ORACLE



]avaOne

ORACLE




AP| Design with Java 8

Lambda and Streams

Stuart Marks
Twitter: @stuartmarks

Brian Goetz
Twitter: @briangoetz

Oracle Java Platform Group

‘f.f) JavaOne

— ORACLE'

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.




#lavaAPI

Introduction

* Impact of new Java 8 language features on your APIs
— Lambda
— Streams
— Optional
— Default Methods

* When to use, when not to use, how to use effectively

* We're taking questions on Twitter — tweet with hashtag #JavaAPI

{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 4




Lambda

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

{.f) JavaOne

ORACLE"




#lavaAPI
Lambda

* Allows passing behavior through an API, not just values
— concise, efficient means of expressing “code as data”
— parameterizing with behavior (not just values and types)
— this is a big new tool in the API design toolbox

* APIs previously used anonymous inner classes to pass code as data
— create a new class, then a new instance
—overall a roundabout way to express a bit of behavior
—too clunky to use widely in APIs

{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 6




#lavaAPI

Example: ThreadLocal

* Instance of the Template Method pattern to do lazy initialization

* Before Java 8, to provide an initial value
— Subclass and override initialValue() method
—initialValue() called at first get() call
—value cached for subsequent get() calls
* Java 8: use lambda to “plug in” initialization function into the right place

—no need for subclassing

§) la\LEACOLDe Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 7




#JavaAPI
ThreadLocal

// OLD

static ThreadLocal<Integer> threadId =
new ThreadLocal<Integer>() {
protected Integer initialValue() {
return computeNextId();
}

}s
// NEW

static ThreadLocal<Integer> threadIld =
ThreadlLocal.withInitial(() -> computeNextId());

gg)]avaOnew

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 8




#JavaAPI
Example: Multi-Valued Map

* Task: maintain a map with multiple keys for each value
Map<Key, List<Value>>

* To add a (key, value) pair
— first check to see if the key is present in the map
—ifitisn’t
* create an empty list

* add the value to the list
* put the key and list into the map

—if the key is present
 get the list
* add the value to the list

gg)]avaOnew

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 9



Example: Multi-Valued Map

Map<Key, List<Value>> map = ... ;

// OLD
List<Value> list = map.get(key);
if (list == null) {
list = new ArrayList<>();
map.put(key, list);
list.add(newValue);
// NEW

map.computeIfAbsent(key, k -> new ArraylList<>())
.add(newValue);

€| -
é) ava 0 n e Copyright © 2015, Oracle and/or its affiliates. All rights rese

ORACLE

rved.

#lavaAPI

10



#lavaAPI

Conditional Execution in Java 8

* Map.computelfAbsent()
—if key is absent, computes a value, puts it into map, returns it
—if key is present, returns the value

* Advantages
— encapsulates highly stylized code into the library
— gives it a nice name
— can be made atomic for concurrent maps

{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 11



#lavaAPI

Example: Sorting Collections

* Existing sort methods
— Collections.sort(List)
— Collections.sort(List, Comparator)

* Common cases that should be supported by the library
—sort by a field or property (sort by name, sort by age) using “key extractor” function
—reversed-order sort
— special handling for null (nulls-first, nulls-last)
— multi-level sort (sort by last name, then by first name)

* Answer has historically been: “Provide your own Comparator”
— but writing your own comparator is tedious and error-prone

{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 12



#JavaAPI
How Many Sorting Methods to Provide?

sort() sortNullsFirst()

sortReversed() sortNullsLast()

sortBy(extractor) sortNested(extractorl, extractor2)
sortByReversed(extractor) sortNestedIntObj(intExt1, ext2)
sortByInt(intExtractor) sortNestedObjint(extl, intExt2)
sortByIntReversed(intExtractor) sortReversedNested(ext1, ext2)
sortByDouble(dblExtractor) sortNestedReversed(extl, ext2)

sortByDoubleReversed(dblExtractor)

ﬁ) JavaOne _ e
= ' omacie Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 13



Seems Like the Wrong Direction

* Adding sort method variations isn’t working
— combinatorial explosion of different methods
—can try to minimize, but if one is missing, client is out of luck
— “This is not the abstraction you are looking for”

* Time to step back and reconsider the problem

{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

#lavaAPI

14



#lavaAPI

Think about Comparators Instead of Sorting

* A Comparator is just a function:
_(T)T)=>{ <O) 0/ >0 }
* Most Comparators are highly stylized code

— complexity comes in when multiple cases are combined
— this suggests a way to break things down and simplify them

{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 15




#lavaAPI

Base Case: Comparator from Field Extractor

// some data class

class Student {
public String getLastName() { ... }
public String getFirstName() { ... }
public int getScore() { ... }

Comparator<Student> studentsBylLastName =
(s1, s2) -> sl.getlLastName().compareTo(s2.getLastName())

Comparator<Student> studentsByScore =
(s1, s2) -> Integer.compare(sl.getScore(), s2.getScore())

g)]avaOnew

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 16



#lavaAPI

Base Case: Comparator from Field Extractor

* Commonality
—the same function is run on two objects, resulting in two Comparable values
—these values are then compared
— extract this into a static utility method

// NEW
(s1, s2) -> sl.getlLastName().compareTo(s2.getLastName())
(s1, s2) -> Integer.compare(sl.getScore(), s2.getScore())

// NEW AND IMPROVED
Comparator.comparing(Student: :getLastName)
Comparator.comparingInt(Student: :getScore)

gi)lavaOnew

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 17




#lavaAPI

Creating Comparator Variants: Null Handling

Comparator<Student> studentsByFirstNameNullsFirst =
(s1, s2) -> {

String fnl = sl.getFirstName();

String fn2 = s2.getFirstName();

if (fnl == null)
return (fn2 == null) ? @ : -1;

else
return (fn2 == null) ? 1 : fnl.compareTo(fn2);

s

gi)lavaOnew

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 18



#lavaAPI

Creating Comparator Variants: Two-Level Sorting

Comparator<Student> studentsByLastNameThenFirstName =
(s1, s2) -> {
int r = sl.getLastName().compareTo(s2.getLastName());
if (r 1= 09)
return r;
else
return sl.getFirstName().compareTo(s2.getFirstName());

s

gi)lavaOnew

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 19



#JavaAPI
Two-Level Sorting and Null Handling

Comparator<Student> studentsByLastNameThenNullableFirstName =
(s1, s2) -> {
int r = sl.getLastName().compareTo(s2.getLastName());

if (r 1= 09) {
return r;
} else {

String fnl = sl.getFirstName();
String fn2 = s2.getFirstName();
if (fnl1 == null)
return (fn2 == null) ? @ : -1;
else
return (fn2 == null) ? 1 : fnl.compareTo(fn2);

s

g)]avaOnew

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 20



#lavaAPI

Creating a Null-Handling Comparator

// function that null-specializes a comparator and returns a new comparator

static <T> Comparator<T> nullsFirst(Comparator<T> original) {
return (t1, t2) -> {
if (t1l == null)
return (t2 == null) ? @ : -1;

else
return (t2 == null) ? 1 : original.compare(tl, t2);
¥
}
// example

Comparator<Student> studentsByFirstNameNullsFirst =
Comparator.comparing(Students::getFirstName, nullsFirst(naturalOrder()));

g)]avaOnew

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 21




#lavaAPI

Creating Comparator Variants: Two-Level Sorting

// default method in Comparator interface

default Comparator<T> thenComparing(Comparator<T> other) {
return (t1, t2) -> {
int res = this.compare(tl, t2);
return (res != @) ? res : other.compare(tl, t2);
}s
}

// example

Comparator<Student> studentsBylLastNameThenFirstName =
Comparator.comparing(Student: :getLastName)
.thenComparing(Student: :getFirstName);

S, JavaOne , -
= ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 22




#lavaAPI

Comparator Example

students.sort((s1, s2) -> { // OLD
int r = sl.getLastName().compareTo(s2.getLastName());
if (r 1= 09)
return r;

String f1 = sl.getFirstName();
String f2 = s2.getFirstName();
if (f1 == null) {
return f2 == null ? 0 : -1;
} else {
return f2 == null ? 1 : f1.compareTo(f2);
}
1)

// NEW
students.sort(comparing(Student::getLastName)

.thenComparing(Student: :getFirstName, nullsFirst(naturalOrder())));

g)]avaOnew

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 23




#lavaAPI

Lessons from Comparator API

* Some APIs have combinatorial explosion of complexity
—look for proliferation of method variations (e.g., sort methods)
— look for long parameter lists, with many optional parameters
— look for lots of overloads with different variations of parameters

* Large number of variations comes from combinations of smaller features

* Break down the problem into smaller features that can be composed
— write higher order functions to do the composition

— allow user to plug in logic using lambdas
— combination of static factories and default methods

ﬁ) JavaOne _ e
= ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 24




Streams

{.f) JavaOne

ORACLE"

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

25



#JavaAPI
Adding Streams to APIs

* Early Java 8 effort — “lambdafication”
— many objects are conceptually containers of other objects
— easy step: add forEach() method on them

* But also want to transform, filter, sort, etc.

forEach forEachSorted
forEachFiltered forEachFilteredSorted
forEachMapped forEachMappedSorted

forEachFilteredMapped forEachFilteredMappedSorted
* Sound familiar?

{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 26



#JavaAPI
Adding Streams to APIs

* “Lambdafication” quickly turned to “Streamification”
—adding a single stream() method opens up full range of stream functionality
— many conceptually aggregate objects can return collections
—should they return a stream or a collection or both?

* Mostly, doesn’t matter
— easy for caller to convert a stream into a collection and vice versa

{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 27




#lavaAPI

Stream vs. Collection

* Stream instead of Collection
— creating the collection is expensive
— cheaper to produce elements lazily on demand
— caller needs only a subset of the elements (filter, findFirst), can short-circuit
— avoids creating defensive copies
—returned stream can be infinite

e Collection instead of Stream
— snapshot semantics

— caller needs to traverse multiple times
— or in different directions

{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 28




#lavaAPI

How to Return a Stream

* |f you have zero elements
— Stream.empty()

* If you have a fixed number of elements
— Stream.of(el, e2, e3, ...)

* If you have a collection
— just call stream()

* |f you have an array
— call Arrays.stream(array)

{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 29



#lavaAPI

Create a Stream from an Iterator

// if size unknown

StreamSupport.stream(
Spliterators.spliteratorUnknownSize(iterator, 0), false)

// if size is known

StreamSupport.stream(
Spliterators.spliterator(iterator, size, @), false)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

g)]avaOnew .

ORACLE



#lavaAPI

Create a Spliterator, then a Stream

* Create subclass of Spliterators.AbstractSpliterator

—only one method required: tryAdvance()
boolean tryAdvance(Consumer<Object> consumer) {
Object obj = getTheNextObject();
if (obj == null)
return false;
consumer.accept(obj);
return true;

}

—for improved sequential performance, implement forEachRemaining()
— for better parallel scaling, implement trySplit()

g)]avaOnew

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 31




#lavaAPI

Create a Spliterator, then a Stream

* Once you have a spliterator, call
— StreamSupport.stream(spliterator, isParallel)

* Consider also primitive specializations for int, long, double

{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 32




#lavaAPI

Spectrum of Stream-Returning Techniques

* Create from Iterator
— Spliterators.spliteratorUnknownSize
— Spliterators.spliterator

* Create from Spliterator
— AbstractSpliterator.tryAdvance
— AbstractSpliterator.foreachRemaining
— AbstractSpliterator.trySplit

* Later ones are more effort, but offer improved performance

{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 33



#JavaAPI
Why Spliterator?

* |terator
—two method calls per element traversed: hasNext() and next()

— often interact in subtle ways
* hasNext() must cache value for next() to return

— need to guard against unusual call order
* e.g., next() called twice in succession
* Spliterator
—one method per element: tryAdvance()
— a better iterator than Iterator, even for sequential execution
— adds splitting abstraction for parallelism

{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 34




Optional

{.f) JavaOne

ORACLE"

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

35



#JavaAPI
The Primary Use of Optional

Optional is intended to provide a limited mechanism for library
method return types where there is a clear need to represent
“no result,” and where using null for that is overwhelmingly
likely to cause errors.

éﬁ; JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 36




#JavaAPI
When To Use Optional

* Use as method return value, when absence of a value is an expected result
— as opposed to an exceptional result
— example: findFirst() or similar method
— allows caller to deal with absence of value without checking for null
—allows convenient method chaining

* A method returning Optional should NEVER return null!

* Terminology note: prefer “empty Optional” over “Optional containing null”

{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 37



#lavaAPI

When To Use Optional

* Method chaining
—returning an Optional allows caller to chain methods safely

— orElse() — returns value if present, else substitutes a default value
* NOTE: avoid orElse(null) if possible

— orElseGet() — returns value if present, else calls a lambda to generate the value
— orElseThrow() — returns value if present, else throws the given exception

—get() — returns a value if present, otherwise throws NoSuchElementException
* WARNING: use get() only if you can prove the value is always present!

{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 38




#lavaAPI

Examples

Optional<String> match = words.stream()
.filter(word -> word.startsWith("A"))
.findFirst();
System.out.println(match.orElse("not found"));

System.out.println(match.orElseGet(() -> getNotFoundMessage()));

S, JavaOne , -
= ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 39




#JavaAPI
When Not To Use Optional

* |t’s very tempting to use Optional in other contexts
— method arguments
— object fields
—in a collection

* |t seems like these techniques ought to work
— end up cluttering and obscuring code unnecessarily

{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 40




#JavaAPI
When Not To Use Optional

* It is not a goal of Optional to get rid of nulls everywhere

* Yes! Sometimes it’s ok to use null
—a private field with null as a sentinel can easily be verified correct
—as a method argument — you check your arguments, right?

* Returning a collection, array, or stream

— don’t return Optional<Collection<T>> or Optional<Object[]> or Optional<Stream<T>>
—don’t return null

—instead, return an empty collection, array, or stream

{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 11



#JavaAPI
Method Chaining is Cool, But...

// BAD

String process(String s) {
return Optional.ofNullable(s).orElseGet(this::getDefault);
}

// GOOD

String process(String s) {
?'s

return (s != null) : getDefault();
}

g)]avaOnew

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 42



#lavaAPI

Summary of Optional

* Focus on using Optional as a return value
— where search or computation might not return a result
—and where returning null is likely to cause errors

* Resist temptation to apply Optional elsewhere
—it’s not necessarily wrong, but it’s unlikely to be useful
— misuse of Optional has led to the invention of several new code smells

» Optional works well for specific cases
—don’t overdo it!

{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 43




Default Methods

g) JavaOner

ORACLE"

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

a4



#lavaAPI

Primary Use Case: Evolving an Existing Interface

* Before Java 8, adding a method to an interface could result in
AbstractMethodError

—s0 basically it was never done
* Default methods are interface methods plus a fallback implementation

* Default methods are ordinary virtual methods and can be overridden

éﬁ JavaOne _ e
= = e Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 45




#lavaAPI

Example Default Method in Interface
* [terable.forEach

default void forEach(Consumer<? super T> action) {
Objects.requireNonNull(action);
for (T t : this) {
action.accept(t);

}

* Implemented only in terms of statics, this, and parameters

(_{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 6




#JavaAPI
Default Methods: Secondary Use Cases

* When the method is optional

— example: Iterator.remove()
default void remove() {
throw new UnsupportedOperationException("remove");

}
* Convenience method, not necessary to be overridden

— example: Comparator.reversed()

default Comparator<T> reversed() {
return (tl, t2) -> this.compare(t2, t1);

(_{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 47



#JavaAPI
Default Methods vs Abstract Classes

* Abstract classes are obsolete now that we have default methods, right?

* No! Classes still have the following that interfaces do not:
— state (fields)
— constructors (allowing control over instance creation)

— protected methods
* allow communication with subclasses as distinct from callers

» Before adding a default method, ask whether it’s useful to callers

—interface methods are all public
—don’t use default methods for sharing code among implementors
—if it’s only useful to subclassers, maybe you should use an abstract class instead

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 48

g) JavaOner

ORACLE"



#HJavaAPI
Default Method Tradeoffs

* Incompatibility risks
— possible name collisions, e.g., List.sort()
— fragile superclass problem
* same issue that has always existed for classes
* arguably riskier for interfaces, since they’re more widely subclassed
* Works well for intended use
—if applied judiciously
—if applied outside intended use, results are often unsatisfactory
— misuse of default methods is another generator of new code smells

{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 49



Summary
* Lambda

* Streams
* Optional

e Default methods

{.g JavaOner

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

#lavaAPI

50



Safe Harbor Statement

The preceding is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

‘gﬁ JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 51




]avaOne

ORACLE




ORACLE



