

Internet of Things:
Threats and counter measures with Java

Florian Tournier
Director, IoT Product Management
Oracle

Patrick Van Haver
Principal Engineer, Internet of Things
Oracle

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

Introduction to IoT Security

Concerns and threats

How Java can help to implement countermeasures

Considerations on IoT Infrastructure

Conclusion

1

5

2

3

4

5

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

Introduction to IoT Security

Concerns and threats

How Java can help to implement countermeasures

Considerations on IoT Infrastructure

Conclusion

1

6

2

3

4

5

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

IoT security in the Press

• Some car-related headlines
– BMW ConnectedDrive hack sees 2.2 million cars exposed to remote unlocking (02/02)

– DARPA Hacks GM's OnStar To Remote Control A Chevrolet Impala (02/08)

– US Senate Report: Automakers fail to fully protect against hacking (02/09)

– Hackers take control of Jeep on the highway (August)

• Medical devices, industry automation, and other things
– Hackers had struck an unnamed steel mill in Germany (Jan)

– U.S. government probes medical devices for possible cyber flaws (Oct 14)

7

Privacy

Spying

Theft

Remote

Control

Physical

damage

Murder?

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Security Use Case : Industrial / Home Alarm System

Today : Alarm components
vulnerabilities weaken the system

• Credentials can be reverse-engineered
• Compromised devices can be inserted and

weaken the system

• Poor communication encryption
enables man in the middle attacks

Hackers aim at modifying the
behavior of alarm components

Best Case Worse Case

• False positive alarms • Physical security
breach

• Damage to
equipment /
industrial accident

Access control Scheduling

Monitoring Notifications

Controls
Alarms

Sensors

Gateways

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Security Use Case : Connected Car

Today : Multiple vulnerabilities in a
car stack

• Credentials accessible in plaintext
• Poor crypto implementations

• Poorly implemented protocols
• Poor credential management and

provisioning process

Hackers aim at controlling a car
head unit or telematics remotely

Head-end Unit Telematics module Car OEM back-end

Best Case Worse Case

• Disruption of in-car
information /
entertainment

• Loss of confidential
owner data/privacy

• Car unlock / theft
• Disruption of car

mechanics / loss of
life

Analytics

Big

Data
3rd party

 services

Billing OEM

Applications

Diagnostics

/Maintenance

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

In Practice: A recent Car Hack

• A lab has been able to remotely open a (high-end brand) car

– Reverse engineering the Remote Access features to identify vulnerabilities

– Exploiting the vulnerabilities identified through an attack path

• The list of vulnerabilities is rather long

– The same keys are used in all vehicles

– Some messages are not encrypted

– Configuration data is not tamper-proof

– The crypto algorithm used (DES) is outdated and broken

– The software does not include protection against replay attacks

• One fix: The communication is now encrypted using HTTPS

10

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Safety vs. Security

Safety

• Protects against malfunction

– Focus on quality

• Principles

– Coverage analysis

– Detection, mitigation, reaction

– Simplicity is better

– Redundancy helps

Security

• Protects against attackers

– Focus on robustness

– Several defence layers

• Principles

– Coverage analysis

– Detection, mitigation, reaction

– Simplicity is better

– Redundancy helps

11

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Car Hack: Poor Decisions

Poor decision Safety reasoning Security reasoning

Using the same keys Simple process
No complex infrastructure

Keys need to be diversified
A key needs to be broken on every car

No systematic encryption Only critical messages are encrypted A secure channel protects against
reverse engineering

Configuration data no tamper-proof Configuration data integrity is
protected by a checksum

Configuration data authenticity is
protected by a cryptographic checksum

The vehicle ID is in error messages Simplify diagnosis by having the data A remote attacker doesn’t have the ID,
so let’s protect it

Using DES Well-known, fast algorithm DES is broken, let’s mandate AES

No protection against replay attacks Same message, same action A recorded message cannot have the
same effect when replayed

12

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Threat Analysis
Thinking like an attacker

• Very important to validate a design
– Identify the key assets and their flows

– Analyze how security protections can be bypassed

– Consider vulnerabilities as opportunities

• Identify countermeasures to be added to the design
– And loop again on the analysis

13

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

Introduction to IoT Security

Concerns and threats

How Java can help to implement countermeasures

Considerations on IoT Infrastructure

Conclusion

1

14

2

3

4

5

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Attack surface

15

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 16

IoT Infrastructure – Attack surface

Devices Enterprise Apps

Operators

IoT Cloud Service

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

IoT Infrastructure – Attack surface

17

Attacking the device

Devices Enterprise Apps

Operators

IoT Cloud Service

Thinking like an attacker
• Is the software stack up-to-date?
• Is there any software update mechanism? How robust? Can I block-it? Use-it?
• Can I install my software?
• Is there any device authentication mechanism?
• What about devices connected via a gateway?
• Can I steal devices and reverse engineer? extract credentials?
• Are these credentials diversified or can be reused on other devices? Renewed?
• Need for RTC? Can I abuse RTC? Effects?
• What about physical attacks?
• …

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

IoT Infrastructure – Attack surface

18

Attacking the network traffic

Devices Enterprise Apps

Operators

IoT Service Thinking like an attacker
• Can I replay messages?
• Can I spy messages?
• Can I send fake messages (data, signaling, …)?
• Can I modify messages? Modify priority? Timestamp? Payload?
• Can I do buffer overflow? code injection?
• Can I perform MITM attack? DoS?
• Can I insert a fake device to abuse the server? A fake server?
• How does it behaves if I simulate network contentions?
• …

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

IoT Infrastructure – Attack surface

19

Attacking the users

Devices Enterprise Apps

Operators

IoT Service

Thinking like an attacker
• How the system is configured & managed?
• Which authentication mechanism?
• What operations are authorized?
• Type of workstation used? Dedicated?
• Can I install software on these machines?
• What about social engineering attacks?
• …

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Attack surface

• VERY large attack surface

– Local or remote attacks

– Logical or physical attacks

– Multiple targets (client device, client applications, server, users, operators, …)

• Requires a consistent and global approach

20

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Example
Attacking the authentication credentials used by a device

21

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Compromising a Device

22

Duplicate
registration
of a device

Activate
without

registering

Add device
record in the

cloud

Insert device
in supply

chain

Add a
compromised

device

Modify the
device’s
software

Modify an
existing
device

Modify the
device’s

hardware

Replace an
existing
device

Compromise
a device

Tamper with
memory

Replace
device

physically

Replace
device in

cloud

Tamper with
data

Tamper with
applications

Tamper with
system

… … … … … …

…

…

… …

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Compromising a Device

23

Tamper with
persistent memory

Tamper with data
Tamper with
applications

Tamper with native
software

2

Modify application
data

3

Modify server
verification data
4

Modify device
registration data

7

Modify a stored
application’s code
8

Modify a stored
app’s meta-data
9

Add an application

10

Modify system
software Tamper with

application data
Tamper with

authentication data

6

Modify device
authentication data

5

Modify device
identity

1

Modify buffered
messages

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Compromising a Device

24

Tamper with
persistent memory

Tamper with data
Tamper with
applications

Tamper with native
software

2

Modify application
data

3

Modify server
verification data
4

Modify device
registration data

7

Modify a stored
application’s code
8

Modify a stored
app’s meta-data
9

Add an application

10

Modify system
software Tamper with

application data
Tamper with

authentication data

6

Modify device
authentication data

5

Modify device
identity

1

Modify buffered
messages

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Scenario and Assets involved

• Typical scenario
– The device connects to the IoT server and authenticate it

– The device post data to the IoT server (requires authentication & authorization)

• Assets on the device:
– Trust Anchors: used by device to authenticate the server

– Key Pair: used by the device to get authenticated by the server

25

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Counter measures to protect these assets

• Do the best to protect assets on device
– Integrity, confidentiality, access control

• Detect suspicious behavior
– Observe behavior in regards to lifecycle state, RBAC policy…

• React in case of attack
– Black list the device, revoke current credentials, …

26

Device side

Server side

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

Introduction to IoT Security

Concerns and threats

How Java can help to implement countermeasures

Considerations on IoT Infrastructure

Conclusion

1

27

2

3

4

5

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Example: Protecting IoT Authentication Assets on a Device

• Security Design goals
– Separation of concerns

• Do not expose application developers to the handling of credentials

• Encapsulation of the credentials and operations using them

– Protection of trust material and credentials
• Ensure secure storage (integrity, confidentiality) of Trusted Anchors and device KeyPair

– Extensibility to adopt different strategies when hardware allows
• Ability to use hardware security when available on a device

28

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 29

public interface TrustedAssetsManager extends javax.net.ssl.X509TrustManager {

 // encapsulation of the trust anchors
 void checkServerTrusted(X509Certificate[] chain, String authType) throws CertificateException;
 void checkClientTrusted(X509Certificate[] chain, String authType) throws CertificateException;
 public X509Certificate[] getAcceptedIssuers();

 // encapsulation of the Private Key
 void generateKeyPair(String algorithm, int size) throws GeneralSecurityException;
 PublicKey getPublicKey();
 public byte[] signWithPrivateKey(byte[] data, String algorithm) throws GeneralSecurityException;

}

Encapsulation of credentials

• How does it address design goals?

• Private key is not exposed to the application to avoid unexpected leaks

• Trust Anchors are checked internally during authentication process

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 30

import java.security.KeyPairGenerator;

void generateKeyPair(String algorithm, int size) throws GeneralSecurityException {
 […]

 // create a key generator using the specified Provider
 KeyPairGenerator kpg = KeyPairGenerator.getInstance(algorithm, this.getProvider());

 // generate the keypair
 kpg.initialize(keySize);
 this.keyPair = kpg.generateKeyPair();
}

Generation of the KeyPair

• How does it address design goals?

• Private key never extracted from the device, only public key exported
• Key is unique per device & renewable (time before expiration can be configured in server policy)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 31

import java.security.KeyStore;

private void store(KeyPair kp, String alias, KeyStore.Builder builder)
 throws GeneralSecurityException {
 // create a key store
 KeyStore ks = builder.getKeyStore();

 // create an entry for the private key
 KeyStore.PrivateKeyEntry entry = new KeyStore.PrivateKeyEntry(
 kp.getPrivate(),
 this.getCertificate(kp.getPublic()));
 // store private key
 ks.setEntry(alias, entry, builder.getProtectionParameter(alias));

}

Store the Private Key in a KeyStore

• How does it address design goals?
• KeyStore provides integrity and confidentiality
• Use of KeyStore.Builder allows to compute a unique password to access KS (not hardcoded in the

application)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 32

import java.security.Signature;

public byte[] signWithPrivateKey(byte[] data, String algorithm) {
 […]

 Signature s;

 // create a Signature object using the specified Provider
 s = Signature.getInstance(algorithm, this.getProvider());

 // sign
 s.initSign(this.keyPair.getPrivate());
 s.update(data);
 return s.sign();
}

Sign data

• How does it address design goals?
• Here the example is simplified (sign everything: might expose the key to unexpected use)
• Could be improved by generating and signing the authorization/token request

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Making use of Hardware Security when available

• Goal:

– Delegate operations to a security token

– Security token is a dedicated hardware to securely perform crypto operations
• Could be embedded Secure Element (eSE) or a Trusted Execution Environment (TEE)

• Provides physical isolation from applications running on the device

• eSE provides tamper resistance against physical attacks

• TEE protects against logical attacks and offers more processing power (e.g. could process the whole TLS flow)

• How to do that?

– Using a specific security JCE Provider…

33

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 34

Making use of Hardware Security when available

JCE SPI

Sun JCE provider

IoT device

Secure Element or Trusted Executed Environment

Include SunPKCS#11 jar
(Additional package to Java SE Embedded
compact profiles)

Include library (& drivers) to access the
PKCS#11 hardware token

Processing and storage of credential performed
in an isolated environment

IoT Application

Java SE crypto framework

PKCS#11
application

PKCS#11 library

Sun PKCS#11
JCE provider

TrustedAssetsManager

Code need to select and configure
PKCS#11 Provider

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 35

Making use of Hardware Security when available

Java SE crypto framework

TrustedAssetsManager

Sun JCE provider

IoT device

Secure Element or Trusted Executed Environment

Crypto objects (KeyPair, Certificate) are
proxies redirecting calls to

Real credentials are stored and processed
in the secure hardware

IoT Application

PKCS#11
application

Sun PKCS#11
JCE provider

PKCS#11 library

JCE SPI

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 36

// Use PKCS11 provider instead of default
Provider getProvider() {
 String conf = "library = my.lib …"; // PKCS11 configuration parameters
 return new sun.security.pkcs11.SunPKCS11(new ByteArrayInputStream(conf.getBytes()));
}

// The key generator will use this provider and redirect generation into the hardware token
KeyPairGenerator kpg = KeyPairGenerator.getInstance(algorithm, this.getProvider());

// The KeyStore.Builder must create a PKCS11 key store, from PKCS#11 provider:
// storage into this KS will be redirected o the hardware token
KeyStore.Builder ksb = KeyStore.Builder.newInstance("PKCS11", this.getProvider(), pwdProtection);

// The signature will then be performed in the token
Signature s = Signature.getInstance(algorithm, this.getProvider());

Impacts on the code?

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

Introduction to IoT Security

Concerns and threats

How Java can help to implement countermeasures

Considerations on IoT Infrastructure

Conclusion

1

37

2

3

4

5

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Beyond the Device

• Protocol security
– Implementing the protocols securely, with proper options

– Managing the credentials appropriately

• Device lifecycle management
– Ensuring that the infrastructure cannot be abused by fake/compromised devices

• Principal authentication and authorization

– Applying adequate authentication for both devices and users

– Strictly control access of sensitive operations to authorized principals

38

(Some) IoT Infrastructure Requirements for IoT Security

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 39

An Example of IoT Infrastructure – Oracle IoT Cloud Service

Business Applications IoT Devices

Manufacturing, Supply Chain, Asset Mgmt

Customer Relationship Mgmt, Sales, Service

Vertical Apps – Utilities, Healthcare, Retail

Oracle IoT Cloud Service

Connect Analyze Integrate & Act

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted 40

Oracle Internet of Things Cloud Service - Architecture

Integration Cloud
Service

BI & Big Data
Cloud Service

Oracle
Cloud

Services

Mobile Cloud
Service

3rd party
apps

Industry
Vertical Apps

Enterprise Apps

Cloud or On Premise

Manufacturing

Transportation

Service
Mgmt

Asset Mgmt

Oracle IoT CS
Gateway s/w Indirectly

connected
 Devices

Directly connected
device

IoT Cloud Service
Client Libraries & Gateway

Firewall

IoT Cloud Service

Device
Virtualization

High Speed
Messaging

Endpoint
Management

IoT Cloud Service

Device
Virtualization

High Speed
Messaging

Endpoint
Management

Enterprise
Connectivity

REST APIs

Control

Stream Processing

Event Store

Data Enrichment

3rd party gateway
s/w with Oracle IoT

Client Library

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Oracle IoT Cloud Service – Approach to security

SECURITY LIFECYCLE TRUSTED DEVICES NON REPUDIATION

• Security mechanism
provisions and manages
trust relationships with
devices – uses OAuth2

• Uniquely assigned device
identities disallows reuse
of security credentials
across devices

• Enforces authentication prior
to communication with any
device or enterprise software,
enabling proof of origin of data

• Transport level security for all
communication to ensure data
integrity

• Secure, managed state
transitions to control access
from devices

• Restricts types of IoT CS
operations that device can
perform in a given state

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

Introduction to IoT Security

Concerns and threats

How Java can help to implement countermeasures

Considerations on IoT Infrastructure

Conclusion

1

42

2

3

4

5

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Conclusion
• Internet of Things is growing fast, new products

• Lot of interest from hackers – scale & visibility

• Very large attack surface requiring consistent approach and methodology

• Security is a dynamic process – needs to be continuously improved through threat
analysis, code checking and countermeasure implementation

– Implementing a security roadmap is an important step to stay ahead of the attackers

• There is an ecosystem of providers looking to provide infrastructure and components to
strengthen system security

– Java technologies can help securing the Internet of Things

– Oracle IoT CS can provide security foundations for the IoT infrastructure

43

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The preceding is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

44

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 45

