fine

 But in an async world, we will be in trouble

@antoine_sd @JosePaumard#CDI2

Asynchronous Events

 So designing backward compatible async events is more

tricky than it looks:

1) A currently sync event should remain sync

2) Going sync / async should be a decision taken

from the firing side

3) Being sync should be possible from the observing side

@antoine_sd @JosePaumard#CDI2

Asynchronous Events

 Pattern for the firing side:

@Inject
Event<Payload> event;

public void someOtherCriticalBusinessMethod() {

event.fireAsync(new Payload());
}

@antoine_sd @JosePaumard#CDI2

Asynchronous Events

 Pattern for the observing side:

public void callMe(@Observes Payload payload) {

// I am called in the firing thread
// Whether is was async fired or not

}

public void callMe(@ObservesAsync Payload payload) {

// I am called in another thread
}

@antoine_sd @JosePaumard#CDI2

Asynchronous Events

 So, in a nutshell

callMe(
@Observes payload)

callMe(
@ObservesAsync payload)

event
.fire(payload) Sync call Not notified

event
.fireAsync(payload) Not notified Async call

@antoine_sd @JosePaumard#CDI2

What about mutable payloads?

 One short answer:

 Don’t do it!

 Or suffer the full penalty of race conditions!

@antoine_sd @JosePaumard#CDI2

We have some more

 Let us come back to this pattern:

 1st question: in what thread are the observers going to

be called?

@Inject
Event<Payload> event;

public void someOtherCriticalBusinessMethod() {

event.fireAsync(new Payload());
}

@antoine_sd @JosePaumard#CDI2

We have some more

 Let us come back to this pattern:

 2nd question: what if exceptions are thrown by the

observers?

@Inject
Event<Payload> event;

public void someOtherCriticalBusinessMethod() {

event.fireAsync(new Payload());
}

@antoine_sd @JosePaumard#CDI2

Adding an Executor to fireAsync

 What if the observer needs to be called in the GUI

thread?

@Inject
Event<PanelUpdater> event;

public void someOtherCriticalBusinessMethod() {

event.fireAsync(new PanelUpdater(green),
executor); // Of type Executor

}

@antoine_sd @JosePaumard#CDI2

Adding an Executor to fireAsync

 What if the observer needs to be called in the GUI

thread?

@Inject
Event<PanelUpdater> event;

public void someOtherCriticalBusinessMethod() {

event.fireAsync(new PanelUpdater(green),
SwingUtilities::invokeLater);

}

@antoine_sd @JosePaumard#CDI2

Handling exceptions

 The firing async is built on the Java 8 async model:

CompletionStage

@Inject
Event<PanelUpdater> event;

public void someOtherCriticalBusinessMethod() {

CompletionStage<PanelUpdater> stage =
event.fireAsync(new PanelUpdater(green),

SwingUtilities::invokeLater);
}

@antoine_sd @JosePaumard#CDI2

Handling exceptions

 Two ways of handling exceptions:

Returns a new CompletionStage

 That completes when the CS completes

 Either with the same result (normal completion)

 Or with the transformed exception

stage.exceptionaly(// Function
exception -> doSomethingWith(exception));

@antoine_sd @JosePaumard#CDI2

Handling exceptions

 Two ways of handling exceptions:

Returns a new CompletionStage

 That completes when the CS completes

 Calls the BiFunction with a null as result or exception

 As a bonus: observers can return objects!

stage.handle(// BiFunction
(result, exception) -> doSomethingWith(result, exception));

@antoine_sd @JosePaumard#CDI2

Handling exceptions

 Two ways of handling exceptions:

 The returned exception is a FireAsyncException

 It holds all the exceptions in the

suppressed exception set

stage.handle(// BiFunction
(result, exception) -> doSomethingWith(result, exception));

@antoine_sd @JosePaumard#CDI2

Events ordering

 Pattern:

 Ordering in async… possible but complex

public void firstObserver(@Observes @Priority(1) Payload p) {}

public void secondObserver(@Observes @Priority(2) Payload p) {}

AOP Enhancement

@antoine_sd @JosePaumard#CDI2

Support AOP on producer

 In CDI 1.x you cannot bind an interceptor to a produced

bean

 When you write:

 @Transactional is applied to producer method

@Produces
@Transactional
public MyService produceService() {

...
}

@antoine_sd @JosePaumard#CDI2

Solution: BeanInstanceBuilder

public class MyAdvancedProducerBean {

public BeanInstanceBuilder<MyClass> bib = new BeanInstanceBuilder<>();

@Produces

@RequestScoped

public MyClass produceTransactionalMyClass() {

AnnotatedTypeBuilder<MyClass> atb = new AnnotatedTypeBuilder<>()

.readFrom(MyClass.class)

.addToMethod(MyClass.class.getMethod("performInTransaction")

, new TransactionalLiteral());

return bib.readFromType(atb.build())

.build(); //instance of the bean with requested interceptors / decorators

}

public void disposeMyClass (@Disposes Myclass td) {

bib.dispose(td);

}

}

CDI 2.0 DEMO

@antoine_sd @JosePaumard#CDI2

CDI 2.0 needs you!!

CDI 2.0 specification is open to everyone

Mailing list, IRC channel

http://cdi-spec.org @cdispec

http://cdi-spec.org

Which JSR

you’ll use

365 days a year?

JSR 365!!

@antoine_sd @JosePaumard#CDI2

Q & A

