

What's coming in
JMS 2.1

Nigel Deakin
JMS Specification Lead

26 October 2015

nigel.deakin@oracle.com
@jms_spec

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

^

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

BOF
Continue the discussion at

The JMS BOF

9pm

Tonight

Here (Cyril Magnin II/III)

3

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Agenda

JMS 2.0 recap

What's (probably) coming in JMS 2.1?

 Improving JMS MDBs

 CDI beans as message listeners

 Other new features

1

2

3

4

5

4

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

JMS 2.0 Recap
Now available
in these Java EE 7 application servers

5

Glassfish Server
Open Source Edition 4.0

IBM WebSphere
Application Server

Version 8.5.5.6
(Liberty Profile)

Java EE 7 Full Platform Compatible Implementations
http://www.oracle.com/technetwork/java/javaee/overview/compatibility-jsp-136984.html

WildFly 8.x

Oracle WebLogic Server 12.2.1

TMAX JEUS 8

Hitachi Application Server v10.0

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

POLL Have you used JMS 2.0 yet?

A: Yes

B: No

6

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 7

@Resource(lookup = "jms/orderQueue")
private Queue orderQueue;

@Resource(lookup = "jms/myConnectionFactory")
private ConnectionFactory connectionFactory;

public void sendMessageEE6(String body) {

Connection connection = null;
try {

connection = connectionFactory.createConnection();
Session session = connection.createSession(true, Session.SESSION_TRANSACTED);
MessageProducer messageProducer = session.createProducer(orderQueue);
TextMessage textMessage = session.createTextMessage(body);
messageProducer.send(textMessage);

} catch (JMSException e) { // Handle exceptions
} finally {

try {
connection.close();

} catch (JMSException e) { // Handle exception in close()
}

}
}

Sending a message
in a Java EE 6 (JMS 1.1) application

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 8

@Resource(lookup = "jms/orderQueue")
private Queue orderQueue;

@Resource(lookup = "jms/myConnectionFactory")
private ConnectionFactory connectionFactory;

public void sendMessageEE7(String body) {

try (JMSContext context = connectionFactory.createContext()){
context.createProducer().send(orderQueue, body);

} catch (JMSRuntimeException e) {
// Handle exceptions

}
}

Sending a message
using the JMS 2.0 simplified API

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 9

@Resource(lookup = "jms/orderQueue")
private Queue orderQueue;

@Inject @JMSConnectionFactory("jms/myConnectionFactory")
JMSContext context;

public void sendMessageEE7WithInjection(String body) {

try {
context.createProducer().send(orderQueue, body);

} catch (JMSRuntimeException e) {
// Handle exceptions

}
}

Sending a message
using the JMS 2.0 simplified API and JMSContext injection

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Unfinished business in JMS 2.0

• The JMS 2.0 simplified API simplifies the code you need to write to

– Send a message

– Receive a message synchronously (using receive(timeout))

• No changes to the code you need to write to
– Receive a message asynchronously in a Java EE application

– You still need to create a MDB

10

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Other new features in JMS 2.0

• Asynchronous send

• Multiple consumers on a topic subscription

• Delivery delay

• Delivery count

• Resource definitions (Java EE)

• Platform default JMS connection factory (Java EE)

11

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

What's (probably) coming in JMS 2.1?

12

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

JMS 2.1 (JSR 368) Status

Stage
Initial plan
(Sep 2014)

Current plan
(Updated Jun 2015)

Actual

JSR approval Sep 2014 Sep 2014

Expert group formation Q3 (Sep) 2014 Dec 2014

Early draft 1 Oct 2015

Early draft 2 Q1 (Mar) 2015 Q4 (Dec) 2015

Public review Q3 (Sep) 2015 Q1 (Mar) 2016

Proposed final draft Q4 (Dec) 2015 Q3 (Sep) 2016

Final release Q3 (Sep) 2016 H1 (Jun) 2017

13

New!

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Improving JMS MDBs for JMS 2.1
Competing unfinished business from JMS 2.0

14

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 15

@MessageDriven(activationConfig = {
@ActivationConfigProperty(

propertyName = "destinationLookup",
propertyValue = "java:global/requestQueue"),

@ActivationConfigProperty(
propertyName = "destinationType",
propertyValue = "javax.jms.Queue") })

public class MyMDB implements MessageListener {

public void onMessage(Message message) {
TextMessage textMessage = (TextMessage)message;
try {

String messageText = textMessage.getText();
// process message text
// ...

} catch (JMSException e) {
// exception handling
// ...

}
}

}

What's wrong with JMS MDBs?

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 16

@MessageDriven(activationConfig = {
@ActivationConfigProperty(

propertyName = "destinationLookup",
propertyValue = "java:global/requestQueue"),

@ActivationConfigProperty(
propertyName = "destinationType",
propertyValue = "javax.jms.Queue") })

public class MyMDB implements MessageListener {

public void onMessage(Message message) {
TextMessage textMessage = (TextMessage)message;
try {

String messageText = textMessage.getText();
// process message text
// ...

} catch (JMSException e) {
// exception handling
// ...

}
}

}

What's wrong with JMS MDBs? Verbose, generic annotations

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 17

@MessageDriven(activationConfig = {
@ActivationConfigProperty(

propertyName = "destinationLookup",
propertyValue = "java:global/requestQueue"),

@ActivationConfigProperty(
propertyName = "destinationType",
propertyValue = "javax.jms.Queue") })

public class MyMDB implements MessageListener {

public void onMessage(Message message) {
TextMessage textMessage = (TextMessage)message;
try {

String messageText = textMessage.getText();
// process message text
// ...

} catch (JMSException e) {
// exception handling
// ...

}
}

}

What's wrong with JMS MDBs? Verbose, generic annotations

Use of key-value pairs means no
compile-time checking of property
names, and no type checking

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 18

@MessageDriven(activationConfig = {
@ActivationConfigProperty(

propertyName = "destinationLookup",
propertyValue = "java:global/requestQueue"),

@ActivationConfigProperty(
propertyName = "destinationType",
propertyValue = "javax.jms.Queue") })

public class MyMDB implements MessageListener {

public void onMessage(Message message) {
TextMessage textMessage = (TextMessage)message;
try {

String messageText = textMessage.getText();
// process message text
// ...

} catch (JMSException e) {
// exception handling
// ...

}
}

}

What's wrong with JMS MDBs? Verbose, generic annotations

Use of key-value pairs means no
compile-time checking of property
names, and no type checking

Must implement
javax.jms.MessageListener

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 19

@MessageDriven(activationConfig = {
@ActivationConfigProperty(

propertyName = "destinationLookup",
propertyValue = "java:global/requestQueue"),

@ActivationConfigProperty(
propertyName = "destinationType",
propertyValue = "javax.jms.Queue") })

public class MyMDB implements MessageListener {

public void onMessage(Message message) {
TextMessage textMessage = (TextMessage)message;
try {

String messageText = textMessage.getText();
// process message text
// ...

} catch (JMSException e) {
// exception handling
// ...

}
}

}

What's wrong with JMS MDBs? Verbose, generic annotations

Use of key-value pairs means no
compile-time checking of property
names, and no type checking

Must implement
javax.jms.MessageListener

Fixed MDB lifecycle

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

What's good about JMS MDBs?

• Declarative

– No need to explitly create them

• Scalable

– MDB can be a pool of bean instances, processing messages concurrently

20

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Improving JMS MDBs for JMS 2.1

• Flexible JMS MDBs

• Allowing CDI managed beans (i.e. not just MDBs) to listen for JMS
messages

21

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Introducing "Flexible JMS MDBs"

• Configured using simpler, JMS-specific annotations

• Doesn't implement javax.jms.MessageListener

• User-defined callback methods

• More than one callback method (perhaps)

• Flexible method signatures

– direct access to concrete message type, message body, messages headers, message
properties

• These are still MDBs

– MDB lifecycle, can be pooled

22

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 23

@MessageDriven
public class MyFlexibleMDB {

@JMSQueueListener(destinationLookup="java:global/requestQueue")
public void myMessageCallback(Message message) {

TextMessage textMessage = (TextMessage)message;
try {

String messageText = textMessage.getText();
// process message text
// ...

} catch (JMSException e) {
// exception handling

// ...
}

}
}

Flexible JMS MDBs - Queues

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 24

@MessageDriven
public class MyFlexibleMDB {

@JMSQueueListener(
connectionFactoryLookup="java:global/connectionFactory",
destinationLookup="java:global/requestQueue",
messageSelector="JMSType = 'car' AND colour = 'pink'",
acknowledge=Mode.AUTO_ACKNOWLEDGE)

public void myMessageCallback(Message message) {
TextMessage textMessage = (TextMessage)message;
try {

String messageText = textMessage.getText();
// process message text
// ...

} catch (JMSException e) {
// exception handling

// ...
}

}
}

Flexible JMS MDBs - Queues

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 25

@MessageDriven
public class MyFlexibleMDB {

@JMSNonDurableTopicListener(destinationLookup="java:global/pricefeed")
public void myMessageCallback(Message message) {

TextMessage textMessage = (TextMessage)message;
try {

String messageText = textMessage.getText();
// process message text
// ...

} catch (JMSException e) {
// exception handling

// ...
}

}
}

Flexible JMS MDBs - Topics (non-durable subscriptions)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 26

@MessageDriven
public class MyFlexibleMDB {

@JMSNonDurableTopicListener(destinationLookup=" java:global/pricefeed ")
destinationLookup="java:global/priceFeed",
messageSelector="JMSType = 'StockPrice' AND ticker = 'ORCL'",
acknowledge=Mode.AUTO_ACKNOWLEDGE)

public void myMessageCallback(Message message) {
TextMessage textMessage = (TextMessage)message;
try {

String messageText = textMessage.getText();
// process message text
// ...

} catch (JMSException e) {
// exception handling

// ...
}

}
}

Flexible JMS MDBs - Topics (non-durable subscriptions)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 27

@MessageDriven
public class MyFlexibleMDB {

@JMSDurableTopicListener(
destinationLookup="java:global/priceFeed",
clientId="myClientId",
subscriptionName="mySubscriptionName")

public void myMessageCallback(Message message) {
TextMessage textMessage = (TextMessage)message;
try {

String messageText = textMessage.getText();
// process message text
// ...

} catch (JMSException e) {
// exception handling

// ...
}

}
}

Flexible JMS MDBs - Topics (durable subscriptions)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 28

@MessageDriven
public class MyFlexibleMDB {

@JMSQueueListener(destinationLookup="java:global/requestQueue")
public void myMessageCallback(TextMessage textMessage) {

try {
String messageText = textMessage.getText();
// process message text
// ...

} catch (JMSException e) {
// exception handling

// ...
}

}
}

Message subtype as a callback parameter

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 29

@MessageDriven
public class MyFlexibleMDB {

@JMSQueueListener(destinationLookup="java:global/requestQueue")
public void myMessageCallback(String messageText) {

// process message text
}

}

Message body extracted using existing JMS method on Message

 <T> T getBody(Class<T> c) throws JMSException

Message body as a callback parameter

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 30

@MessageDriven
public class MyFlexibleMDB {

@JMSQueueListener(destinationLookup="java:global/requestQueue")
public void myMessageCallback(

String messageText,
@MessageHeader(Header.JMSCorrelationID) String correlationID,
@MessageProperty("price") long price) {

// process message text
}

}

Message headers and properties as callback parameters

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 31

@MessageDriven
public class MyFlexibleMDB {

@JMSQueueListener(destinationLookup="java:global/queue1")
public void myMessageCallback1(String messageText) {

// process message from queue1
}

@JMSQueueListener(destinationLookup="java:global/queue2")
public void myMessageCallback2(String messageText) {

// process message from queue2
}

}

Multiple callback methods

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 32

@MessageDriven
public class MyFlexibleMDB {

@JMSQueueListener(destinationLookup="java:global/queue1")
@JMSListenerProperty(name="reconnectAttempts", value="10")
@JMSListenerProperty(name="reconnectInterval", value="30000")
public void myMessageCallback1(String messageText) {

// process message from queue1
}

}

Specifying proprietary properties

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Some issues still to resolve

• Should we allow multiple callback methods on the same MDB?

• Should user-defined callback methods be allowed to throw checked
exceptions?

• How should parameter conversion errors be handled?

– if the incoming message has the wrong type for the specified parameter

– or if a specified header or property has the wrong type for the specified parameter

33

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 34

JMS 2.1 Early Draft 1 now released

• Contains detailed proposals for
flexible JMS MDBs

• Released specifically to encourage
comments, especially on open
issues

• Available now at

– https://jcp.org/en/jsr/detail?id=368

– http://jms-spec.java.net

• Please provide feedback!

https://jcp.org/en/jsr/detail?id=368
http://jms-spec.java.net/
http://jms-spec.java.net/
http://jms-spec.java.net/

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

CDI managed beans as JMS listeners

35

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

JMS listener beans – the basic idea

• Any CDI managed beans can listen for JMS messages

• Callback method(s) are defined in the same way as for "flexible JMS MDBs"

• When is the JMS consumer created?

• How many JMS consumers?
• 1 per listener bean instance, or

• 1 per listener bean class

• When is the listener bean created?

• Depends on the scope of the bean

• Perhaps copy how CDI events work

36

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 37

@Inject @SomeQualifier Event<MyObject> eventFirer;

void fireMyEvent(){

MyObject myObj = ...
eventFirer.fire(myObj);

}

Firing (sending) an event in CDI

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 38

public class MyEventObserver {

 public void myObserverMethod(@Observes @SomeQualifier MyObject myObj){
 ...
 }
}

Observing (listening for) an event in CDI

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

// @Dependent
public class MyEventObserver {

 public void myObserverMethod(
 @Observes @SomeQualifier
 MyObject myObj){
 ...
 }
}

• For every event that is fired

– A new instance of the observer bean is
created

– The observer method is invoked

– The observer bean is destroyed

• Any injected observer beans are
ignored

How a dependent-scoped observer bean works in CDI

39

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

// @Dependent
public class MyDepScopedBean {

 @JMSQueueListener(
 destinationLookup="myQueue")
 public void callMe(Message message) {
 ...
 }

}

• For every message that arrives

– A new instance of the listener bean is
created

– The callback method is invoked

– The listener bean is destroyed

• Any injected listener beans are
ignored

How a dependent-scoped JMS listener bean might work

40

JMS
Consumer

Listener
bean

Queue or
Topic

New instance
created for each
new message

Consumer created
at application startup

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

// @Dependent
public class MyDepScopedBean {

 @MaxInstances(10)
 @JMSQueueListener(
 destinationLookup="myQueue")
 public void callMe(Message message) {
 ...
 }

}

• Each callback performed on a
separate bean instance

• To increase throughput, allow
messages to be delivered
concurrently in multiple threads

• Define annotations to configure
max number of instances

• To avoid creating and destroying
beans, allow pooling of beans

• Hmm, sounds familar...

Managing concurrency with dependent-scoped JMS
listener beans

41

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• Listener bean is injected

• Bean created when parent bean
created

• Bean destroyed when parent bean
destroyed

• One JMS consumer per bean
instance

– Created when bean is created

– Closed when bean destroyed

An alternative approach to dependent-scoped JMS listener
beans

42

JMS
Consumer

Listener
bean

Queue or
Topic

Each instance and its consumer
created when parent object

created

JMS
Consumer

Listener
bean

JMS
Consumer

Listener
bean

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Define the CDI bean
// @Dependent
public class MyDepScopedBean {

 @JMSQueueListener(
 destinationLookup="myQueue")
 public void callMe(Message message) {
 // increment count of messages
 ...
 }

 public int getNumMessages(){
 // return count of messages
 ...
 }
}

Inject it into a servlet
@WebServlet("/myjmsservlet1")

public class MyServlet extends HttpServlet {

 @Inject MyDepScopeListenerBean listener;
// listener active for lifetime of servlet

 public void service(
 ServletRequest req, ServletResponse res)
 throws Exception {

 res.getWriter().println(
 "Number of messages received =
 "+ getNumMessages);
}

}

An alternative approach to dependent-scoped JMS listener
beans

43

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

// @Dependent
public class MyDepScopedBean {

 @MaxThreads(10)
 @JMSQueueListener(
 destinationLookup="myQueue")
 public void callMe(Message message) {
 // increment count of messages
 ...
 }

 public int getNumMessages(){
 // return count of messages
 ...
 }
}

• For a given JMS consumer, all
message callbacks performed on the
same bean instance

• To increase throughput, allow
messages to be delivered
concurrently in multiple threads to
the same instance

• Define annotation to configure max
number of threads

• Needs bean to be threadsafe

Managing concurrency with the alternative approach to
dependent-scoped JMS listener beans

44

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Event-style approach

• Listener bean is not injected

• One JMS consumer per bean class

– Created when application started

– Closed when application shut down

• New bean for each message

– Bean created when a message arrives

– Bean destroyed after callback returns

Alternative approach

• Listener bean is injected and
follows lifecycle of parent bean

• One JMS consumer per bean
instance

– Created when bean is created

– Closed when bean destroyed

• Same bean for each message
– Bean created when parent bean

created

– Bean destroyed when parent bean
destroyed

Two options for dependent-scoped JMS listener beans

45

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

@RequestScoped
public class MyEventObserver {

 public void myObserverMethod(
 @Observes @SomeQualifier
 MyObject myObj){
 ...
 }
}

• Observer will only receive events
fired within the SAME scope
context

• For every event that is fired

– The instance of the observer bean for
this scope context is obtained

– If doesn't exist then an instance is (by
default) created

– The observer method is invoked

• Observer beans can be injected and
accessed directly

How a "normal" scoped observer bean works in CDI

46

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

How normal scoped JMS listener bean might work

• In CDI, an event observer will only receive events that were fired from
within the SAME scope context

• This doesn't make sense for JMS messages

47

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

@ApplicationScoped JMS listener beans

• When the application starts, create a consumer which delivers messages to
the JMS listener bean

• For every message that is received

– The instance of the JMS listener bean for is obtained

– If doesn't exist then an instance is created

– The callback method is invoked

• JMS Listener beans can be injected and accessed directly

48

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Define the CDI bean
@ApplicationScoped
public class MyAppScopedBean {

 @JMSQueueListener(
 destinationLookup="myQueue")
 public void callMe(Message message) {
 // increment count of messages
 ...
 }

 public int getNumMessages(){
 // return count of messages
 ...
 }
}

Inject it into your application
@Inject MyAppScopedBean myBean;

Call methods on the bean as needed
int count = myBean.getNumMessage();

"Application scope" means that all
places it is injected will obtain the
same single bean instance

@ApplicationScoped JMS listener beans

49

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

@ApplicationScoped
public class MyAppScopedBean {

 @MaxThreads(10)
 @JMSQueueListener(
 destinationLookup="myQueue")
 public void callMe(Message message) {
 // increment count of messages
 ...
 }

 public int getNumMessages(){
 // return count of messages
 ...
 }
}

• Only one bean instance, so all
message callbacks performed on
the same bean instance

• To increase throughput, allow
messages to be delivered
concurrently in multiple threads to
the same instance

• Define annotation to configure max
number of threads

• Needs bean to be threadsafe

@ApplicationScoped JMS listener beans: threading

50

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Event-style
approach

(global
consumer)

Alternative
approach

(1 consumer
per listener)

Dependent-
scoped

Feasible Feasible

CDI beans as JMS message listeners: options

51 Oracle Confidential – Internal/Restricted/Highly Restricted

Event-style
approach

Application
scoped

Feasible

Other normal
scopes

?

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

POLL
Would you like the ability for CDI
managed beans to listen for JMS
messages?

A: Yes

B: No

52

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

API to configure async message listeners in Java EE

• consumer.setMessageListener(MessageListener listener)

• Currently not allowed by Java EE specification

• Some vendors do allow it anyway

53

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Other improvements for JMS 2.1

54

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Java EE 7
@JMSConnectionFactoryDefinitions({
 @JMSConnectionFactoryDefinition(
 name="java:app/MyJMSCF1",
 interfaceName=
 "javax.jms.QueueConnectionFactory",
 resourceAdapter="myJMSRA"),
 @JMSConnectionFactoryDefinition(
 name="java:app/MyJMSCF2",
 interfaceName=
 "javax.jms.QueueConnectionFactory",
 resourceAdapter="myJMSRA")
})

Java EE 8
@JMSConnectionFactoryDefinition(
 name="java:app/MyJMSCF1",
 interfaceName=
 "javax.jms.QueueConnectionFactory",
 resourceAdapter="myJMSRA")

@JMSConnectionFactoryDefinition(
 name="java:app/MyJMSCF2",
 interfaceName=
 "javax.jms.QueueConnectionFactory",
 resourceAdapter="myJMSRA")

Making use of Java SE 8 repeatable annotations

55

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Java EE 7
@JMSDestinationDefinitions({
 @JMSDestinationDefinition(
 name="java:app/MyJMSQueue",
 interfaceName="javax.jms.Queue",
 destinationName="myQueue1"),
 @JMSDestinationDefinition(
 name="java:app/MyJMSQueue",
 interfaceName="javax.jms.Queue",
 destinationName="myQueue2")
})

Java EE 8
@JMSDestinationDefinition(
 name="java:app/MyJMSQueue",
 interfaceName="javax.jms.Queue",
 destinationName="myQueue1")

@JMSDestinationDefinition(
 name="java:app/MyJMSQueue",
 interfaceName="javax.jms.Queue",
 destinationName="myQueue2")

Making use of Java SE 8 repeatable annotations

56

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 57

@MessageDriven
public class MyFlexibleMDB {

@JMSQueueListener(destinationLookup="java:global/requestQueue",
redeliveryInterval=1000,
redeliveryLimit=10,
deadMessageLookup="java:global/DMQ")

public void myMessageCallback(Message message) {
TextMessage textMessage = (TextMessage)message;
try {

String messageText = textMessage.getText();
// process message text
// ...

} catch (JMSException e) {
// exception handling

// ...
}

}
}

Configuring message redelivery for MDBs
(both new flexible MDBs and classic MDBs)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• Allow callback parameter to be an
array of messages

• Configure with @Batch annotation
@MessageDriven
public class MyFlexibleMDB {

 @JMSQueueListener(
 destinationLookup="java:global/myQueue")
 public void myMessageCallback(
 @Batch(batchSize=10,batchTimeout=1000)
 Message[] messages) {
 ...
 }

}

• Enables multiple messages to be
handled in same transaction

• batchSize : messages will be
delivered in batches of up to
batchSize messages

• batchTimeOut: Max time (in ms)
app server may defer message
delivery in order to assemble a
batch of messages that is as large as
possible but no larger than the batch
size.

Allowing messages to be delivered to MDBs in batches
 (taking advantage of flexible MDBs)

58

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

New and custom message acknowledgement modes

Session session = connection.createSession(int ackMode);

• Existing acknowledgement modes

– AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE, CLIENT_ACKNOWLEDGE

• New acknowledgement modes

– NO_ACKNOWLEDGE: message deleted from queue/subscription when sent, no
acknowledgement used, no redelivery on failure

– INDIVIDUAL_ACKNOWLEDGE: message.acknowledge() acknowledges only that
message, not previous messages received by the same session

• Custom acknowledgement modes

– Allocate range of mode values for use by JMS vendors

 59

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

API to create ConnectionFactory objects

• No standard API to create these objects in a Java SE application

– Java EE applications can now use resource definition annotations

• Need a static method on a standard factory class (like JDBC DriverManager)
ConnectionFactory cf = javax.jms.ConnectionFactoryCreator.create(url, props);

• Standard implementation needs to be able to find out which JMS provider
to use

• Perhaps use java.util.ServiceLoader to choose a JMS provider that
supported the specified URL

60

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

API to create Queue and Topic objects

• Existing methods on Session and JMSContext:

– createQueue(String queueName)

– createTopic (String topicName)

• queueName and topicName are not portable

61

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

JMS in a Java EE application:
adding clarifications and removing restrictions

• Defining the behavior of a JMS session that is created outside a JTA
transaction but used to send or receive a message within a JTA transaction,
and vice versa.

• Defining an API to allow a JMS connection factory, connection or session to
opt-out of a JTA transaction

• Clarifying the existing restrictions on using client-acknowledgement and
local transactions in a Java EE environment and removing these restrictions
where possible

• Removing the restriction on calling setMessageListener in a Java EE
application

62

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Minor corrections to JMS 2.0 features

• Missing method createXAJMSContext() on XAJMSContext to allow multiple
XAJMSContexts to share the same connection.

• API to allow application servers to implement JMSContext without needing
an additional connection pool

63

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Please get involved

• Download the JMS 2.1 early draft 1

• Join the JMS community mailing list

• Visit jms-spec.java.net for links to everything

• Follow (and reply to) @jms_spec

• Join the discussion at the JMS BOF tonight (9pm, here)

64

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Comments and questions

65

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Safe Harbor Statement

The preceding is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

66

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Session Surveys

Help us help you!!
• Oracle would like to invite you to take a moment to give us your session

feedback. Your feedback will help us to improve your conference.

• Please be sure to add your feedback for your attended sessions by using
the Mobile Survey or in Schedule Builder.

67

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 68

Classroom Training

Learning Subscription

Live Virtual Class

Training On Demand

Keep Learning with Oracle University

education.oracle.com

Cloud

Technology

Applications

Industries

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

JMS listener beans with normal scope:
Single consumer approach

• 1 consumer per listener bean class

– Created at application startup

• When a message arrives from a topic

– find each scope context,

– obtain or create the listener bean for that context

– deliver the message

• When a message arrives from a queue

– randomly choose a single scope context

– obtain or create the listener bean for that context

– deliver the message

70

JMS
Consumer

Listener
bean

Context 1

Listener
bean

Context 2

Listener
bean

Context 3

Queue or
Topic

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

JMS listener beans with normal scope:
1 consumer per listener approach

• 1 consumer per listener bean instance

– Created when listener bean is created

• Listener bean is created eagerly
when scope context starts

– otherwise would only be created lazily when
the application calls a method on it

• Consumer delivers messages to the
associated listener bean

• Listener bean destroyed
when scope context ends

71

JMS
Consumer

Listener
bean

Context 1

Listener
bean

Context 2

Listener
bean

Context 3

JMS
Consumer

JMS
Consumer

Queue or
Topic

