
https://github.com/typetools/sparta

Collaborative Verification
of Information Flow

for a High-Assurance App Store

Werner Dietl, University of Waterloo
Michael Ernst, University of Washington

Problem: Malware in app stores

2

Current app approval process

 Apple App Store: slow, arbitrary

 Google Play Store: fast, incomplete

• Coarse description of app behavior

• Binary executable is hard to analyze

• Vendor has little incentive to cooperate

Vendor Auditor App store

submit approved

3

Collaborative verification model

• Fine-grained specification of app behavior
– Type system for information flow

• Analyze source code
– Enables verification, not just heuristic bug-finding

• Vendor and app store do work that is easy for
them
– Lower cost overall

Vendor Auditor App store

submit approved

4

Results

• Information flow type system
– Flow-sensitive, context-sensitive, reflection, intents

• DARPA hired 5 companies to create malware
– Had access to our source code and documentation

– Created 72 apps (576,000 LOC), 57 of them Trojans

• Our system detected 82% of the Trojans
– 96% of Trojans with malicious information flow

– Complements other analyses

– 3 false alarms per 1000 lines of code

– Outperformed a control team
5

Cooperative verification

Anno-
tated
.java

Flow
policy

App
store

policies

vendor
provides

app
store
provides

Type-checker automatically verifies:
• Annotations are compatible with flow policy
• Annotations describe code behavior

(modulo trusted assumptions)
App store employee manually verifies:
• Assumptions are valid

App store employee manually verifies:
• Acceptable behavior

App store effort

Java
+ annotations
+ assumptions

Conclusion: Java code satisfies app store policies

Low effort (minutes),
because of information provided by vendor

6

Piecewise verification

Annotated
 .java files

High-level
formal

description
of behavior

App store
policies

vendor
provides

app
store
provides

Java code

Warning
suppressions
(with English
justifications)

Pluggable
types for
security

① Typechecker verifies:
• Annotations describe code behavior

(modulo warning suppressions)

① App store employee verifies:
• Warning suppressions are valid

=

+

+

Goal: Java code satisfies app store policies

③ App store employee verifies:
• Acceptable behavior

② Typechecker verifies:
• Accurate description of behavior

 ①

 ②

 ③

7

Flow policy for ShareLocation app
Read the description:

ShareLocation is a convenient application that shares the user’s current
GPS location with a contact via text message, Bluetooth, SMS, etc. Great
for when you don’t know exactly where you are and need to share your
location urgently with someone.

Permissions in Android manifest:

 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" >
 </uses-permission>
 <uses-permission android:name="android.permission.INTERNET" >
 </uses-permission>
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" >
 </uses-permission>
 <uses-permission android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" >
 </uses-permission>
 <uses-permission android:name="com.test.mypermission" />

Information flow policy:

ACCESS_COARSE_LOCATION -> INTERNET
ACCESS_FINE_LOCATION -> INTERNET

8

Information flow policy

READ_SMS -> WRITE_EXTERNAL_STORAGE
MEDIA -> DISPLAY
USER_INPUT -> CALL_PHONE
LITERAL -> WRITE_EXTERNAL_STORAGE

source sinkflows to

Sources and sinks:
• Android permissions, familiar to developers (145)
• Other sensitive inputs or outputs (26 so far)

Accelerometer, time of day, conditional, display, …

Indicates permitted information flows in the program

9

Information flow types

For a variable:
– What inputs might affect its value? @Source
– What outputs might it affect? @Sink

@Source(SMS) @Sink(FILE) String s;
...
s = getSMS();
...
writeToFile(s);

10

Annotation example

error = sender.sendSMS(msg);

class Sender {
 @Source(SMS) Error sendSMS(@Sink(SMS) String message);
}

API Annotation

From SMS Going to SMS

11

Example (from Stardroid app)

public class LatLong {

 public @Source(LOCATION) float latitude;

 public @Source(LOCATION) float longitude;

 public LatLong(@Source(LOCATION) float latitude,
 @Source(LOCATION) float longitude) {

 this.latitude = latitude;

 this.longitude = longitude;

 }

 …
}

12

Unannotatable malware in
UltraCoolMap

protected Void doInBackground(URI... uris) {
 ...
 URI uri = uris[0];
 HttpGet httpGet = new HttpGet(uri);
 ...
}

Not marked as
@Sink(NETWORK)

Required to be
@Sink(NETWORK)

13

Information flow type-checking

Verifies two properties:
• No information flow beyond the flow policy
• Annotations are consistent (with the code and each other)

– Annotations, and original developer, are untrusted

@Sink(SEND_SMS) String x;
display.setText(x);

Type-checker output:
warning: incompatible types in argument.
 display.setText(x);
 ^
found : @Sink(SEND_SMS)
required: @Sink(DISPLAY)

14

Type system hierarchy

Integrates cleanly with existing Java type system
15

Reducing annotation burden

• No annotations within methods
– Local variable types are inferred

– Technique: flow-sensitive type refinement

• Trusted annotations on Android and Java APIs
– Manual annotations for over 10,000 methods

• Carefully-chosen defaults
– Can be overridden by user

• Permit partial information flow types (next
slide)

16

Flow policy inference

If the programmer writes only a source or sink:
Complete the type with the most general possibility

Suppose the flow policy is:
 A -> X,Y
 B -> Y
 C -> Y
Then consider this code:
 @Source({B,C}) @Sink(Y) String s
 @Source({A,B})) @Sink(Y) String s

17

Flow policy inference

If the programmer writes only a source or sink:
Complete the type with the most general possibility

Suppose the flow policy is:
 A -> X,Y
 B -> Y
 C -> Y
Then consider this code:
 @Source({B,C}) @Sink(Y) String s
 @Source({A,B})) @Sink(Y) String s

18

Flow policy inference

If the programmer writes only a source or sink:
Complete the type with the most general possibility

Suppose the flow policy is:
 A -> X,Y
 B -> Y
 C -> Y
Then consider this code:
 @Source({B,C}) @Sink(Y) String s
 @Source({A,B})) @Sink(Y) String s

19

Flow policy inference

If the programmer writes only a source or sink:
Complete the type with the most general possibility

Suppose the flow policy is:
 A -> X,Y
 B -> Y
 C -> Y
Then consider this code:
 @Source({B,C}) @Sink(Y) String s
 @Source({A,B})) @Sink(Y) String s

20

Flow policy inference

If the programmer writes only a source or sink:
Complete the type with the most general possibility

Suppose the flow policy is:
 A -> X,Y
 B -> Y
 C -> Y
Then consider this code:
 @Source({B,C}) @Sink(Y) String s
 @Source({A,B})) @Sink(Y) String s

21

Flow policy inference

If the programmer writes only a source or sink:
Complete the type with the most general possibility

Suppose the flow policy is:
 A -> X,Y
 B -> Y
 C -> Y
Then consider this code:
 @Source({B,C}) @Sink(Y) String s
 @Source({A,B})) @Sink(Y) String s

22

Flow policy inference

If the programmer writes only a source or sink:
Complete the type with the most general possibility

Suppose the flow policy is:
 A -> X,Y
 B -> Y
 C -> Y
Then consider this code:
 @Source({B,C}) @Sink(Y) String s
 @Source({A,B,C}))@Sink(Y) String s

23

Benefits of flow policy inference

• Programmer may think about a computation
in terms of only its sources or only its sinks
– Enables more local reasoning

• Essential for annotating libraries
– File constructor returns @Source(FILESYSTEM)
– No @Sink annotation would be correct for all

programs
– Filled in based on the application’s flow policy

• This is an application of type polymorphism

24

Polymorphism

• Type polymorphism (Java generics)
addToList(@PolyFlow Object,
 List<@PolyFlow Object>)

• Qualifier polymorphism
– For generic and non-generic classes/methods
void <<Q>> append(StringBuffer<<@Q>> buf,
 String<<@Q>> s);

– Actual syntax uses Java 8 type annotations

• Observation: transitivity + inheritance + mutation
= type unsoundness

25

Value-dependent behavior

Result type depends on the argument value, not its type:
@Source(LOCATION) x = instanceState.getDouble(LAT);
@Source(TIME) y = instanceState.getDouble(HOUR);

Avoid special-casing methods like getDouble in the type system:

• Annotate AppWidgetsColumns.LAT with
@Source(LOCATION)
(This constant, 22, doesn’t actually reveal location)

• Annotate getDouble polymorphically:
@PolySource double
getDouble(@PolySource AppWidgetsColumns) {…}

26

Implicit/indirect flow

bool in_afghanistan;

in_afghanistan
 = (lat > 29 && lat < 39 && long > 61 && long < 75);

if (lat > 29 && lat < 39 && long > 61 && long < 75) {
 in_afghanistan = true;
} else {
 in_afghanistan = false;
}

Solution 1: Issue warning when secret data is used as a predicate

Solution 2: Taint all assignments within conditional
27

Parameterized permissions

UltraCoolMap
– Mapping Application
– Location data is sent to maps.google-com.cc rather than
maps.google.com

– Satisfies flow: LOCATION → NETWORK

Refine permissions to indicate specific destinations
– USER_INPUT -> INTERNET(“google.com”)
– FILESYSTEM
– WRITE_CONTACTS: email address vs. phone number vs.

notes field

28

Reflection

Most static analyses ignore reflection*
– Analysis results are unsound if code uses reflection

– Soundiness Manifesto (http://soundiness.org/)

Why handle reflection?
• Used for backward compatibility

– Recommended in Android Developer Blog

• Used to access private APIs
– Not recommended, but often used

• Used to prevent reverse engineering
– Recommended in Android Developer Docs

29

Reflection Example

Class cl = Class.forName("Sender");

Method m = cl.getDeclaredMethod("sendSMS");

Object error = m.invoke(sender, message);

could be from anywhere could be going anywhere

class Method {
 @Source(ANY) Object invoke(@Sink(ANY) Object obj,
 @Sink(ANY) Object... args);
}

API Annotation

30

Reflection Analysis

Class cl = Class.forName("Sender");

Method m = cl.getDeclaredMethod("sendSMS");

Object error = m.invoke(sender, message);

Sender

Sender.sendSMS

31

Reflection Analysis

Class cl = Class.forName("Sender");

Method m = cl.getDeclaredMethod("sendSMS");

Object error = m.invoke(sender, message);

Object error = sender.sendSMS(message);

From SMS Going to SMS

Sender.sendSMS

Sender

• Key idea: constant propagation
– Class and Method are constants
– Invoke API and program methods where needed

• Resolved 96% of reflection in Red Team apps
• Integrates with any downstream analysis 32

Inter-component communication in
Android apps

Intent

Component ComponentActivity
Activity,

service, or
broadcast receiver

Data

Flow policy must be respected across components

33

Intent

Component ComponentActivity
Activity,

service, or
broadcast receiver

Data

Intent s
 = new Intent(Receiver);
s.putExtra("k1", valueA);
s.putExtra("k2", valueB);
sendIntent(s);

"k1" -> valueA
"k2" -> valueB

void receiveIntent(Intent r) {
 Object a = r.getExtra("k1");
 Object b = r.getExtra("k2");
}

1. Where is the intent going? [Octeau 2013]

2. What happens to the data when it gets there?

Inter-component communication in
Android apps

34

How does this catch malware?

Hash Map

Intent
@Source(LOCATION) loc
=…
s.putExtra("data", loc);
sendIntent(s);

void receiveIntent(Intent r){
Obj data = r.getExtra("data");
sendToInternet(data);
}

@IExtra(key="data",
 type=@Source(ANY)
 @Sink(INTERNET))

@IExtra(key="data",
 type=@Source(LOCATION)
 @Sink(DISPLAY))

Flow policy:
LOCATION -> DISPLAY

35

Red Team evaluation

• DARPA hired 5 companies (Red Teams) to create
Trojans
– Had access to our source code and documentation

• 20 people worked on the 5 teams
– 18 full-time security analysts with BS or MS degree
– 2 interns
– Most have been exposed to information flow theory

• Surveyed real-world malware
• Created 72 apps (576,000 LOC), 57 of them Trojans

– 2 goals: simulate real-world Trojans and defeat our system
– Java source code only
– Largely undocumented

• less than an app store blurb, no code comments, poor code style

– No type qualifiers 36

Analyzing an app

We received the apps in 5 batches
• Limited time to evaluate each batch

– We spent most of our time doing reverse engineering
– Would not be necessary in collaborative verification model

Process:
• Run home-grown reverse-engineering tool
• Add type annotations where necessary
• Use human insight
• Did not run the app

– In practice, should use complementary analyses to raise the bar for attackers

Results:
• Our team correctly classified 88% of the apps
• Reverse-engineering tools: 53% of the Trojans
• Information flow types : 82% of the Trojans

– 96% of apps with malicious information flow

• Outperformed a control team using static and dynamic analysis
37

Apps exploited information flow

App Description of Malware Exploited Flow

UltraCoolMap
Location data is sent to maps.
google-com.cc rather than maps.
google.com

LOCATION->NETWORK

SMS Reminder
When a text of 000000000 is sent,
all messages are deleted

SMS->CONDITIONAL

Text Secure Sends all SMSes to attacker’s phone USER_INPUT->SMS

InstantMessage
Drops all incoming SMSes

SMS->DISPLAY

AndroidIRC Sends chats to user “0XFFF”
USER_INPUT->INTERNET

Snapshot Share
Sends “About screen” to Dropbox
account

READ_EXTERNAL_FILESYSTEM
->INTERNET

The app had a valid reason to use the information flow, but also used it maliciously

38

Misuses of valid information flows

• SMS Reminder
– Sends SMS Reminders
– Deletes all SMS
– Exploits flow: SMS → CONDITIONAL

• Text Secure
– SMS encryption app
– Forwards all SMS to attacker
– Exploits flows: USER_INPUT → SMS and SMS → NETWORK

39

Bugs and bugdoors

Missing functionality:
• Picture Sharing app claims to send pictures to the user’s contacts

– Does not have the READ_CONTACT permission

Bugdoors:
• GPS app passes device ID as a waypoint to the remote server

– Server can correlate location to device
– Server can correlate location to other info collected using the device ID

• Password Saver saves unencrypted passwords in shared
preferences
– Accessible to other applications on the device

The Red Teams were unaware of these bugdoors

40

Lessons learned

Sneaky patterns:
• 17 apps used reflection to access an API
• 3 apps exploited the ACTION_VIEW intent to access a URL without the

INTERNET permission
• 6 apps exfiltrated sensitive data to the log

– Does not require an Android permission
– Does require a permission in our finer-grained permission system

Benefits of information flow types:
• Program annotations foil some of the ways to hide malware:
• Hamper data exfiltration

– Hiding data-flow based malware in an annotated application is difficult

• General
– Revealed malicious data flow in the payload as well as the injected triggers
– Easy to extend as we discovered new properties

• Extensible to integrity as well as privacy

41

Annotation burden

• 6 apps (3924 LOC, 2 Trojans) fully annotated by
UW team

• Annotated 8 LOC per minute
– Most time was reverse-engineering
– Much lower if familiar with app
– Much lower to audit an already-annotated app
– Industry averages 20 LOC per day

• 1 annotation per 19 LOC
– 4% of annotatable locations
– Jif [Myers et al.]: 1 annotation per 4 LOC

• 3 false alarms per 1000 lines of code

42

Vendor effort:
How hard is it to annotate code?

• If you are not the author of the code:

• For the author:

• If the author writes the
annotations along with the code:
– It might even save time

43

Related work

• Information flow (a very old idea):
– Jif [Zdancewic 2001]: heavier-weight, complex
– WebSSARI [Huang 2004]: PHP; inserts runtime checks

• Android
– Many apps are overprivileged [Felt 2011]
– Static analysis: Woodpecker for capabilities [Grace

2012], ComDroid for intents [Chin 2011]
– Dynamic analysis: TaintDroid [Enck 2010], DroidScope

[Yan 2012], AppFence [Hornyack 2011], Aurasium [Xu
2012]

– Many others

44

Implementing SPARTA

Information Flow Checker is a

pluggable type system

Infrastructure: the Checker Framework

http://CheckerFramework.org/

45

Optional Type Checking

Source Compiler Executable

Errors Optional
Type Checker

Warnings

Guaranteed
behaviorFix bugs

Change
types

Fix bugs

Add/change
annotations

No errors

Optional
Type Checker

Optional
Type Checker

More at JavaOne 2015

Preventing Errors Before They Happen

TUT 4416, today, 8:30 to 10:30

Using Type Annotations to Improve Your Code

BoF 4390, tonight, 20:00 to 20:45

Imperial Ballroom A

48

Disclaimer

This material is based on research sponsored by
Defense Advanced Research Project Agency
(DARPA) under agreement number FA8750-12-C-
0107. The U.S. Government is authorized to
reproduce and distribute reprints for
Governmental purposes notwithstanding any
copyright notation thereon. The views and
conclusions contained herein are those of the
authors and should not be interpreted as
necessarily representing the official policies or
endorsements, either expressed or implied, of
Defense Advanced Research Project Agency
(DARPA) or the U.S. Government.

49

Credits

Paulo Barros
Ravi Bhoraskar
Jonathan Burke
Sunjay Cauligi
Alexei Czeskis
Tammy Denning
Werner Dietl
Michael Ernst
Seungyeop Han
Carl Hartung
René Just
Tadayoshi Kohno

Karl Koscher
Philip Lai
David McArthur
Suzanne Millstein
Stuart Pernsteiner
Mark Roberts
Franzi Roesner
Rafael Vertido
Paul Vines
David Wetherall
Edward Wu
Shawn Zhang

50

Further details

• “Collaborative verification of information
flow for a high-assurance app store”
by M. D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner, F.
Roesner, K. Koscher, P. Barros, R. Bhoraskar, S. Han, P. Vines,
and E. X. Wu;
in Computer and Communications Security (CCS), 2014.

• “Static analysis of implicit control flow:
Resolving Java reflection and Android intents”
by P. Barros, R. Just, S. Millstein, P. Vines, W. Dietl, M.
d'Amorim, and M. D. Ernst;
in Automated Software Engineering (ASE), 2015.

51

Contributions

• Collaborative verification model
– Vendor and app store do work that is easy for

them

• Information flow type system
– Flow-sensitive, context-sensitive, indirect flow,

reflection, intents

• Implementation for Java Android apps
• Red Team evaluation

– Effective, easy to use, few false positives

52

