
How to rebuild your build without
reworking your work

JavaOne 2015 CON3374

Mark Claassen, Senior Software Engineer, Donnell Systems
Joe Foster, Developer, UI Specialist, Donnell Systems

Agenda

● Why we had to do this
● How we did this

2

What started this...

● We needed to change our application’s
deployment model

● Run a native packager
○ Package
○ Signing

● Add some SSH commands
○ Different options required on Mac

No big deal
3

Big deal

● Rapid prototype was easy
● Making it production ready was not
● Testing was tedious

4

Getting out the next release

Re-engineering the build was not part of the
original development project

How would we accomplish this without slowing
us down?

5

Where Our Build Stood

● ANT build system
○ Created in the Distant Past (early 2000s)
○ Somewhat Obtuse
○ Could have made it work, but no one would be able

to understand it

6

Disclaim-splanation:

There are places where the build is managed
by a dedicated team.

7

Disclaim-splanation:

There are places where the build is managed
by a dedicated team.

We do not work at one of those places

8

Fix the build

● Extensively modifying the existing build
seemed short-sighted.
○ Plan for the future

● Rewrite ANT build
○ Time constraints
○ Still ANT

● Something else?

9

Build System Requirements

● Not Reworking our Work
○ Avoid Refactoring
○ Keep Using Netbeans

● Readable / Maintainable
○ Prep for Jigsaw and JDK9 (if possible)

● Don’t Restrict Development

10

Gradle

Gradle

● Declarative frameworks like ANT
○ Good for some things, not for others

● Gradle is not declarative
○ Build files are in Groovy
○ Uses the Gradle DSL

■ “Domain Specific Language”
● Faster by skipping up-to-date tasks
● Integrated way to extend the build

12

Concerns with Gradle

● Relatively new, limited resources
● We would not have a “typical” Gradle build
● Examples used modern code structure

paradigms
● Needed to reproduce ANT build outputs
● Examples often too trivial
● Gradle documentation is great

13

We did it
And it is pretty awesome.

● Fast
● Reliable
● Readable

○ The build is something we use, not something we do
○ Need to be able to go back months later and

understand it enough to change it

14

Session Goals
Share what we learned

● Present some patterns we think you will find useful
● Reveal some traps to avoid.

Gradle has many advanced features, but the first step is to
have a build.

Be the example

15

We made a companion project

https://github.com/markacx/session

Why?
● Putting more than a few lines of code on

these slides makes them too small
● Showing a lot of code can obscure the main

point
16

https://github.com/markacx/session
https://github.com/markacx/session

Examples on the slide are short

https://github.com/markacx/session

● Show the heart of the example on the slides
○ Little bit of hand waving...on purpose

● Can see these in context later
● The github project has a lot more
● The program is trivial, but the build is not

17

https://github.com/markacx/session
https://github.com/markacx/session

What we will cover

● Gradle basics (in 4 slides)
● Lessons learned

■ Things that are not easily found in books
■ But you should still read a book.

● All from a small company perspective
○ For those of us who do it all!

Are Gradle builds readable? We will see.
18

4 Slide Gradle Primer

Let me explain. No, there is too much. Let me sum up...

Gradle Basics

● Projects
○ sub-projects
○ tasks

● Task is the basic building block
○ Task Types (like “compile” and “jar”)
○ Tasks can depend on other tasks

■ jar would depend on compile
○ Inputs / Outputs
○ Do things - Actions

20

Actions and the build lifecycle

● Initialization phase
● Configuration phase

○ Configuration action is executed for all tasks
● Execution phase

○ Determine if tasks are up-to-date. If not:
■ “Before” actions (doFirst)
■ The main task action, from the “Type”
■ “After” actions (doLast)

21

Configuration Action

● Always run at the beginning for all tasks
● Configures the tasks for possible execution

later
● Determines the Inputs/Outputs

○ What they are, but not their values
○ If these haven’t changed, the execution actions can

be skipped

22

CopyTask
task copyStuff(type: Copy) {

from resourcesDir

into copyDir

include 'README.txt'

include 'picture.png'

doLast {

ant.fixcrlf (eol:"lf", srcdir : destinationDir,

includes: 'README.txt')

}

} 23

CopyTask
task copyStuff(type: Copy) {

from resourcesDir

into copyDir

include 'README.txt'

include 'picture.png'

doLast {

ant.fixcrlf (eol:"lf", srcdir : destinationDir,

includes: 'README.txt')

}

} 24

CopyTask
task copyStuff(type: Copy) {

from resourcesDir

into copyDir

include 'README.txt'

include 'picture.png'

println “Hello World”

doLast {

ant.fixcrlf (eol:"lf", srcdir : destinationDir,

includes: 'README.txt')

}

} 25

CopyTask
task copyStuff(type: Copy) {

from resourcesDir

into copyDir

include 'README.txt'

include 'picture.png'

println “Hello World”

doLast {

ant.fixcrlf (eol:"lf", srcdir : destinationDir,

includes: 'README.txt')

}

} 26

CopyTask
task copyStuff(type: Copy) {

from resourcesDir

into copyDir

include 'README.txt'

include 'picture.png'

println “Hello World”

doLast {

ant.fixcrlf (eol:"lf", srcdir : destinationDir,

includes: 'README.txt')

}

} 27

The example project

Example layout

● Directory structure
○ Root

■ Viewer
■ Servlet

29

Fundamental structure

● Directory structure
○ Root

■ Viewer
■ Servlet
■ GBuilder (root project)

● viewer*
● servlet*

* Subdirectories each containing a Gradle project
30

settings.gradle

rootProject.name = 'GBuilder'

include 'viewer,servlet'

rootProject.children.each {
it.buildFileName = it.name + ".gradle"

}
31

Source path

Directory structure Gradle expects
src

main
java

com
resources

com

32

Customize the source path

In build.gradle [root project]
project(':viewer') {

ext.projectBase=myRootDirectory+'/Viewer'
}

In viewer.gradle
compileJava {

source "$projectBase/src"
} 33

Packaging the modules

● Main application was in a native bundle
● We wanted our modules to be packaged like

they were in the ANT build
● ANT had a macrodef to create jar files

○ 5 to 10 lines of XML for each module

34

Viewer project directory

● Common source directory
● Everything compiled at once; packaged separately

com.rebuild (base package)
app (package with main application)
ext (package base for extensions)

moduleX (One of these for every “module”)
... 35

Code the build

● Didn’t want large cookie cutter sections
● I am a coder, so I coded it
● Create a method to create a jar file

36

Don’t code the build

Don’t code the build
● Doing this takes power from the framework
● No automatic input / output handling

Every time my build ran, all the modules would
be rebuilt

37

Programmatic task creation

Instead of creating a method to create the jar
files, create a method to create a Jar task

void createClientTask(archive,dirs) {
task([type: Jar,
group : 'client_sub_jar',
dependsOn:"compileJava"],
"create_viewer_" + archive) { … } 38

Calling the method
task init_client (description: 'Create client sub jar tasks') {

createClientTask(
'Module1',
['com/rebuild/ext/module1/**'])

}

void createClientTask(archive,dirs) { … }

39

Short and sweet
createClientTask('Module1',['com/rebuild/ext/module1/**'])
createClientTask('Module2',['com/rebuild/ext/module2/**'])

…
tasks.each({

if (it.group == 'client_sub_jar') {
jar.dependsOn += it

}
})

40

Configuration of main jar task
jar {

archiveName 'MyApp.jar'

include 'com/rebuild/app/viewer/**'
include 'com/rebuild/client/**'

}

41

Don’t use properties (as much)
task makePackage (type: Zip) {

archiveName <zip property name>
...

}
task copyPackage(type: Copy) {

from <zip property name>
...

}
42

Refer to other tasks
task makePackage (type: Zip) {

archiveName "package.zip"
...

}
task copyPackage(type: Copy) {

from makePackage
}

43

Control your inputs and outputs

Our jar file specification
● META-INF

○ Include VERSION-INFO.txt
● Manifest

○ Release build (boolean)
○ Build time

44

Jar example
metaInf {

from (resourcesDir) { include 'VERSION-INFO.txt' }
}
manifest {

attributes ('ReleaseBuild': isReleaseBuild,
'BuildTime': System.currentTimeMillis())

}

45

Jar example - improved
metaInf {

from (resourcesDir) { include 'VERSION-INFO.txt' }
}
manifest {

attributes ('ReleaseBuild': isReleaseBuild)
}
doFirst {

manifest.attributes ('BuildTime': System.currentTimeMillis())
}

46

Be careful what you wish for

Sometime Gradle can be too great.

Inputs and outputs are mostly automatic

47

An Exec task
task execJava (type: Exec, dependsOn : copyPackage) {

def file = new File(distDir,"version.txt")
executable System.getProperty("java.home") + "/bin/java.exe"
args "-version"

doFirst { errorOutput new ByteArrayOutputStream() }

doLast { file.text = errorOutput.toString() }
48

An Exec task
task execJava (type: Exec, dependsOn : copyPackage) {

def file = new File(distDir,"version.txt")
executable System.getProperty("java.home") + "/bin/java.exe"
args "-version"

outputs.file(file)
doFirst { errorOutput new ByteArrayOutputStream() }

doLast { file.text = errorOutput.toString() }
49

An Exec task
task execJava (type: Exec, dependsOn : copyPackage) {

def file = new File(distDir,"version.txt")
executable System.getProperty("java.home") + "/bin/java.exe"
args "-version"
inputs.property('MyExecutable',executable)
inputs.property('MyArgs',args)
outputs.file(file)
doFirst { errorOutput new ByteArrayOutputStream() }

doLast { file.text = errorOutput.toString() }
50

Don’t Mess With Other Tasks
task makePackage (type: Zip, dependsOn: [jar,init_distribution]) {

archiveName "package.zip"
from (tasks.matching({ task -> task.group == 'client_sub_jar' }))

}
task makeDistribution (dependsOn: makePackage) {

doLast {
def org = makePackage.outputs.getFiles()[0];
org.renameTo(distDir)

}
}

51

Efficiency is not always efficient

What happen on subsequent executions?
● makePackage checks it inputs (same)
● makePackage checks it outputs

○ package.zip is not there!
○ makePackage wll run every time
○ makeDistribution will run every time

Happened to us when signing the executable
52

Careful with copy and paste

● All projects that made a local distribution
needed to copy that to the main distribution
point
○ These tasks were (almost) all the same.

● Create a task programmatically in the root
project and add it to the list of tasks in the
subproject

53

Add a task to a sub-project
if (!proj.tasks.matching({it.name == 'createDist'}).empty) {

proj.task([type: Copy, group : 'Distribution',
dependsOn: ':'+proj.name +
':createDist'] ,"copyToDistribution") {

from proj.distDir
into new File(distributionBase)

}

}
54

“Overriding” tasks

Created tasks for each and then a parent task
to depend on them

task copyToDistribution (type: Copy, dependsOn: [
createDist,
copyPackageToDistribution,
copyOtherToDistribution])

55

“Overriding” tasks
if (!proj.tasks.matching({it.name == 'createDist'}).empty) {

if (proj.tasks.matching({it.name == 'copyToDistribution'}).empty) {
proj.task([type: Copy, group : 'Distribution',
...

56

“<<” - shorthand for “doLast”

task justForShow << {
println "Just for show"

}

task justForShow {
doLast { println "Just for show" }

} 57

“<<” - shorthand for “doLast”
task justForShow (description: “My Task”) << {

println "Just for show"
}
task justForShow (type: Copy, description: “My Task”) << {

println "Just for show"
}

58

“<<” - shorthand for “doLast”
task justForShow (type: Copy, description: “My Task”) << {

println "Just for show"

from resourcesDir
into distributionBase
include "MyShowFile.txt"

}

59

“<<” - shorthand for “doLast”
task justForShow (type: Copy, description: “My Task”) {

doLast { println "Just for show" }

from resourcesDir
into distributionBase
include "MyShowFile.txt"

}
task justForShow (type: Copy, description: “My Task”, group : “show task”) << {

60

UI
Just a touch of JavaFX

Appropriate Use of UI

● Why UI in a build process?
○ Warm Fuzzy
○ Ad-Hoc Situations

62

Our Build UI

● Needed Two Prompting Dialogs
○ SSH Config
○ Build Destination Verification

● Mandate to use JavaFX
○ Perfect entry point
○ Limited Impact to Product
○ Not end-user facing UI

63

The Dialogs

64

JavaFX in Gradle

● Initially Easy
● Tricky to get return values
● Issues with secondary usage

65

How to get back to Gradle?

How to return from the dialogs
● Can’t just close them
● Platform.exit()

66

Subsequent Dialogs won’t Open

● Can’t close JavaFX and open it again

● What can we do?

Caused by: java.lang.IllegalStateException: Application launch must not be called more than once
 at com.sun.javafx.application.LauncherImpl.launchApplication(Unknown Source)
 at com.sun.javafx.application.LauncherImpl.launchApplication(Unknown Source)
 at javafx.application.Application.launch(Unknown Source)

67

Two (Frameworks) is better than One

● Swing and JavaFX
● JFXPanel
● Careful with the threading

○ Watch your SwingUtilities.invokeLater()s
○ and your Platform.runLater()s
○ … or just use the system property

javafx.embed.singleThread = true

68

Summary

Summary

● To make your own Gradle build
○ Understand the lifecycle
○ Careful with your inputs and outputs
○ Avoid coding steps that can be done with a task

● Consider UI for ad-hoc scenarios
○ Beware of JavaFX pitfalls

Don’t recreate your build in Gradle, create a
Gradle build

70

Oh, the possibilities...

● Refactoring can occur without worrying
about the build
○ JDK 9

● Project conversion
● Go on vacation

71

Contact Information

https://github.com/markacx/session

72

JavaOne 2015 CON3374

Mark Claassen mclaassen@ocie.net

Joseph Foster jfoster@ocie.net

https://github.com/markacx/session
https://github.com/markacx/session
mailto:mclaassen@ocie.net
mailto:mclaassen@ocie.net
mailto:jfoster@ocie.net
mailto:jfoster@ocie.net

//Example project to go along with JavaOne 2015 conference session CON3374
//To run full build, install gradle. Then, with the gradle binary in your
//system PATH, run gradle createDist
//
// Root Project build.gradle

import org.gradle.api.Project

description = 'Root project'

logger.quiet("Java version of build: " + System.getProperty("java.version"))

//If we want to set defaults for our project that our private to us, maybe where our codesign program is, we can put in
//in this file. I don't put the private.gradle in version control.
File privateFile = new File(projectDir,'private.gradle')
if (privateFile.exists()) {
 apply from: 'private.gradle'
}

ext.myRootDirectory = new File(projectDir,'..').canonicalFile.absolutePath

if (!hasProperty('distributionBase')) {
 //We will use the current directory by default, but we can specifiy this in the private.gradle file and not use the default
 ext.distributionBase = new File(projectDir,'dist').canonicalFile.absolutePath
}
ext.isReleaseBuild = "true".equals(isReleaseBuildText.toLowerCase())
ext.resourcesDir = new File(projectDir,'resources')

apply from: 'lib-def.gradle'

logger.quiet "Base = ${distributionBase}"

subprojects {
 ext.distDir = new File(projectDir,'dist')
 ext.resourceDir = resourcesDir

 //Find all tasks that have a compile step, and configure the compiler how we want
 tasks.withType(JavaCompile) {
 options.incremental = true
 options.warnings = false
 options.deprecation = false
 options.fork = true;
 options.forkOptions.with {
 memoryMaximumSize = "512M"
 }
 }
 //Find all tasks that have a Jar task, and configure the jar how we want
 tasks.withType(Jar) {
 metaInf {
 from (resourcesDir) {
 include 'VERSION-INFO.txt'
 }
 }
 manifest {
 attributes (
 'ReleaseBuild': isReleaseBuild,
 //Having BuildTime in the config section will force this task run every time. Instead, put it in doFirst section
 //'BuildTime': System.currentTimeMillis()
)
 }
 doFirst {
 //Doing this prevents a change in the build date from invalidating the jar file and triggering a rebuild
 manifest.attributes ('BuildTime': System.currentTimeMillis())
 }
 }
 //After everything has "evaluated" create a copyToDistribution task if there is not already one.
 afterEvaluate({ Project proj ->
 if (!proj.tasks.matching({it.name == 'createDist'}).empty) {
 if (proj.tasks.matching({it.name == 'copyToDistribution'}).empty) {
 proj.task([type: Copy, group : 'Distribution',dependsOn: ':'+proj.name + ':createDist'],"copyToDistribution") {
 from proj.distDir
 into new File(distributionBase)
 doLast {
 println "'Default' copyToDistribution task in project ${project.name}"
 }
 }
 }
 //Whether or not we created a task or not, if the project has a "createDist" task, make sure the root project's
 //"createDist" task depends on it, so we are sure it gets executed
 rootProject.tasks['createDist'].dependsOn += proj.tasks['createDist']
 rootProject.tasks['createDist'].dependsOn += proj.tasks['copyToDistribution']
 }
 })
}
//This will never copy anything because the "configuration" is in the doLast section ("<<" means doLast)
//To fix, remove the "<<"
task justForShow (type: Copy) << {
 println "Just for show"
 from resourcesDir
 into distributionBase
 include "MyShowFile.txt"
}
//clean is defined in the Java plugin, but not in this file, so we just create a new task called 'clean' here
//Note, that in the viewer.gradle file, which uses the Java plugin, we do our delete in the configure action.
//Here, this is going to extend from default action, meaning that a delete called here will actual do the delete.
//Therefore, we put the delete in a doLast action
task clean {
 doLast {
 delete distributionBase
 }
}
task createDist (dependsOn: [':viewer:createDist',':servlet:createDist',justForShow]) {

}
project(':viewer') {
 ext.projectBase=myRootDirectory+'/Viewer'
}
project(':servlet') {
 ext.projectBase=myRootDirectory+'/Servlet'
}

// Viewer Project viewer.gradle

import net.ocie.javaone2015.build.fx.*
import net.ocie.javaone2015.build.validation.*
import org.gradle.api.GradleException

apply plugin: 'java'

File copyDir = new File(distDir,'copyDirectory')
File packageDir = new File(distDir,'packageDirectory')

task validate(description: 'Validate Build User') {
 doFirst {
 //this will open a SSH configuration dialog, in Pure JavaFX.
 //beacause Platform.exit() is the only way to return to the Gradle context
 //we cannot open further javafx dialogs.
 //uncomment out the below line to see this behavior
 //def pureFXConfigOutput = PureFXGetSSHInfo.openWindow("This is the initial config");

 //this limitation led us to develop a Swing wrapper for our JavaFX layout
 def fxmlURL = BuildValidationController.class.getResource("buildvalidation.fxml")
 def styleURL = BuildValidationController.class.getResource("buildvalidation.css")
 //we will pass in a string configuration object, and expect a ValidationResponse back
 def window = new FXPanelFrame<String, ValidationResponse>("Validation Config String", fxmlURL, styleURL);
 window.setExtraProperty("title", "Enter the windows keystore password");
 window.show();
 def val = window.getReturnValue();
 if (!val.isValid()) {
 throw new GradleException("Build canceled by user")
 }
 }
}
//Using << means to put the code in braces in the doLast action. If this task gets edited to have a type,
//make sure you removed this so you can configure the task
task init_distribution << {
 distDir.mkdir()
 copyDir.mkdir()
 packageDir.mkdir()
}
//This will configure the clean action in the Java plugin. Add some additional steps to clean the things we
//make in the init_distribution
clean {
 delete distDir
 delete copyDir
 delete packageDir
}
//This would not have to be a task. The createClientTask lines could just be part of the script, but this helps
//me keep everything in order
task init_client (description: 'Create client sub jar tasks') {
 createClientTask('Module1',['com/rebuild/ext/module1/**'])
 createClientTask('Module2',['com/rebuild/ext/module2/**'])
 createClientTask('Module3',['com/rebuild/ext/module3/**'])
 //If modules 4 and 5 are so tied together that they can be bundled as one, we can do this too
 createClientTask('Module4n5',['com/rebuild/ext/module4/**','com/rebuild/ext/module5/**'])

 //We want to make sure these new tasks are executed. To do that, we need something to depend on them
 //Find all the tasks in the project, find the ones we just created, and make the are class depend on these being done
 tasks.each({
 logger.info("Examining task " + it)
 if (it.group == 'client_sub_jar') {
 jar.dependsOn += it
 logger.info("Adding" + it)
 }
 }
)
}
//This would not have to be a task. The createServerTask lines could just be part of the script, but this helps
//me keep everything in order
task init_server (description: 'Create server sub jar tasks') {
 createServerTask('Module1',['com/rebuild/ext/module1/**'])
 createServerTask('Module2',['com/rebuild/ext/module2/**'])
 createServerTask('Module3',['com/rebuild/ext/module3/**'])
 //If modules 4 and 5 are so tied together that they can be bundled as one, we can do this too
 createServerTask('Module4n5',['com/rebuild/ext/module4/**','com/rebuild/ext/module5/**'])

 tasks.each({
 logger.info("Examining task " + it)
 if (it.group == 'server_sub_jar') {
 jar.dependsOn += it
 logger.info("Adding" + it)
 }
 }
)
}
//Just include the .java files, that way a resouces in this structure won't be considered as inputs that might
//force a recompile
compileJava {
 source "$projectBase/src"
 include '**/*.java'
}
//Resources would be everything that isn't a .java file
processResources {
 from "$projectBase/src"
 exclude '**/*.java'
}
//Configure the jar task from the Java plugin to not include the files in the modules
jar {
 archiveName 'MyApp.jar'
 //The module files are in other jar files, so exclude them from this one
 include 'com/rebuild/app/viewer/**'
 include 'com/rebuild/client/**'
}
task copyStuff(type: Copy) {
 from resourcesDir
 into copyDir
 include 'README.txt'
 include 'picture.png'
 println 'Hello World'
 doLast {
 ant.fixcrlf (eol:"lf", srcdir : destinationDir, includes: 'README.txt')
 }
}
task execJava (type: Exec, dependsOn : [compileJava,init_distribution]) {
 def file = new File(packageDir,"version.txt")
 executable System.getProperty("java.home") + "/bin/java.exe"
 args "-version"

 //The arguments and executable are not considered part of the "inputs"
 //Add them explicitly if a change in them should re-run the task
 inputs.property('MyArgs',args)
 inputs.property('MyExecutable',executable)

 //Without setting an output, the task not have any output and so will run every time
 outputs.file(file)

 doFirst {
 //Running java with the -version option outputs the the version information to standard error
 errorOutput new ByteArrayOutputStream()
 }
 doLast {
 file.text = errorOutput.toString()
 }
}
task makePackage (description : 'Put files in zip file', type: Zip, dependsOn: [jar,init_distribution,copyStuff,execJava]) {
 archiveName "package.zip"

 def subTasks = tasks.matching({ task -> task.group == 'client_sub_jar' })
 from subTasks
}
//This rename moves the file from the output of makePackage, forcing it to re-run every time
task copyPackage_bad (description : 'Do something to the zip file', dependsOn: makePackage) {
 def org = makePackage.outputs.getFiles()[0];
 org.renameTo(packageDir)
}
task copyPackage (type : Copy, description : 'Do something to the zip file', dependsOn: makePackage) {
 from makePackage
 into packageDir
}
task createDist (type: Copy, dependsOn: [execJava,jar,copyPackage,copyStuff]) {
 from resourceDir
 into distDir
 include "ViewerDistribution.txt"
}

task copyPackageToDistribution(type: Copy, dependsOn: createDist) {
 from distDir
 into new File(rootProject.distributionBase)
 include "$packageDir.name/**"
}
task copyOtherToDistribution(type: Copy, dependsOn: createDist) {
 from distDir
 into new File(rootProject.distributionBase)
 include "$copyDir.name/**"
}
//Make this depend on the fine-grained tasks so one change doesn't require re-copying everything
task copyToDistribution (type: Copy, dependsOn: [createDist,copyPackageToDistribution,copyOtherToDistribution]) {
 from distDir
 into new File(rootProject.distributionBase)
 exclude "$copyDir.name/**"
 exclude "$packageDir.name/**"
 doLast {
 println "'Overridden' copyToDistribution task in project ${project.name}"
 }
}
void createClientTask(archive,dirs) {
 task([type: Jar, group : 'client_sub_jar', dependsOn:"compileJava"],"create_viewer_" + archive) {
 from sourceSets.main.output

 include dirs
 exclude "**/server/**"
 archiveName "${archive}C.jar"
 artifacts {
 archives file: new File(buildDir,archiveName), name: archive, type: 'jar', classifier: 'extra'
 }
 }
 tasks.jar.dependsOn += "create_viewer_" + archive
}
void createServerTask(archive,dirs) {
 task([type: Jar, group : 'server_sub_jar', dependsOn:"compileJava"],"create_server_" + archive) {
 from sourceSets.main.output

 include dirs
 exclude "**/client/**"
 archiveName "${archive}S.jar"
 artifacts {
 archives file: new File(buildDir,archiveName), name: archive, type: 'jar', classifier: 'extra'
 }
 }
 tasks.jar.dependsOn += "create_server_" + archive
}

// Sevlet Project servlet.gradle

apply plugin: 'java'

dependencies {
 compile libraries.Tomcat
}
task init_distribution << {
 distDir.mkdir()
}
clean {
 delete distDir
}
compileJava {
 source "$projectBase/src"
 include '**/*.java'
}
processResources {
 from "$projectBase/src"

 exclude '**/*.java'
}
jar {
 archiveName = 'Servlet.jar'
}
task createDist (type: Copy, dependsOn: jar) {
 from (jar.outputs)
 into distDir
}

