

Enhanced Process APIs

Roger Riggs
Consulting Member of Technical Staff
Java Products Group, Oracle
October 27, 2015

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

4

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Program Agenda

Creating and Working with Processes

Information about Processes

Asynchronous Process Management

Efficient Handling of Process Output

Summary

1

2

3

4

5

5

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Many Use Cases

• Running arbitrary commands

– Collecting, filtering, and redirecting output

– Connecting heterogeneous commands and shells

• Test execution
– Run a series of tests

– Log the output

– Clean up left over processes

• Monitoring

– Monitor long running processes and re-spawn if they die

– Collect usage statistics

6

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

ProcessBuilder – The basics

• ProcessBuilder Basics

– Command and arguments

– Environment variables and working directory

– Redirection
• Standard input, standard output, standard error

• Inherit from invoking process or discard output

• Send to or read from Files

• Send to OutputStreams or read from InputStreams

• Create a process

 Process p = new ProcessBuilder(“date”).start();

7

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Process – Controls a spawned process

• waitFor(), waitFor(timeout, units) – wait for the process to exit

• isAlive(), getPid(), info(), exitValue() – information about the process

• Redirecting output and input to I/O Streams

– getErrorStream(), getInputStream(), getOutputStream()

• children(), allChildren() – the direct and indirect children

• destroy(), destroyForcibly(), supportsNormalTermination()

• onExit() – a ComputableFuture for process exit

8

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

ProcessHandle – A native process

• allProcesses() – All OS processes*

• getCurrent(), of(pid), parent() – get ProcessHandles

• isAlive(), getPid(), info() – information about the process

• children(), allChildren() – streams of direct and indirect children

• destroy(), destroyForcibly()

• onExit() – a ComputableFuture for process exit

* Limited by the native system access controls

9

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 10

 File outFile = new File("out.tmp");

 Process p = new ProcessBuilder(“ls”, “-lt”)
 .directory(new File(“/home/duke”))
 .redirectOutput(outFile)
 .redirectError(Redirect.INHERIT)
 .start();

 int status = p.waitFor();
 if (status == 0) {
 p = new ProcessBuilder("cat" , outFile.toString())
 .inheritIO()
 .start();
 p.waitFor();
 }

ProcessBuilder redirecting to a file

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Program Agenda

Creating and Working with Processes

Information about Processes

Asynchronous Process Management

Efficient Handling of Process Output

Summary

1

2

3

4

5

11

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 12

 ProcessBuilder pb = new ProcessBuilder("printenv", "horse", "dog“, “LANG”)
 .inheritIO();

 pb.environment().put("horse", "oats");
 pb.environment().put("dog", "treats");

 pb.start().waitFor();

 Output from printenv
 oats
 treats
 en_US.UTF-8

ProcessBuilder can supply environment variables

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Information about Processes

• Information about processes is controlled by the OS

• Values are wrapped in Optional to indicate if the value is not available

• The user – Optional<String>

• The command – Optional<String>

• The arguments – Optional<String[]>

• The start time – Optional<Instant>

• The cputime – Optional<Duration>

13

ProcessHandle.Info

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 14

 static void showProcess(ProcessHandle ph) {
 ProcessHandle.Info info = ph.info();
 log.printf(“pid: %d, parent: %s, user: %s, cmd: %s%n”,
 ph.getPid(), ph.getParent(),
 info.user().orElse(“none”), info.command().orElse(“none”);
 }

% showProcess(ProcessHandle.current());
pid: 2909, parent: Optional[2650], user: duke, cmd: /opt/jdk1.9.0/bin/java

Information about Processes

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 15

 Optional<String> currUser = ProcessHandle.current().info().user();
 ProcessHandle.allProcesses()
 .filter(p1 -> p1.info().user().equals(currUser))
 .sorted(CodeSamples::parentComparator)
 .forEach(CodeSamples::showProcess);

 static int parentComparator(ProcessHandle p1, ProcessHandle p2) {
 return Long.compare(p1.parent().get().getPid(),
 p2.parent().get().getPid());
 }

Filter Processes using Streams

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Sensitive Process Information

• Process information may contain sensitive info, userids, paths, arguments
to commands

• Process control is sensitive, destroying a process may be detrimental

• When running as a normal application a ProcessHandle has the same OS
privileges to information about other processes as a native application;
information about system processes may not be available

• When a SecurityManager is in use, security policy must grant

– RuntimePermission(“manageProcess”)

16

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Program Agenda

Creating and Working with Processes

Information about Processes

Asynchronous Process Management

Efficient Handling of Process Output

Summary

1

2

3

4

5

17

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

OnExit – Flexible handling of process exit

• onExit returns a ComputableFuture<Process>

• ComputableFuture is multi-faceted handle to the Process / ProcessHandle

• As a Future the use is synchronous

– isDone(), get(), get(timeout, units)

• As a ComputableFuture can schedule actions when the process exits

– thenApply, thenAccept, thenRun,
thenApplyAsync, thenAcceptAsync, thenRunAsync, etc.

– Actions run in a thread provided by the ForkJoinPool commonPool

18

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Example using Process.onExit

• Set of commands to run repeatedly

• Parallelism – run <n> of them in parallel

• Keep track of the results

19

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 20

 Semaphore count = new Semaphore(11);
 CountDownLatch end = new CountDownLatch(1);

 static void start(ProcessBuilder pb, Semaphore count, CountDownLatch end) {
 try {
 if (count.tryAcquire()) {
 Process p = pb.start();
 p.onExit()
 .thenAccept(CodeSamples::logExit)
 .thenRun(() -> start(pb, count, end));
 } else {
 end.countDown();
 }
 } catch (IOException ioe) {
 throw new RuntimeException("Process start failed", ioe);
 }
 }

 static void logExit(Process p) {
 log.printf("exit: %d, status: %d%n", p.getPid(), p.exitValue());
 }

Start the process again

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 21

 Semaphore count = new Semaphore(11);
 CountDownLatch end = new CountDownLatch(1);

 static void start(ProcessBuilder pb, Semaphore count, CountDownLatch end) {
 try {
 if (count.tryAcquire()) {
 Process p = pb.start();
 p.onExit()
 .thenAccept(CodeSamples::logExit)
 .thenRun(() -> start(pb, count, end));
 } else {
 end.countDown();
 }
 } catch (IOException ioe) {
 throw new RuntimeException("Process start failed", ioe);
 }
 }

 static void logExit(Process p) {
 log.printf("exit: %d, status: %d%n", p.getPid(), p.exitValue());
 }

Count each run

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 22

 Semaphore count = new Semaphore(11);
 CountDownLatch end = new CountDownLatch(1);

 static void start(ProcessBuilder pb, Semaphore count, CountDownLatch end) {
 try {
 if (count.tryAcquire()) {
 Process p = pb.start();
 p.onExit()
 .thenAccept(CodeSamples::logExit)
 .thenRun(() -> start(pb, count, end));
 } else {
 end.countDown();
 }
 } catch (IOException ioe) {
 throw new RuntimeException("Process start failed", ioe);
 }
 }

 static void logExit(Process p) {
 log.printf("exit: %d, status: %d%n", p.getPid(), p.exitValue());
 }

Finish when all have been started

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 23

 Semaphore count = new Semaphore(11);
 CountDownLatch end = new CountDownLatch(1);

 static void start(ProcessBuilder pb, Semaphore count, CountDownLatch end) {
 try {
 if (count.tryAcquire()) {
 Process p = pb.start();
 p.onExit()
 .thenAccept(CodeSamples::logExit)
 .thenRun(() -> start(pb, count, end));
 } else {
 end.countDown();
 }
 } catch (IOException ioe) {
 throw new RuntimeException("Process start failed", ioe);
 }
 }

 static void logExit(Process p) {
 log.printf("exit: %d, status: %d%n", p.getPid(), p.exitValue());
 }

OnExit – Complete

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 24

 void repeat(ProcessBuilder pb, int total, int parallelism) throws Exception {
 Semaphore count = new Semaphore(total);
 CountDownLatch end = new CountDownLatch(1);

 for (int i = 0; i < parallelism; i++) // Start the first n
 start(pb1, count, end);

 end.await(); // wait until there are no more to be started

 ProcessHandle.current() // wait for each of the active children to exit
 .children().forEach(CodeSamples::waitForExit);
 }

 static void waitForExit(ProcessHandle p) {
 try { p.onExit().get();} catch (Exception e) { … }
 }

 repeat(new ProcessBuilder("sh", "-c", "sleep 1;exit 1"), 11, 2);

Repeat command and wait for them to be done

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Process Diagnostics and Progressive cleanup

• Commands don’t always terminate when expected

• Before destroying the process it is helpful to log some diagnostics

• Simply requesting the process to terminate normally may not succeed

• Harsher measures may be needed

25

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 26

 class TimeoutMonitor implements Runnable {
 public static void schedule(Process process, int delay, int rate) {
 new TimeoutMonitor(process).scheduledFuture
 = timeoutExecutor.scheduleAtFixedRate(ts, delay, rate, TimeUnit.SECONDS);
 }
 public synchronized void run() {
 if (process.isAlive()) {
 log.printf("Timeout countdown: %d%n", --countdown);
 showProcess(process.toHandle());
 process.allChildren().forEach(CodeSamples::showProcess);
 if (countdown == 1) {
 log.printf("Destroy process: %d%n", process.getPid());
 process.destroy();
 } else if (countdown == 0) {
 log.printf("Forcibly destroy process: %d%n", process.getPid());
 process.allChildren().forEach(ProcessHandle::destroyForcibly);
 process.destroyForcibly();
 }
 } else {
 scheduledFuture.cancel(false);
 }
 }
 }

Monitor the last moments of the Process

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 27

 Semaphore count = new Semaphore(11);
 CountDownLatch end = new CountDownLatch(1);

 static void start(ProcessBuilder pb, Semaphore count, CountDownLatch end) {
 try {
 if (count.tryAcquire()) {
 Process p = pb.start();
 p.onExit()
 .thenAccept(CodeSamples::logExit)
 .thenRun(() -> start(pb, count, end));
 TimeoutMonitor.schedule(p, 120, 5);
 } else {
 end.countDown();
 }
 } catch (IOException ioe) {
 throw new RuntimeException("Process start failed", ioe);
 }
 }

 static void logExit(Process p) {
 log.printf("exit: %d, status: %d%n", p.getPid(), p.exitValue());
 }

Start monitor for timeout

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Program Agenda

Creating and Working with Processes

Information about Processes

Asynchronous Process Management

Efficient Handling of Process Output

Summary

1

2

3

4

5

28

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Pipeline Output between Processes

• Pipelines are a familiar tool for shell users

• Previously, no direct way to send the output of one process to another

• New ProcessBuilder.startPipe(ProcessBuilder… builders)

– Launches one process for each builder

– The standard output of each is directed to the standard input of the next

– Input to the first builder and output of the last builder can be redirected

– Returns a List of the processes created

29

Candidate for JDK 9

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 30

 ProcessBuilder pb1 = new ProcessBuilder("ls");
 ProcessBuilder pb2 = new ProcessBuilder("fgrep", “duke")
 .redirectOutput(Redirect.INHERIT);
 List<Process> processes = ProcessBuilder.startPipe(pb1, pb2);

 processes.forEach(p -> {
 try {
 int status = p.waitFor();
 log.printf("status: %d%n", status);
 } catch (InterruptedException ie) {
 }
 });

Pipelining Processes

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Pipe Channels for Process Output

• Handling output of Processes via IO streams requires a thread per process

• NIO Channels for Pipes support bulk data transfers

• Pipes Are SelectableChannels

31

Candidate for JDK 9

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 32

 Process p = new ProcessBuilder("ls", "-ltGh")
 .redirectOutput(ProcessBuilder.Redirect.PIPE_CHANNEL)
 .start();

 // Copy from the channel to a file
 Path path = Paths.get("out.tmp");
 try (WritableByteChannel out = Files.newByteChannel(path, …);
 Pipe.SourceChannel chan = p.getInputChannel()) {

 ByteBuffer bb = ByteBuffer.allocate(4096);
 while (chan.read(bb) > 0) {
 bb.flip();
 out.write(bb);
 bb.clear();
 }
 }
 p.waitFor();

Copy Process Output via Pipe Channel to File

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

NIO Selector can handle many channels in a Single Thread

• Create a Selector

• Associate a Channel specific function to consume the data

• Register Channel with the Selector

• Run the Selector to dispatch ready channels

• Wait for it to complete

33

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 34

 Selector selector = Selector.open();

 ProcessBuilder pb = new ProcessBuilder("ls", "-ltGh");
 startTally(pb, selector);

 ProcessBuilder pb2 = new ProcessBuilder("ls", "-l", "/tmp")
 .redirectOutput(ProcessBuilder.Redirect.PIPE_CHANNEL);
 startTally(pb2, selector);

 ProcessBuilder pb3 = new ProcessBuilder("ls", "-l", "/xxx")
 .redirectOutput(ProcessBuilder.Redirect.PIPE_CHANNEL);
 startTally(pb3, selector);

 runSelector(selector);

Setup the Selector and Consumers of Process Output

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 35

 void startTally(ProcessBuilder pb, Selector selector) throws IOException {
 int[] tally = new int[1];

 pb.redirectOutput(ProcessBuilder.Redirect.PIPE_CHANNEL);

 Process p = pb.start();

 Consumer<SelectionKey> tallyFunc = (SelectionKey k) -> tallySize(k, p, tally);

 Pipe.SourceChannel chan = p.getInputChannel();
 chan.configureBlocking(false);
 chan.register(selector, SelectionKey.OP_READ, tallyFunc);
 }

Create the consumer and register the channel

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 36

 void runSelector(Selector selector) throws IOException {
 while (selector.selectNow() > 0 ||
 (selector.keys().size() > 0 && selector.select() > 0)) {

 Iterator<SelectionKey> it = selector.selectedKeys().iterator();
 while (it.hasNext()) {
 SelectionKey key = it.next();
 it.remove();

 ((Consumer<SelectionKey>) key.attachment())
 .accept(key); // Invoke the consumer
 }
 }
 }

Run the Selector to dispatch ready channels

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 37

 void tallySize(SelectionKey key, Process p, int[] tally) {
 ReadableByteChannel chan = (ReadableByteChannel) key.channel();
 ByteBuffer bb = ByteBuffer.allocate(4096);
 try {
 int len;
 while ((len = chan.read(bb)) > 0) {
 tally[0] += len;
 }
 if (len < 0) { // EOF
 log.printf("pid: %d, exit: %d, size: %d%n",
 p.getPid(), p.exitValue(), tally[0]);
 closeChannel(chan);
 }
 } catch (IOException ioe) {
 closeChannel(chan);
 }
 }

Channel Consumer to tally output size

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

NIO Pipe Channel Summary

• Create a Selector

• Register Channel and a Consumer with the Selector

• Run the Selector to dispatch ready channels

• Wait for everything to complete

38

Candidate for JDK 9

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Process and Process Handle Recap

• Information about native processes

– Process id, user, command, arguments, cpu time, start time

• Monitor and Control

– isAlive

– destroy, destroyForcibly

• Process hierarchy

– Streams of ProcessHandles

– For all Processes, children and descendents

39

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Process Enhancements Summary

• Monitoring process and task oriented results processing

– onExit – Link tasks using ComputableFuture and the J.U.C. common pool

• Process handling of output

– Pipeline output between processes *

– Selectable Pipe Channels – scalable processing of output from processes *

* Candidate for JDK 9

40

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Questions?

Comments!

41

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Session Surveys

Help us help you!!
• Oracle would like to invite you to take a moment to give us your session

feedback. Your feedback will help us to improve your conference.

• Please be sure to add your feedback for your attended sessions by using
the Mobile Survey or in Schedule Builder.

42

