
Collec&ons	&	
Concurrency	
CON3531	

Mike	Duigou	@mjduigou	
Core	Libraries	Contributor	

Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Safe	Harbour	Statement	&	Recogni&on	

• Mike	is	a	former	an	Oracle	employee	

• Mike	was	a	member	of	Java	PlaQorm	Core	Libraries	team	

• Mike	is	s&ll	an	ac&ve	contributor	to	OpenJDK	

• Mike	speaking	today	for	nobody	but	himself	

	
•  This	presenta&on	was	created	while	Mike	worked	at	Oracle	

• Chris	Hegarty	co-authored	the	material	and	previously	co-presented	this	
session	in	2013	&	2014.	Chris	promises	to	return	next	year!	

2	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Session	Agenda	

Introductory	Session	

Topic	is	understanding	concurrent	performance	

Use	of	Collec&ons	is	useful	but	incidental	

1	

2	

3	

3	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Once	upon	a	thread	

• Program	flow	used	to	be	simple	

– Start,	some	looping,	end	

– Easy	to	understand	and	analyze	
– Determinis&c	

• Program	performance	consisted	of	

– O	algorithmic	complexity	

– Coun&ng	CPU	cycles	

4	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Add	an	element	to	ArrayList	

public	void	add(E	elem)	{	

		ensureCapacity(size	+	1);	

		e[size++]	=	elem;	

}	

One	step	at	a	&me	

size	

e[0]	

e[1]	

e[2]	

5	

read	
size	

write	
elem	

incr	
size	

write	
size	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Limits	to	Sequen&al	

• Works	great	un&l	there	is	more	work	than	a	single	CPU	core	can	handle	

• Could	just	run	mul&ple	sequen&al	instances	

– Yes,	this	is	some&mes	the	answer	

•  Lots	of	CPU	cores	in	modern	systems,	let’s	use	them!	

– More	resources	means	more	performance	

Pushing	a	rope	(thread)	

6	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Cores	or	Threads?	

• Hardware	has	gogen	surprisingly	complicated	

– Mul&processor	←	increased	density	

– Caching	←	decreased	latency	

– Mul&-issue	←	increased	efficiency	

– Mul&-core	←	increased	density	

– Virtual	cores,	Simultaneous	mul&-threading	←	fight	latency	

•  Threads	are	just	sokware	
– Sokware	abstrac&on	for	“run	these	instruc&ons”	
– Threads	run	on	a	core,	but	are	generally	not	agached	to	that	core	
– Threads	are	frequently	created	and	deleted	

Apples	or	oranges	

7	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Do	we	need	threads?	

•  Thread	simplify	modeling	

– Abstract	the	problem	of	scheduling	cores	

– Alterna&ve	to	queuing	

•  Threads	enhance	u&liza&on	
– I/O	wait	and	other	latency	

•  Threads	enhance	“fairness”	
– Timeslice	pre-emp&on	means	everybody	gets	to	run	

– Resource	hogs	

	

	

Unnecessary	cluger?	

8	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

These	Modern	Times	

• Program	flow	is	parallel	and	frequently	concurrent	

– Each	thread	starts,	some	looping,	end	

– May	no	longer	be	determinis&c	

• Program	performance	consists	of	

– Everything	that	was	important	for	serial	

– TPS	

– Throughput,	latency,	u&liza&on	

9	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Parallel	or	Concurrent?	

•  Sequen&al	
– A	single	thread	performing	a	single	task	

– No	shared	data.	Blissfully	isolated	(almost	en&rely)	

• Parallel	
– Mul&ple	threads	simultaneously	performing	mul&ple	tasks	

– Read-only	shared	data.	Blissfully	isolated	(mostly)	

• Concurrent	
– Mul&ple	threads	collabora&ng	on	a	single	or	mul&ple	tasks	

– Mutable	Shared	data.	Conten&on	and	coordina&on	overhead	for	writes	

One	lump	or	two?	

10	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Add	an	element	to	ArrayList	

public	void	add(E	elem)	{	

		ensureCapacity(size	+	1);	

		e[size++]	=	elem;	

		}	

Two	threads	is	beger	than	one	

size	

e[0]	

e[1]	

e[2]	

read	
size	

write	
elem	

incr	
size	

write	
size	

read	
size	

write	
elem	

incr	
size	

write	
size	

11	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Concurrency	problem	in	detail	
(not	to	scale)	

size	

e[0]	

e[1]	

e[2]	

public	domain	video	via	archive.org	

12	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

volatile		to	the	rescue?	

•  volatile	keyword	ensures	that	value	is		
not	cached	

– This	means	no	stale	value	seen	by	other	threads	

•  Declaring	size	as	volatile	ensures	reads	&	writes	are	consistent	
•  Doesn’t	fix	our	other	problem	

– Mul&ple	steps	being	done	concurrent	updates	

• We	need	to	have	one	thread	upda&ng	at	a	&me	

Add	some	gasoline	

read	
size	

write	
elem	

incr	
size	

write	
size	

13	

volatile	int	size;	

public	void	add(E	elem)	{	

		ensureCapacity(size	+	1);	

		e[size++]	=	elem;	

}	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Add	an	element	to	ArrayList	

public	synchronized	void	add(E	elem)	{	

		ensureCapacity(size	+	1);	

		e[size++]	=	elem;	

		}	

We	need	some	new	steps	

size	

e[0]	

e[1]	

e[2]	

get	
lock	

write	
elem	

incr	
size	

write	
size	

read	
size	

release	
lock	

14	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Public	Service	Message	
That’s	not	a	lock	mate,	this	is	a	lock	

photos	CC	BY-SA	3.0	from	Wikipedia	

15	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Add	an	element	to	ArrayList	

public	synchronized	void	add(E	elem)	{	

		ensureCapacity(size	+	1);	

		e[size++]	=	elem;	

		}	

One	at	a	&me	please	

size	

e[0]	

e[1]	

e[2]	

get	lock	
write	
elem	

incr	
size	

write	
size	

read	
size	

release	
lock	

get	
lock	

16	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Add	an	element	to	ArrayList	
One	at	a	&me	please	

size	

e[0]	

e[1]	

e[2]	

add	

add	

add	

add	

add	

add	

add	

add	

add	

17	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Do	we	need	volatile	and	synchronized?	

•  Exi&ng	synchronized	block	makes	all	writes	visible	

• Adding	volatile	to	size	is	redundant	for	writes,	slower	for	reads	
	

I	really	want	to	use	volatile	

public	synchronized	void	clear()	{	

		for(int	i	=	0;	i	<	size;	i++)	{	

				e[i]	=	null;	

		}	

		size	=	0;	

}	

18	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

How	much	slower	is	synchronized?		

•  It	depends	
•  JVM	can	do	lots	of	op&miza&on.	Some	include:	

– General	Op&miza&ons	

•  Lock	coarsening	–	grouping	ac&ons	on	same	lock	

– Uncontended	Op&miza&ons	
•  Lock	Elision	–	simple	lock	for	first	user	

•  Biased	locking	–	repeated	locking	by	the	same	thread	is	op&mized	

– Contented	Op&miza&on	

•  Spin	locking	–	hot	wai&ng	
•  Lazy	Wait	Queues	–	delay	un&l	second	waiter.	

Not	the	end	of	the	world	

19	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Working	with	a	Queue	

public	synchronized	void	put(E	elem)	{	

				while	(size	==	e.length)	

								wait();	

				add(elem);	

}	

Push	me,	pull	you	

size	

e[0]	

e[1]	

e[2]	

public	synchronized	E	take()	{	

				while	(size	==	0)	

								wait();	

				return	remove(0);	

}	

20	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Working	with	a	Queue	
One	at	a	&me	please	

size	

e[0]	

e[1]	

e[2]	

put	

put	

take	

put	

take	

put	

put	

put	

take	

21	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Two	kinds	of	wai&ng	

• Conten&on	
– Wai&ng	to	acquire	the	lock	

– The	overhead	you	were	warned	about	
– Important	to	measure	this	

•  Starva&on	
– Wai&ng	for	free	space/element	

– En&rely	natural	
– Can	be	caused	by	conten&on	
– Also	important	to	measure	

22	

One	at	a	&me	please	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Working	with	a	Queue	
Higher	demand	than	expected	

size	

e[0]	

e[1]	

e[2]	

take	

put	

put	 put	

put	

take	

take	

23	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Working	with	a	Queue	
Take	turns	please	

size	

e[0]	

e[1]	

e[2]	

put	 put	 put	

take	

take	

take	

24	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Working	with	a	Queue	

public	E	take()	{	

				lock.lock();	

				try	{	

							while	(size==	0)	

											signal.await();	

							E	result	=	remove(0);	
						signal.signalAll();	
						return	result;	

				}	finally	{	lock.unlock();	}	

}	

Taking	magers	into	our	own	hands	

size	

e[0]	

e[1]	

e[2]	

25	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Lock	Op&ons	

• Lock	lock	=	new	ReentrantLock();	
– Result	is	very	similar	to	synchronized	

– OS	may	schedule	next	thread	in	any	order	

• Lock	lock	=	new	ReentrantLock(true);	
– Longest	waiter	(generally)	goes	next	

•  Fairness	is	not	free	
– Does	fairness	mager	more	than	throughput?	

The	price	of	fairness	

26	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Working	with	a	Queue	
Trying	to	be	fair	can	bring	everyone	down	

size	

e[0]	

e[1]	

e[2]	

put	

take	

put	

put	

take	 take	

put	

take	

put	

27	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Condi&on	Signalling	

• One	signal,	mul&ple	condi&ons	

– Space	available!	
– Element	available!	

• Not	every	waiter	is	looking	for	same	condi&on	

• Right	now	we	have	to	wake	everyone	for	EVERY	signal	
•  Let’s	separate	these	condi&ons	
• Producers	wait	for	notFull,	signal	notEmpty	

• Consumers	wait	for	notEmpty	and	signal	notFull	

The	thread	who	cried	wolf!	

28	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Lock	Condi&ons	

• Lock	lock	=	new	ReentrantLock();	
	

• Condition	notFull	=	lock.newCondition();	
	

• Condition	notEmpty	=	lock.newCondition();	

What	condi&on	my	condi&on	is	in	

29	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Working	with	a	Queue	

public	E	take()	throws	InterruptedException	{	

				lock.lock();	

				try	{	

							while	(size==	0)	

											notEmpty.await();	
							E	result	=	remove(0);	
						notFull.signal();	
						return	result;	

				}	finally	{	lock.unlock();	}	

}	

Alert	the	media	

size	

e[0]	

e[1]	

e[2]	

30	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Working	with	a	Queue	

public	void	put(E	e)	throws	InterruptedException	{	

				lock.lock();	

				try	{	

								while	(size	==	e.length)	

												notFull.await();	
								add(e);	

								notEmpty.signal();	
				}	finally	{	lock.unlock();	}	

}	

Taking	magers	into	our	own	hands	

size	

e[0]	

e[1]	

e[2]	

31	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Working	with	a	Queue	
Eliminated	from	Conten&on	

size	

e[0]	

e[1]	

e[2]	

put	

take	

put	

put	

put	

put	

32	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Lock	alterna&ves?	

• A	lock	can	be	too	heavyweight	for	
– Low-moderate	write	conten&on	

– Read-mostly	applica&on	

– Guarding	a	simple	opera&on	

• Alterna&ve	–	Atomic	Compare	And	Swap	

– Reading	value	is	same	as	unsynchronized	vola&le	read	

– Write	is	an	atomic	condi&onal	replacement	

•  Compare	current	value	against	some	value	

– Replace	current	value	if	matched	

Travelling	light	

33	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Going	Atomic	
Insanity	is	expec&ng	a	different	result	

	final	AtomicInteger	size	=	new	AtomicInteger();	
public	void	incrementAndGet()	{	

		int	curr,	next;	

			do	{	

					curr	=	size.get();	next	=	curr	+	1;	

			}	while(!size.compareAndSet(curr,	next));	

			return	next;	
}	
	

34	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

I	was	promised	volatile!	
Hoisted	with	one’s	own	petard	(look	it	up,	it	really	applies)	

private	volatile	int	size;	

public	int	get()	{	return	size;	}	

public	synchronized	int	incrementAndGet()	{		
			return	size++;	

}	
	

• Unsynchronized	read	does	save	&me	

• volatile	ensures	that	JIT	does	not	hoist	(cache)	value	
• Write	is	going	to	be	slower	than	AtomicInteger	

• Under	conten&on	will	be	even	worse	

35	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Where	to	Begin?	

•  Immutable	

•  Safe-racey	
• Volatile	
• java.util.concurrent.atomic.*	
• Synchronized	
• java.util.concurrent.Lock	
• …	

I	thought	we	were	almost	done?	

36	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Immutable	

• Data	never	observed	to	change	
• Use	final,	unmodifiable	wrappers,	gentleman’s	agreement	

• Design	objects	for	immutability	

– Even	more	important	in	Java	10(?)	with	Project	Valhalla	

•  Exercise:	make	a	Point	class	with	fields	x	and	y	

Always	safe	

37	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Safe-racey	

• Oken	used	as	a	lazy	ini&aliza&on	pagern	
String	cachedToString;	
public	String	toString()	{	
	 	String	result	=	cachedToString;	
	 	if(result	==	null)	{	
	 	 	result	=	cachedToString	=	makeToString();	
		}	

		return	result;	
}	

• Might	call	makeToString()	on	mul&ple	threads,	but	that’s	OK	

• Beger	than	making	toString()	synchronized	
•  Exercise	:	Convert	an	exis&ng	class	to	use	this	pagern	

Play	nice	and	nobody	gets	hurt	

38	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

vola&le	

• Readers	want	current	value	
• Writers	don’t	care	about	current	value	

• Check-then-act	is	not	possible*	

• Can	be	combined	with	synchronized	

•  Exercise:	Benchmark	earlier	synchronized/volatile	counter	vs	
AtomicInteger	
•  	
(*)	You	can	do	safe-racey	like	prior	example.	

Playing	with	gasoline	

39	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

java.u<l.concurrent.atomic	

• Readers	want	current	value	(like	volatile)	
• Writers	either	don’t	care	about	current	value	or	want	to	do	something	
based	on	it	

•  Limited	check-then-act	is	possible,	Compare	and	Swap	(CAS)	

• How	much	work	is	reasonable	between	ini&al	read	and	CAS?	

•  Exercise:	Convert	exis&ng	synchronized	counter	to	Atomic	

Harness	the	power	of	the	atom	

40	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

synchronized	

• Necessary	for	mul&-value	state	without	tearing	

• Readers	want	coherent	view	of	state	
• Writers	must	update	all	values	comprising	state	atomically	

•  There	are	perils	in	holding	more	than	one	lock	at	a	&me	

•  You	have	ligle	control	over	use	of	synchronized	by	other	classes	
•  Exercise:	Replace	synchronized	with	one	of	these	other	techniques	

Safe	and	steady	

41	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

java.util.concurrent.Lock	

• Needed	for	mul&ple	condi&ons	

• Needed	for	tryLock	
• Needed	for	fair	locking	
•  If	you	don’t	need	it	don’t	use	it	
– More	JVM	op&miza&on	around	synchronized	

– java.util.concurrent	conver&ng	some	Lock	->	synchronized	in	Java	9	

•  Exercise:	Benchmark	performance	vs	synchronized	with/without	fairness	

Bells	and	Whistles	

42	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

…	

• Semaphore	
– Because	why	build	your	own?	

• Phaser,	CountdownLatch,	CyclicBarrier,	Exchanger,	SynchronousQueue,	
Disruptor,	…	
– Designed	to	solve	problems	(scalability,	performance)	with	simpler	approaches	

•  Exercise:	Read	the	JavaDoc	and	think	if	these	would	have	solved	any	
previous	performance	problems	

You	don’t	start	here,	you	end	up	here	

43	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Something	simpler?	Faster?	

• All	this	concurrency	stuff	is…	
– rocket	science,	black	magic,	brain	surgery,	voodoo???	

•  Less	coordina&on,	more	processing!	

– Concurrent:	mul&ple	threads	doing	a	single	task	

– Parallel:	mul&ple	threads	doing	mul&ple	tasks	

•  Sequen&al/Concurrent	->	Parallel	:	divide	up	the	task!	
– Not	applicable	to	all	problems	(indivisible,	real&me)	

• Division	doesn’t	even	have	to	be	complete	

– Recursive	decomposi&on	is	actually	more	efficient	

Travelling	light	

44	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Parallel	is	what	we	want!	

•  For	parallel	opera&on	we	need	
– Immutable	input	

– Decomposable	problem	

– Coordina&on	to	divide/combine	sub-tasks	

•  Java	7	provides	Fork/Join	for	the	extremely	macho/desperate	

•  Java	8	provides	new	Streams	library	to	make	this	easy	

	

Full	Streams	ahead	

45	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Java	8	Streams/Lambda	
Full	Streams	ahead	

double	highestGrade	=	students.parallelStream()	

				.filter(s	->	s.isEnrolled())	

				.mapToDouble(s	->	s.getGrade())	

				.max().orElse(0.0);	

•  Library	handles	coordina&on		
– Our	code	focuses	on	“what”	not	“how”	
– Scalability,	decomposi&on,	aggrega&on	all	handled	

• Opt-in	parallelism	–	agree	to	constraints	

– Immutability,	non-interference	

46	



Copyright	©	2014,	Oracle	and/or	its	affiliates.	All	rights	reserved.	Por&ons	Copyright	©	2015	Mike	Duigou			

Resources	

•  Java	8	
– Streams/Lambda	

•  Java	Flight	Recorder/Mission	Control	(OracleJDK)	

– Measurement	and	diagnos&cs	

• Brian	Goetz	Java	Concurrency	in	Prac/ce	
– Indispensible	guide	to	Java	concurrency	

• Doug	Lea	Concurrent	Programming	in	Java,	2nd	Edi/on	
– The	gory	details	

• Charlie	Hunt	Java	Performance	
– The Java	performance	book	

	

47	




