
ISOMORPHIC JAVASCRIPT
WITH NASHORN
Maxime Najim

Monday, October 26, 2015

 
var me = {
 name: “Maxime Najim”,
 title: “Software Architect”,
 work: “@WalmartLabs”,
 org: “@Platform”
 twitter: “@softwarecrafts”
}

About Me

Final Release Date: April 2016

Why am I talking  
about JavaScript  

at JavaOne?

"Java is to JavaScript
as ham is to hamster"

Jeremy Keith

http://javascriptisnotjava.io

Three reasons why
Java developers
should be talking  

about JavaScript…

Reason 1: 
 Developers from

different backgrounds
are converging on

JavaScript

RedMonK Programming  
Language Rankings

Top 20
1 JavaScript
2 Java
3 PHP
4 Python
5 C#
5 C++
5 Ruby
8 CSS
9 C
10 Objective-C
11 Perl
11 Shell
13 R
14 Scala
15 Go
15 Haskell
17 Matlab
18 Swift
…

source: modulecounts.com

JavaScript’s standard
package repository is
the fasting growing
and most active
package public
repository.  

* More people are
actively working on
JavaScript projects 

* More likely to find
open-source
solutions

Reason 2:  
JavaScript is the

platform for building
rich and highly

interactive web apps

In the past decade,
we’ve seen the  
Web evolve…

The Web is no longer
simply documents  

linked together

Web Evolution
1990’s - Initial Web Era

The world's first web page: http://info.cern.ch/hypertext/WWW/TheProject.html

Web Evolution
2000’s - AJAX Web Era

Gmail (2004)

Web Evolution
2010’s - Single Page App Web Era

JavaScript has  
enabled Web sites to
evolve to web apps

JavaScript in the
browser has become

our app runtime
environment

Reason 3:  
JavaScript isn’t only  

for the browser

When people think of
JavaScript they  
think of browser  
provided APIs  

(e.g. window, document, etc.)

Rendering
Engine  
 

(HTML, CSS)

Scripting Engine

(JavaScript)

Web Browser

Rendering
Engine  
 

(HTML, CSS)

Scripting Engine

(JavaScript)

Web Browser

Browser
APIs

(Document,
Window,

Navigator)

Gecko 
 

(HTML, CSS)

Spider
Monkey

(JavaScript)

Firefox

Trident  
 

(HTML, CSS)

Chakra

(JavaScript)

IE

Blink  
 

(HTML, CSS)

V8

(JavaScript)

Chrome

WebKit

(HTML, CSS)

Nitro

(JavaScript)

Safari

Spider
Monkey

(JavaScript)

Chakra

(JavaScript)

V8

(JavaScript)

Nitro

(JavaScript)

V8

(JavaScript)

libuv

(non-blocking
I/O)

Rendering
Engine

Scripting
Engine

Web Browser

V8

(JavaScript)

libuv

(non-blocking
I/O)

Rendering
Engine

Scripting
Engine

Web Browser

Isomorphic JavaScript
a.k.a Universal JavaScript, Portable JavaScript, Shared JavaScript

Isomorphic JavaScript

Web

Mobile

IoT

ClientServer

JavaScript code that runs both on the backend web application server and the client.

Isomorphic JavaScript
1. Staying DRY (Don’t-Repeat-Yourself) - using the same
code base improves code maintenance.

2.Server Side Rendering of Single Page Applications 
(very critical to the business)

1) Staying DRY with
Isomorphic JavaScript

Staying DRY
Client Server

Models Models

Views Views
Routing

Controllers
Routing

Controllers
Fetching Fetching

Views
Logic

Views
Logic

i18n/
l10n

i18n/
l10n

Staying DRY
Client Server

Models Models

Views

Routing
Controllers

Routing
Controllers

Fetching Fetching

Views
Logic

Views
Logic

i18n/
l10n

i18n/
l10n

Logic-less  
Templates

Staying DRY
Client Server

Models Models
Views

Routing
Controllers

Routing
Controllers

Fetching Fetching

Views
Logic

i18n/
l10n

i18n/
l10n

Staying DRY
Client Server

Models Models

Views
Routing

Controllers
Routing

Controllers

Fetching Fetching

Views
Logic

i18n/
l10n

Staying DRY
Client/Server

Models

Views Routing
Controllers

Fetching

Views
Logic

i18n/
l10n

2) Server Side
Rendering of Single
Page Applications

Web Evolution
1990’s - Initial Web Era

Client-Server Model

Web Evolution
2000’s - AJAX Era

Client-Server Model

Web Evolution
2010’s - Single Page App Era

Client-Server Model

 Single Page App
Initial Server Markup

1. Download
skeleton
HTML

2. Download the  
JavaScript

3. Evaluate 
JavaScript

4. Fetch Data  
from the API

 Single Page App
Rendering Flow

Timeline
 Single Page App

TCP Slow Start

“four roundtrips (…) and
hundreds of milliseconds of
latency, to reach 64 KB of
throughput between the

client and server”  
 

“High Performance Browser
Networking” by Ilya Grigorik A congestion control mechanism, “slow start”, is built

into the TCP protocol to send the data in a growing
number of segments to prevent sending more data than
the network is capable of transmitting

 Single Page App

Increasing User Demand

www.radware.com

 Single Page App

Time is money

•For every 1 second of
improvement, experienced up to
a 2% increase in conversions

•For every 100 ms of
improvement, grew incremental
revenue by up to 1%

 Single Page App

Source: http://www.globaldots.com/how-website-speed-affects-conversion-rates

Isomorphic Rendering
1. Render the HTML of a JavaScript app on the Server 

2. Return the full HTML on a new page request

3. JavaScript loads and bootstraps the application (without
destroying and rebuilding the initial HTML)

JavaScript rendered on the server and the client.

Isomorphic Rendering
1. Download

skeleton
HTML

2. Download the  
JavaScript

3. Evaluate  
JavaScript

Isomorphic JavaScript
• Important for initial page load performance  

• Important for Search Engine Indexing and Optimization
(SEO)  

• Important for mobile users with low bandwidth

• Important for code maintenance

Isomorphic JavaScript
sounds amazing but…

What if my 
front-end servers  

are running on Java
(and are battle tested in production)

Three possible  
solutions…

Option 1:  
Delegate execution of

JavaScript to an
external process
running Node.js

Delegate to Node.js
FE Server

render  
(comp)

HTML

Fetch Page

HTML

Downsides:
• more complicated deployments
• performance overhead of interacting with an external process

Option 2: 
Have Node run as a

smart-proxy in  
front of Java

Node as a smart-proxy
Fetch Page

HTML

REST

JSON

Downsides:
• more complicated deployments
• performance overhead of interacting with an external process

Option 3: 
Run JavaScript on the

JVM with Nashorn

V8

(JavaScript)

libuv

(non-blocking
I/O)

Rendering
Engine

Scripting
Engine

Web Browser

Nashorn

(JavaScript)

Java 8 Nashorn
•Java’s embedded JavaScript engine that comes part of Java 8

(replacing Rhino).

•Nashorn supports the full ECMAScript 5.1 specification plus
some extensions. (Future versions of Nashorn (Java 9) will
include support for ECMAScript 6). 

•It compiles JavaScript to Java bytecode providing
interoperability between Java and JavaScript code

Java 8 Nashorn
• Automatic memory management  

• State of the art JIT optimizations  

• Man decades of high tech and
tooling  

Code Base Comparison

Java 8 Nashorn
Javascript code can either be evaluated directly by passing javascript strings:

Or by passing a file reader pointing to a .js script file:

Java 8 Nashorn
Invoking JavaScript functions from Java:

Ja
va

 C
od

e
O

ut
pu

t
JS

 C
od

e

Java 8 Nashorn
Sharing i18n code:

Ja
va

 C
od

e

Java

JS
 C

od
e

JavaScript

Java 8 Nashorn
Sharing View Logic Code:

Ja
va

 C
od

e
JS

 C
od

e
Te

m
pl

at
e

O
ut

pu
t

Java 8 Nashorn
Sharing Validation Code:

JS
 C

od
e

Ja
va

 C
od

e

Client Validation Server Validation (if Client validation is bypassed)

Server-side React
• React.renderToString(..) - returns a string of the rendered component

Co
m

po
ne

nt
O

ut
pu

t data-react-checksum: checksum of
the DOM that is created. This allows
React to reuse the DOM from the
server when rendering the same
component on the client.

Java 8 Nashorn
Server-Side rendering of React.js components from Java:

Sc
rip

t E
ng

ine

HTML

context (similar to node’s vm module runInThisContext(..))

O
ut

pu
t

In
vo

ke

comp1.jsx

compN.jsx

Java 8 Nashorn
Client-Side transition from server-side rendered components

Cl
ien

t C
od

e
O

ut
pu

t
Bo

ot
st

ra
p

Nashorn Concurrency
• In web browsers, there is no concurrent execution of your code.

• Thread-safety depends on your Javascript code. Nashorn itself
will not make your code thread-safe.

• Use a ThreadLocal<ScriptEngine> when Javascript code is not
thread-safe (i.e. Handlebars and React).

Nashorn Performance
Ex

ec
ut

io
n

Ti
m

e
(m

s)

0

75

150

225

300

Number of Executions
1 10 100 1000

Nashorn NodeJS

https://github.com/maximenajim/java-vs-node-react-rendering-microbenchmark

ex
tr

a
w

ar
m

-u
p

tim
e

Nashorn Performance

https://www.youtube.com/watch?v=aROpSjXr4TU

JVMLS 2015 - Nashorn for Java 9 - Marcus Lagergren

Demo

• https://github.com/maximenajim/isomorphic-javascript-nashorn-example

• https://github.com/maximenajim/isomorphic-flux-javascript-nashorn-example

• https://github.com/maximenajim/isomorphic-validation-nashorn-example

Nashorn Adoption Spectrum
Java JavaScript

Duplicated  
Logic

Shared  
Logic

Multi-Page
App

Single-Page
App

Server-Side
Only App

Isomorphic
JavaScript App

More Info

Free Download: http://www.oreilly.com/web-platform/free/

The Golden Age of JavaScript began when web
developers traded in their fat-server, thin-client
approach for desktop-like web apps running in the
browser. Unfortunately, that approach led to a
succession of problems, so now the pendulum is
swinging back in the other direction. Companies such
as Walmart, Airbnb, Facebook, and Netflix have
already adopted a new solution using JavaScript
code on both the client and server.

Authors Jason Strimpel and Maxime Najim from
WalmartLabs explain that isomorphic JavaScript is
the latest in a series of engineering fixes that brings a
harmonious equilibrium between the fat-server, fat-
client pendulum, which emerged from the Ajax and
Single Page Application eras.

Thank You

@softwarecrafts www.oreilly.com/pub/au/6521https://github.com/maximenajim

Nashorn vs. NodeJs
• Nashorn is only an implementation of ECMAScript and does not

implement things like HTML5 Timers, nor the XMLHttpRequest
specification, etc. 

• Node.js adopted the browsers’ concepts of event loops and task
queues to reduce the conceptual gap between server- and client-
side JavaScript. 

• Luckily, the Nashorn environment is very extensible. Scripts
running in the Nashorn engine can manipulate the global scope
and access standard Java APIs to extend the environment.

Nashorn vs. NodeJs
• Nodyn project provides the Node.js API on the JVM.

• Avatar.js project brings the Node.js programming model, APIs and
libraries to the Java platform. (For now, the development of
Avatar is on hold)

• Interesting: SpringOne2GX 2014 Replay: Server-side JavaScript
with Nashorn and Spring

