
Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz

Effective  
Java 

 Streams
Paul Sandoz 

Oracle

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz2

list.stream().

map(λ).  
filter(λ).  
reduce(λ)

brian(λ).  
john(λ).  
mark(λ)

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz

Agenda

• Patterns/Idioms

• Effective parallel execution

• Enhancements in Java 9

• Beyond Java 9

3

Tips and tricks with interesting stuff

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz

Tips and tricks

• Counting

• Concatenating, flatMap and combining

• Operating over indices

• Composing

4

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz

Effective parallel execution

• Need approximately 100 microseconds of
sequential work across most platforms to break
even

• http://gee.cs.oswego.edu/dl/html/
StreamParallelGuidance.html 
By Doug Lea

5

http://gee.cs.oswego.edu/dl/html/StreamParallelGuidance.html

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz6

If it takes 1 nano second to add two
integers, then how many integers

are approximately needed to break
even on parallel summation?

10-9 * N ~= 10-4

N ~= 105

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz

Effective parallel execution

• Choose good splitting sources with sufficient
elements, and good intermediate and terminal
operations

• Shooting the Rapids: Maximizing the Performance
of Java 8 Streams [CON5931]
Wednesday, Oct 28, 3:00 p.m. | Hilton—Continental Ballroom 4  
Maurice Naftalin & Kirk Pepperdine

7

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz

Flat mapping  
enhancements in Java 9

• Optional.stream and Stream.ofNullable for
better integration with flatMap

• Collectors.flatMapping for collecting zero or
more items from a Stream

8

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz

Stream returning  
enhancements in Java 9

• java.net.NetworkInterface
Enumeration<InetAddress> getInetAddresses() 
Enumeration<NetworkInterface> getSubInterfaces() 
static Enumeration<NetworkInterface> getNetworkInterfaces() 
->  
Stream<InetAddress> inetAddresses()  
Stream<NetworkInterface> subInterfaces() 
static Stream<NetworkInterface> networkInterfaces()

• java.security.PermissionCollection
Enumeration<Permission> elements()  
->  
Stream<Permission> elementsAsStream()

9

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz

Larger 
enhancements in Java 9

• New operations {Int, Long, Double}
Stream.takeWhile/dropWhile

• Parallel performance improvement of
Files.lines

• Stream over results from
java.util.regex.Matcher/Scanner

10

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz

Stream.take/
dropWhile

• Does the “obvious” thing for ordered streams

• Non-deterministic for unordered streams

• Can take or drop any matching subset

• Parallel implementations are stateful and may
perform as poorly as, or worse than, limit/skip

11

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz

Parallel performance of
Files.lines

• Memory maps the file for UTF-8, ISO 8859-1 and
US ASCII

• Character sets where line feeds are easily
identifiable via random access of file contents

• Efficient splitting of the mapped memory region

• Divides ~ in half to the closest line feed from the
mid-point

12

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz

Performance

13

Processing a file of 100,000 lines  
each of 80 characters

m
ic

ro
se

co
nd

s

0

4000

8000

12000

16000

BufferedReader.lines Files.lines

Sequential
Parallel

Results produced using jmh on a MacBook Pro (2012 model)

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz

Beyond Java 9
• Improve parallel production of lists and maps

• s.collect(toList())

• Leverage value types and generics over values

• Simpler more powerful API and implementation

• Easier to introduce extensions such as map-
based streams or an SPI for pluggable
operations

14

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz

Expression with
performance

• Want to express IntStream <: Stream<int>

• Without explicit specialisation of the implementation
(as is the case today)

• With stream sources that pack and align in memory
for better cache coherency

• With stream pipelines that inline the main
processing loop (“loop specialization")

15

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz

Latency numbers 
https://gist.github.com/jboner/2841832

L1 cache reference 0.5 ns 
Branch mispredict 5 ns 
L2 cache reference 7 ns  
Mutex lock/unlock 25 ns 
Main memory reference 100 ns  
Compress 1K bytes with Zippy 3,000 ns 
Send 1K bytes over 1 Gbps network 10,000 ns 0.01 ms 
Read 4K randomly from SSD* 150,000 ns 0.15 ms 
Read 1 MB sequentially from memory 250,000 ns 0.25 ms 
Round trip within same datacenter 500,000 ns 0.5 ms 
Read 1 MB sequentially from SSD* 1,000,000 ns 1 ms 
Disk seek 10,000,000 ns 10 ms 
Read 1 MB sequentially from disk 20,000,000 ns 20 ms 
Send packet CA->Netherlands->CA 150,000,000 ns 150 ms

16

https://gist.github.com/jboner/2841832

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz

Boxes, alignment and GC

 ADDRESS SIZE TYPE PATH VALUE 
740012698 16 java.lang.Integer <r4> 3 
7400126a8 424 (something else) (somewhere else) (something else) 
740012850 16 java.lang.Integer <r6> 5 
740012860 16 java.lang.Integer <r8> 7 
740012870 48 (something else) (somewhere else) (something else) 
7400128a0 16 java.lang.Integer <r10> 9 
7400128b0 382920 (something else) (somewhere else) (something else) 
740070078 16 java.lang.Integer <r2> 1 
740070088 16 java.lang.Integer <r3> 2 
740070098 16456 (something else) (somewhere else) (something else) 
7400740e0 16 java.lang.Integer <r9> 8 
7400740f0 16 java.lang.Integer <r7> 6 
740074100 16 java.lang.Integer <r5> 4 
740074110 169808 (something else) (somewhere else) (something else) 
74009d860 16 java.lang.Integer <r1> 0

17

// Create an array of Boxed integer 
Integer[] arr = new Integer[10];  
for (int i = 0; i < 10; i++) { 
 arr[i] = new Integer(i); 
}

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz

Stream<any T>

• Prototype in valhall repo  
http://openjdk.java.net/projects/valhalla/  
http://hg.openjdk.java.net/valhalla

• Temporary home in package
java.anyutil.stream

• Code significantly reduced

18

http://openjdk.java.net/projects/valhalla/
http://hg.openjdk.java.net/valhalla

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz19

Why “don’t you just”  
add a method  

to zip two streams  
in Java 8 or 9?

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz20

<A, B, C> Stream<C> zip(Stream<A> a, 
 Stream b, 
 BiFunction<A, B, C> zipper)

<A, C> Stream<C> zip(Stream<A> a, 
 IntStream b, 
 BiFunction<A, Integer, C> zipper)

<A, C> Stream<C> zip(Stream<A> a, 
 LongStream b, 
 BiFunction<A, Long, C> zipper)

<A, C> Stream<C> zip(Stream<A> a, 
 DoubleStream b, 
 BiFunction<A, Double, C> zipper)

IntStream zip(IntStream a, 
 IntStream b, 
 BiFunction<Integer, Integer, Integer> zipper)

IntStream zip(IntStream a, 
 LongStream b, 
 BiFunction<Integer, Long, Integer> zipper)

IntStream zip(IntStream a, 
 DoubleStream b, 
 BiFunction<Integer, Double, Integer> zipper)

IntStream zip(LongStream a, 
 LongStream b, 
 BiFunction<Long, Long, Integer> zipper)

IntStream zip(LongStream a, 
 DoubleStream b, 
 BiFunction<Long, Double, Integer> zipper)

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz21

Grosset Zip Code Directory: U.S. Postal Zip Code
Directory by Grosset Dunlap, Ottenheimer
Publishers, Filmways Company. Paperback 1977
Printing by Grosset Dunlap. 490 Pages. ASIN
B000J0GSK2. MPN GD14732. In English. Special
Limited Edition.

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz

Zipping streams
• {Int,Long,Double}Stream.zip was not

added in Java 8/9

• Method and functional interface explosion

• Easy to support in Valhalla with fewer methods and
functional interfaces

• Support for tuples would be nice too but…

22

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz23

In legal safety

The previous is intended to outline our general product direction. It is
intended for information purposes only, and may not be incorporated
into any contract. It is not a commitment to deliver any material, code,
or functionality, and should not be relied upon in making purchasing
decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole
discretion of Oracle.

Copyright 2015, © Oracle and/or affiliates. All rights reserved. @PaulSandoz24

?
Hackergarten, Java Hub  

Track #2 
10am-12pm Wed

