How to rebuild your build without
reworking your work

Mark Claassen, Senior Software Engineer, Donnell Systems
Joe Foster, Developer, Ul Specialist, Donnell Systems

JavaOne 2015 CON3374

Agenda

e \Why we had to do this
e How we did this

What started this...

e \We needed to change our application’s
deployment model

e Run a native packager
o Package
o Signing
e Add some SSH commands
o Different options required on Mac

No big deal

Big deal

e Rapid prototype was easy
e Making it production ready was not
e Testing was tedious

Getting out the next release

Re-engineering the build was not part of the
original development project

How would we accomplish this without slowing
us down?

Where Our Build Stood

e ANT build system

o Created in the Distant Past (early 2000s)
o Somewhat Obtuse

o Could have made it work, but no one would be able
to understand it

Disclaim-splanation:

There are places where the build is managed
by a dedicated team.

Disclaim-splanation:

There are places where the build is managed
by a dedicated team.

We do not work at one of those places

Fix the build

e Extensively modifying the existing build

seemed short-sighted.
o Plan for the future

e Rewrite ANT build

o Time constraints
o Still ANT

e Something else?

Build System Requirements

e Not Reworking our Work

o Avoid Refactoring
o Keep Using Netbeans

e Readable / Maintainable
o Prep for Jigsaw and JDKO (if possible)

e Don't Restrict Development

10

Gradle

Gradle

e Declarative frameworks like ANT
o (Good for some things, not for others

e (radle is not declarative

o Build files are in Groovy
o Uses the Gradle DSL
m “Domain Specific Language”

e Faster by skipping up-to-date tasks
e Integrated way to extend the build

12

Concerns with Gradle

e Relatively new, limited resources

e \We would not have a “typical” Gradle build

e Examples used modern code structure
paradigms

e Needed to reproduce ANT build outputs

e Examples often too trivial

e Gradle documentation is great

13

We did it
And it is pretty awesome.

e Fast
e Reliable

e Readable
o The build is something we use, not something we do

o Need to be able to go back months later and
understand it enough to change it

14

Session Goals
Share what we learned

e Present some patterns we think you will find useful
e Reveal some traps to avoid.

Gradle has many advanced features, but the first step is to
have a build.

Be the example

15

We made a companion project

https://github.com/markacx/session

Why?

e Putting more than a few lines of code on
these slides makes them too small

e Showing a lot of code can obscure the main
point

16

https://github.com/markacx/session
https://github.com/markacx/session

Examples on the slide are short

https://github.com/markacx/session

e Show the heart of the example on the slides
o Little bit of hand waving...on purpose

e (Can see these in context later
e The github project has a lot more
e The program is trivial, but the build is not

17

https://github.com/markacx/session
https://github.com/markacx/session

What we will cover

e Gradle basics (in 4 slides)

e Lessons learned

m Things that are not easily found in books
m But you should still read a book.

e All from a small company perspective
o For those of us who do it all!

Are Gradle builds readable? We will see.

18

4 Slide Gradle Primer

Gradle Basics

e Projects
o sub-projects

O

tasks

e Task is the basic building block

O
O

O
O

Task Types (like “compile” and “jar”)

Tasks can depend on other tasks
m jar would depend on compile

Inputs / Outputs
Do things - Actions

20

Actions and the build lifecycle

e Initialization phase

e Configuration phase
o Configuration action is executed for all tasks
e EXxecution phase
o Determine if tasks are up-to-date. If not:
m ‘Before” actions (doFirst)

m [he main task action, from the “Type”
m “After” actions (doLast)

21

Configuration Action

e Always run at the beginning for all tasks
e Configures the tasks for possible execution
later

e Determines the Inputs/Outputs
o What they are, but not their values

o If these haven’t changed, the execution actions can
be skipped

22

CopyTask

task copyStuff (type: Copy) {
from resourcesDir
into copyDir
include 'README.txt'

include 'picture.png'

doLast {
ant.fixcrlf (eol:"1f", srcdir
includes: 'README.txt')

destinationDir,

23

CopyTask

task copyStuff (type: Copy) {
from resourcesDir
into copyDir
include 'README. txt'

include 'picture.png'

doLast {
ant.fixcrlf (eol:"1f", srcdir
includes: 'README.txt')

destinationDir,

24

CopyTask

task copyStuff (type: Copy) {
from resourcesDir
into copyDir
include 'README.txt'
include 'picture.png'
println “Hello World”
doLast {
ant.fixcrlf (eol:"1f", srcdir

includes: 'README.txt')

destinationDir,

25

CopyTask

task copyStuff (type: Copy) {
from resourcesDir
into copyDir
include 'README.txt'
include 'picture.png'
println “Hello World”
doLast {
ant.fixcrlf (eol:"1lf", srcdir
includes: 'README. txt')

destinationDir,

26

CopyTask

task copyStuff (type: Copy) {
from resourcesDir
into copyDir
include 'README.txt'
include 'picture.png'
println “Hello World”
doLast {
ant.fixcrlf (eol:"1f", srcdir

includes: 'README.txt')

destinationDir,

27

The example project

Example layout

e Directory structure
o Root
m Viewer
m Servlet

29

Fundamental structure

e Directory structure
o Root
m Viewer
m Servlet
m GBuilder (root project)

e Vviewer*
e serviet*

* Subdirectories each containing a Gradle project

30

settings.gradle

rootProject.name = 'GBuilder
iInclude 'viewer,servlet'’

rootProject.children.each {
it.buildFileName = it.name + ".gradle"

31

Source path

Directory structure Gradle expects
SIc
main
java
com
resources
com

32

Customize the source path

In build.gradle [root project]
project(':viewer') {
ext.projectBase=myRootDirectory+'/Viewer'
}
In viewer.gradle

compiledJava {
source "$projectBase/src"

}

33

Packaging the modules

e Main application was in a native bundle
e \We wanted our modules to be packaged like
they were in the ANT build

e ANT had a macrodef to create jar files
o 5to 10 lines of XML for each module

34

Viewer project directory

e Common source directory
e Everything compiled at once; packaged separately

com.rebuild (base package)
app (package with main application)
ext (package base for extensions)
moduleX (One of these for every “module™)

35

Code the build

e Didn’t want large cookie cutter sections
e | am a coder, so | coded it
e Create a method to create a jar file

36

Don’t code the build

Don’t code the build

e Doing this takes power from the framework
e No automatic input / output handling

Every time my build ran, all the modules would
be rebuilt

37

Programmatic task creation

Instead of creating a method to create the jar
files, create a method to create a Jar task

void createClientTask(dirs) {
task([type: Jar,
group : ‘client sub jar',
dependsOn:“"compileJava"],
"create viewer " +){...}

38

Calling the method

task init_client (description: 'Create client sub jar tasks') {
createClientTask(
‘Module1’,
[‘com/rebuild/ext/module1/***])

void createClientTask(archive,dirs) { ... }

39

Short and sweet

createClientTask('Module1',['com/rebuild/ext/module1/**")
createClientTask('Module2',['com/rebuild/ext/module2/**")

tasks.each({
if (it.group == ‘client_sub_jar") {
jar.dependsOn += it

40

Configuration of main jar task

jar {
archiveName 'MyApp.jar’

include 'com/rebuild/app/viewer/*™'
include 'com/rebuild/client/**'

41

Don’t use properties (as much)

task makePackage (type: Zip) {
archiveName <zip property nhame>

}
task copyPackage(type: Copy) {

from <zip property name>

42

Refer to other tasks

task makePackage (type: Zip) {
archiveName "package.zip"

}
task copyPackage(type: Copy) {

from makePackage

43

Control your inputs and outputs

Our jar file specification

e META-INF
o Include VERSION-INFO.txt

e Manifest

o Release build (boolean)
o Build time

44

Jar example

metalnf {
from (resourcesDir) { include 'VERSION-INFO.txt' }
}
manifest {
attributes ('ReleaseBuild": isReleaseBuild,
'‘BuildTime': System.currentTimeMillis())
}

45

Jar example - improved

metalnf {
from (resourcesDir) { include 'VERSION-INFO.txt' }
}
manifest {
attributes ('ReleaseBuild": isReleaseBuild)
}
doFirst {
manifest.attributes ('BuildTime': System.currentTimeMillis())
}

46

Be careful what you wish for

Sometime Gradle can be too great.

Inputs and outputs are mostly automatic

47

An Exec task

task execdava (type: Exec, dependsOn : copyPackage) {
def file = new File(distDir,"version.txt")
executable System.getProperty("java.home") + "/bin/java.exe"
args "-version"

doFirst{ errorOutput new ByteArrayOutputStream() }

doLast{ file.text = errorOutput.toString() }

48

An Exec task

task execdava (type: Exec, dependsOn : copyPackage) {
def file = new File(distDir,"version.txt")
executable System.getProperty("java.home") + "/bin/java.exe"
args "-version"

outputs.file(file)
doFirst{ errorOutput new ByteArrayOutputStream() }

doLast{ file.text = errorOutput.toString() }

49

An Exec task

task execdava (type: Exec, dependsOn : copyPackage) {
def file = new File(distDir,"version.txt")
executable System.getProperty("java.home") + "/bin/java.exe"
args "-version"
inputs.property(‘MyExecutable',executable)
inputs.property(‘MyArgs',args)
outputs.file(file)
doFirst{ errorOutput new ByteArrayOutputStream() }

doLast{ file.text = errorOutput.toString() }

50

Don’t Mess With Other Tasks

task makePackage (type: Zip, dependsOn: [jar,init_distribution]) {
archiveName "package.zip"
from (tasks.matching({ task -> task.group == "client_sub jar'}))
}
task makeDistribution (dependsOn: makePackage) {
doLast {
def org = makePackage.outputs.getFiles()[0];
org.renameTo(distDir)

51

Efficiency is not always efficient

What happen on subsequent executions?

e makePackage checks it inputs (same)

e makePackage checks it outputs
o package.zip is not there!
o makePackage wll run every time
o makeDistribution will run every time

Happened to us when signing the executable

Careful with copy and paste

e All projects that made a local distribution
needed to copy that to the main distribution
point
o These tasks were (almost) all the same.

e Create a task programmatically in the root
project and add it to the list of tasks in the
subproject

53

Add a task to a sub-project

if (proj.tasks.matching({it.name == 'createDist'}).empty) {
proj.task([type: Copy, group : 'Distribution’,
dependsOn: ':'+proj.name +
":createDist'] ,"copyToDistribution") {
from proj.distDir
into new File(distributionBase)

54

“Overriding” tasks

Created tasks for each and then a parent task
to depend on them

task copyToDistribution (type: Copy, dependsOn: |
createDist,
copyPackageToDistribution,
copyOtherToDistribution])

95

“Overriding” tasks

if (!proj.tasks.matching({it.name == 'createDist'}).empty) {
if (proj.tasks.matching({it.name == 'copyToDistribution'}).empty) {
proj.task([type: Copy, group : 'Distribution’,

56

“<<” = shorthand for “doLast”

task justForShow << {
println "Just for show"

task justForShow {
dolLast { println "Just for show" }

Y

“<<” - shorthand for “dolLast”

task justForShow (description: "My Task”) << {
println "Just for show"

}
task justForShow (type: Copy, description: “My Task”) << {

println "Just for show"

58

“<<” = shorthand for “doLast”

task justForShow (type: Copy, description: “My Task”) << {
println "Just for show"

from resourcesDir

Into distributionBase
include "MyShowgFile.txt"

59

“<<” = shorthand for “doLast”

task justForShow (type: Copy, description: “My Task”) {
dolLast { println "Just for show" }

from resourcesDir

Into distributionBase
include "MyShowgFile.txt"

}

task justForShow (type: Copy, description: “My Task”, group : “show task™) << {
60

Ul

Just a touch of JavaFX

Appropriate Use of Ul

e Why Ul in a build process?

o Warm Fuzzy
o Ad-Hoc Situations

62

Our Build Ul

e Needed Two Prompting Dialogs

o SSH Config
o Build Destination Verification

e Mandate to use JavaFX
o Perfect entry point
o Limited Impact to Product
o Not end-user facing Ul

63

The Dialogs

-

& GET SSHINFO | [
User JoeFoster (£ ﬁ
Host e Enter the windows keystore password
N Port 5508 _
Build User JoeFoster
Key File Sbuild/sec/keys/stndbuild.pub
Password 00| sseses
Passz Phrase | wessees
Reenter | seeees
Reenter Pass Phrase | sesseas
Cke Cancel
TR T alncel ‘

- 64

JavaFX in Gradle

e Initially Easy
e Tricky to get return values
e Issues with secondary usage

65

How to get back to Gradle?

How to return from the dialogs

e Can'tjust close them
e Platform.exit()

66

Subsequent Dialogs won’t Open

e Can't close JavaFX and open it again

Caused by: java.lang.lllegalStateException: Application launch must not be called more than once
at com.sun.javafx.application.Launcherlmpl.launchApplication(Unknown Source)
at com.sun.javafx.application.Launcherlmpl.launchApplication(Unknown Source)
at javafx.application.Application.launch(Unknown Source)

e \What can we do”?

67

Two (Frameworks) is better than One

e Swing and JavaFX
e JFXPanel
e Careful with the threading

o Watch your SwingUotilities.invokelLater()s
o and your Platform.runLater()s
o ... orjust use the system property

javafx.embed.singleThread = true

68

Summary

Summary

e To make your own Gradle build

o Understand the lifecycle
o Careful with your inputs and outputs
o Avoid coding steps that can be done with a task

e Consider Ul for ad-hoc scenarios
o Beware of JavaFX pitfalls
Don’t recreate your build in Gradle, create a
Gradle build

70

Oh, the possibilities...

e Refactoring can occur without worrying

about the build
o JDK9

e Project conversion
e (Go on vacation

71

Contact Information

Mark Claassen mclaassen@ocie.net

Joseph Foster [foster@ocie.net

https://github.com/markacx/session

JavaOne 2015 CON3374

72

https://github.com/markacx/session
https://github.com/markacx/session
mailto:mclaassen@ocie.net
mailto:mclaassen@ocie.net
mailto:jfoster@ocie.net
mailto:jfoster@ocie.net

J/Example project to go along with JavaOne 2015 conference session CON3374
J/To run full build, install gradle. Then, with the grade binary in your

Iisystem PATH, run gradle createDist

I

I/ Root Project build.gradle

import org.gradle.api.Project

description = 'Root project’

logger.quiet(*Java version of build: * + System.getProperty(‘java.version’))

JIif we want to set defaults for our project that our private to us, maybe where our codesign program is, we can put in
Jiin this file. | don't put the private.gradle in version control.

File privateFile = new File(projectDir, private.gradie’)

if (privateFile.exists() {
apply from: ‘private.gradie’
}

ext.myRootDirectory = new

if (thasProperty(‘distributionBase?) {
IWe will use the current directory by default, but we can specify this i the private.gradie file and not use the default
ext.distril =new Dir, dist).

}

exti ild = "true”.equals(iText.toLowerCase())
ext.resourcesDir = new File(projectDir, resources’)

apply from: ‘lib-def.gradle’
logger.quiet "Base = ${distributionBase}"

subprojects {
ext.distDir = new File(projectDir, dist)
ext.resourceDir = resourcesDir

JIFind all tasks that have a compile step, and configure the compiler how we want
tasks.withType(JavaCompile) {
options.incremental = true
options.warnings = false
options.deprecation = false
options.fork = true;
options.forkOptions.with {
memoryMaximumsSize = "512M"

JIFind al tasks that have a Jar task, and configure the jar how we want
tasks.withType(Jar) {

metainf {

from (resourcesDir) {

include 'VERSION-INFO.txt'

}

}

manifest {

attributes (
‘ReleaseBuild isReleaseBuild,

/IHaving BuildTime in the config section will force this task run every time. Instead, put it in doFirst section
//‘BuildTime': System.currentTimeMillis()

)

}

doFirst {

J/Doing this prevents a change in the build date from invalidating the jar file and triggering rebuild
manifest.attributes (BuildTime': System.currentTimeMillis())

}

lIAfter everything has "evaluated" create a copyToDistribution task if there is not already one.
afterEvaluate({ Project proj >

i reateDist}).empty) {

opyToDistribution’}).empty) {

stribution’ dependsOn:

proj.task([type: Copy, group : ' : "+proj.name + ‘“createDist], "copyToDistribution") {
from proj.distDir

into new File(distributionBase)

doLast {

printin ““Default’ copyToDistribution task in project ${project.name}”

}

IWhether or not we created a task or not, if the project has a "createDist" task, make sure the root project's
II"createDist" task depends on it, so we are sure it gets executed
rootProject tasks[createDist].dependsOn += proj.tasks[createDist]
rootProject tasks[createDist].dependsOn += proj.tasks[copy ToDistribution’]

}
)l

IIThis will never copy anything because the “configuration” s in the doLast section ("<<" means doLast)

IITo fix, remove the "<<"

task justForShow (type: Copy) << {

printn “Just for show"
from resourcesDir

into distributionBase
include "MyShowfFile.txt"

Jiclean is defined i the Java plugin, but not i this file, so we just create a new task called ‘clean’ here
JINote, that in the viewer.gradie file, which uses the Java plugin, we do our delete in the configure action
IIHere, this is going to extend from default action, meaning that a delete called here will actual do the delete.
IITherefore, we put the delete in a doLast action

task clean {

doLast {
delete distributionBase

}
task createDist (dependsO

Dist',ser Dist' D {
}

project(viewer) {

ext.projectBase=myRootDirectory+/Viewer

}
project(serviet) {
ext.projectBase=myRootDirectory+/Serviet'

Il Viewer Project viewer.gradle

import net.ocie.javaone2015.build.fx.*
import net.ocie.javaone2015.build validation.*
import org.gradle.api.GradleException

apply plugin: ‘java’

File copyDir = new File(distDir, copyDirectory’)
File packageDir = new File(distDir, packageDirectory’)

task validate(description: 'Validate Build User) {
doFirst {

Iithis will open a SSH configuration dialog, in Pure JavaFX

Ilbeacause Platform.exit() is the only way to return to the Gradle context

Ilwe cannot open further javaf dialogs.

Jluncomment out the below line to see this behavior

Jidef pureFXConfigOutput = PureFXGetSSHinfo.openWindow("This is the initial config");

Iithis limitation led us to develop a Swing wrapper for our JavaFX layout
def fxmlURL = BuildValidationController.cla X idation fxml")
def styleURL = Buil ontroller.class. g css”)

Iiwe will pass in a string configuration object, and expect a ValidationResponse back

def window = new ing, i p "Validation Config String", fxmIURL, styleURL);
window.setExtraProperty(title", "Enter the windows keystore password");

window.show();

def val = window.getReturnValue();

if (tval.isvalid() {

throw new GradleException(*Build canceled by user’)

}

}

JIUsing << means to put the code in braces in the doLast action. If this task gets edited to have a type,
Jimake sure you removed this so you can configure the task

task init_distribution << {

distDir.mkdir()

copyDir.mkdir()

packageDir.mkdir()

IIThis will configure the clean action in the Java plugin. Add some additional steps to clean the things we
Jimake in the init_distribution

clean {

delete distDir

delete copyDir

delete packageDir

IIThis would not have to be a task. The createClientTask lines could just be part of the script, but this helps
Jime keep everything in order

task init_client (description: ‘Create client sub jar tasks’) {

createClientTask('Modulel',[com/rebuild/ext/module1/**])
createClientTask(‘Module2',[com/rebuild/ext/module2/**])
createClientTask(‘Module3',[com/rebuild/ext/module3/*])

I modules 4 and 5 are so tied together that they can be bundled as one, we can do this too
createClientTask(’ [i i y

IWe want to make sure these new tasks are executed. To do that, we need something to depend on them
JIFind all the tasks in the project, find the ones we just created, and make the are class depend on these being done
tasks.each({
logger.info(“Examining task " + it)
if (itgroup == ‘client_sub_jar) {
jar.dependsOn +=
logger.info("Adding" + it)
}

}
)

}
IIThis would not have to be a task. The createServerTask lines could just be part of the script, but this helps
Jime keep everything in order
task init_server (description: ‘Create server sub jar tasks’) {
1/

Task(Modulel'[i
Task(Module2'[i)
Task(Module3' [i g

I modules 4 and 5 are so tied together that they can be bundled as one, we can do this too
Task(! [i Y

tasks.each({
logger.info(“Examining task " + it)
if (itgroup == 'server_sub_jar’) {
jar.dependsOn +=
logger.info("Adding" + it)
}

}
)

}

Jlustinclude the java files, that way a resouces in this structure won't be considered as inputs that might
Iiforce a recompile

compileJava {

source "SprojectBase/src”

include *+/* java'

JIResources would be everything that isn't a java file
processResources {

from "SprojectBase/src”

exclude **/*java’

}

JiConfigure the jar task from the Java plugin to not include the files in the modules
jar {

archiveName "MyApp.jar'

IIThe module files are in other jar files, so exclude them from this one

include ‘com/rebuild/app/viewer/***

include ‘com/rebuild/client/*

task copyStuff(type: Copy) {
from resourcesDir
into copyDir
include 'README..txt'
include ‘picture.png’
printin "Hello World
doLast {
antfixcrlf (eol:"If", srcdir : destinationDir, includes: 'README.txt)

task execJava (type: Exec, dependsOn : [compileJava,init_distribution]) {
def file = new File(packageDir,"version.txt")

executable System.getProperty(*java.home") + "/bin/java.exe”

args "-version"

IThe and are not consi part of the “inputs"
J/Add them explicitly if a change in them should re-run the task
inputs.property('MyArgs',args)

inputs. property(‘MyExecutable’,executable)

IWithout setting an output, the task not have any output and so will run every time
outputs.file(ile)

doFirst {
J/Running java with the -version option outputs the the version information to standard error
errorOutput new ByteArrayOutputStream()

doLast {
file.text = errorOutput.toString()

}
task makePackage (description : ‘Put files in zip file", type: Zip, dependsOn: [jar,init_distribution,copyStuff,execJaval) {
archiveName "package.zip"

def subTasks = tasks.matching({ task -> task.group == ‘client_sub_jar'})
from subTasks

IIThis rename moves the file from the output of makePackage, forcing it to re-run every time
ipti to the zip file', dependsOn: makePackage) {

task cop: ge_bad :'Do
def org = makePackage.outputs.getFiles[0];
org.renameTo(packageDir)

task ge (type : Copy, ion : ‘Do ing to the zip file', dependsOn: makePackage) {
from makePackage
into packageDir

task createDist (type: Copy, dependsOn: [execJava jar,copyPackage,copyStuff]) {
from resourceDir

into distDir

include "ViewerDistribution.txt"

}

task copyPackageToDistribution(type: Copy, dependsOn: createDist) {
from distDir

into new File(rootProject.distributionBase)

include "$packageDir.name/**"

}

task copyOtherToDistribution(type: Copy, dependsOn: createDist) {
from distDir

into new File(rootProject.distributionBase)

include "$copyDir.name/**"

IIMake this depend on the fine-grained tasks so one change doesn't require re-copying everything
task copyToDistribution (type: Copy, dependsOn: [createDist,copyPackageToDistribution,copyOtherToDistribution]) {
from distDir
into new File(rootProject. distributionBase)
exclude "ScopyDir.name/**"
exclude "$packageDir.name/**"
doLast {
println “Overridden’ copyToDistribution task in project ${project.name}"

}

void createClientTask(archive,dirs) {

task([type: Jar, group : ‘client_sub_jar', dependsOn:"compileJava'],"create_viewer_" + archive) {
from sourceSets.main.output

include dirs

exclude "*/server/**"

archiveName "${archive}C jar"

artifacts {

archives file: new File(buildDir,archiveName), name: archive, type: ‘jar', classifier: ‘extra’

tasks.jar.dependsOn += "create_viewer_" + archive

void createServerTask(archive dirs) {
task([type: Jar, group : ‘server_sub_jar', dependsOn:"compileJava’],"create_server_" + archive) {
from sourceSets.main.output

include dirs

exclude "/client/**"

archiveName "${archive}S.jar"

artifacts {

archives file: new File(buildDir,archiveName), name: archive, type: ‘jar', classifier: ‘extra’

}
tasks.jar.dependsOn += “create_server_" + archive
}

Il Sevlet Project serviet.gradle
apply plugin: ‘java’

dependencies {
compile libraries. Tomcat

}
task init_distribution << {
distDir.mkdir()

}
clean
delete distDir

compileJava {
source "SprojectBase/src”
include *+/* java'

}
processResources {
from "SprojectBase/src”

exclude **/*java’

jar {
archiveName = ‘Servietjar’

task createDist (type: Copy, dependsOn: jar) {
from (jar.outputs)
into distDir

}

