

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 3

Classroom Training

Learning Subscription

Live Virtual Class

Training On Demand

Keep Learning with Oracle University

education.oracle.com

Cloud

Technology

Applications

Industries

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Session Surveys

Help us help you!!
• Oracle would like to invite you to take a moment to give us your session

feedback. Your feedback will help us to improve your conference.

• Please be sure to add your feedback for your attended sessions by using
the Mobile Survey or in Schedule Builder.

4

Invokedynamic
for Mere Mortals

David Buck
Principal Member of Technical Staff
Java SE
October 26, 2015

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

6

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

Introduction

java.lang.invoke

invokedynamic instruction

Other stuff

1

2

3

4

7

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Introduction

8

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Target Audience

• Not compiler writers

• Curious

9

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Motivation

• Understand javap output better

• Understand the value JVM has as a multi-language JVM

10

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Da Vinci Machine Project

• The JVM is a great platform for running all sorts of languages

– Great performance

– Portability

– Security (sandbox)

– Pre-existing libraries and frameworks

11

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

• JVM-specific

– Scala

– Clojure

– Groovy

– Ceylon

– Fortress

– Gosu

– Kotlin

• Ported to JVM

– JRuby

– Jython

– Smalltalk

– Ada

– Scheme

– REXX

– Prolog

– Pascal

– Common LISP

(a small subset of) JVM languages

12

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Java Code

Language Runtime

13

JVM

OS

Java
Class Library

JRuby Runtime

JVM

OS

Java
Class Library

Ruby Code

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

non-Java language wish list

• Continuations

• Dynamic invocation

• Tail recursion

• Interface injection

• Other stuff

14

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

non-Java language wish list

• Continuations

• Dynamic invocation

• Tail recursion

• Interface injection

• Other stuff

15

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

What is dynamic typing?

16

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

What is dynamic typing?

 def addtwo(a, b)

 a + b;

 end

17

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

What is dynamic typing?

We do not know what the types are until runtime

18

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

statically-typed vs. dynamically-typed

When do we type check / link?

– Compilation time (javac)

– Runtime

19

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Compile-time checking / linking

• Catch errors early

• Limits the type of code we can write (false positives)

20

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Run time checking / linking

• Allow more freedom of programming (less false positives)

• Less guarantees about runtime behavior

21

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

dynamic typing != type inference

object InferenceTest1 extends App {

 val x = 1 + 2 * 3 // the type of x is Int

 val y = x.toString() // the type of y is String

 def succ(x: Int) = x + 1 // succ returns Int values

}

(Shamelessly copied from http://docs.scala-lang.org/tutorials/tour/local-
type-inference.html)

22

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

dynamic typing != week typing

 a = "40"

 b = a + 2

23

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Dynamically-typed languages

• Allow more programs, but have to do more runtime checking.

• No perfect type information at compile time

24

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Polymorphism != Dynamic typing (?!)

 public String bar(Object o) {

 return "You passed me " + o.toString();

 }

25

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

The original invocation lineup

• invokestatic

– Class method

• invokevirtual

– Instance method

• invokeinterface
– Interface method

• Invokespecial

• Everything else (private, super class, constructors)

26

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

The original invocation lineup

• invokestatic

– Class method

• invokevirtual

– Instance method

• invokeinterface
– Interface method

• Invokespecial

• Everything else (private, super class, constructors)

27

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

invokestatic

public class InvokeStaticExample {

 public static void main(String[] args) {

 InvokeStaticExample.foo();

 }

 public static void foo() {

 System.out.println("I am foo!");

 }

}

28

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

The original invocation lineup

• invokestatic

– Class method

• invokevirtual

– Instance method

• invokeinterface
– Interface method

• Invokespecial

• Everything else (private, super class, constructors)

29

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

invokevirtual
public class InvokeVirtualExample {

 public static void main(String[] args) {

 InvokeVirtualExample ive = new InvokeVirtualExample();

 ive.foo();

 }

 public void foo() {

 System.out.println("I am foo!");

 }

}

30

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

The original invocation lineup

• invokestatic

– Class method

• invokevirtual

– Instance method

• invokeinterface
– Interface method

• Invokespecial

• Everything else (private, super class, constructors)

31

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

public class InvokeInterfaceExample
implements MyInterface {

 public static void main(String[] args)
{

 MyInterface iie = new
InvokeInterfaceExample();

 iie.foo();

 }

 public void foo() {

 System.out.println("I am foo!");

 }

}

interface MyInterface {

 public void foo();

}

32

invokeinterface

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

The original invocation lineup

• invokestatic

– Class method

• invokevirtual

– Instance method

• invokeinterface
– Interface method

• Invokespecial

• Everything else (private, super class, constructors)

33

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

invokespecial
public class InvokeSpecialExample {

 public static void main(String[] args) {

 InvokeSpecialExample ise = new InvokeSpecialExample();

 ise.foo();

 }

 private void foo() {

 System.out.println("I am foo!");

 }

}

34

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Poor dynamic languages on JVM?

• invocation logic is not baked into the JVM like it is for Java

• we need to fall back on reflection

35

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Reflection is slow

• security check on each invocation

• all arguments are Objects (boxing)

36

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

What the JVM doesn’t know can hurt it

37

Caller Reflection Magic! Callee

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Reflection prevents inlining!

38

Caller Reflection Magic! Callee

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

No one writes code like this

 if (false) {

 // do some important stuff...

 System.out.println("I'm important!");

 }

39

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Or this…

 boolean cond = true;

 if (cond) {

 // do some important stuff...

 System.out.println("I'm important!");

 }

40

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

public void methodB() {

 // ...

 methodA(false);

 // ...

}

 public void methodA(boolean
optionalStuff) {

 // ...

 if (optionalStuff) {

 // do some optional, but
important stuff...

 System.out.println("I'm important
sometimes!");

 }

 // ...

}

41

But we do write stuff like

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

JSR-292

• java.lang.invoke API

A “better reflection”

• invokedynamic bytecode

Allows us to dispatch to linkage logic defined by invoke API

42

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

invokedynamic

• We call it “indy”

• No clear way to express in Java language

• Important milestone for JVM

– First new instruction in decades

– First new JVM feature to only (mainly) target non-java languages

43

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

java.lang.invoke API

• MethodHandle

• CallSite

• Bootstrap Method (BSM)

44

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

MethodHandle

45

int foo() Method Handle

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

MethodHandle

• Points to a method

• Is a “function pointer” (am I allowed to say this?)

• Polymorphic signature

46

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

MethodHandle Performance

47

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

MethodHandle Performance

• Early performance was not ideal

48

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

MethodHandle Performance

• Early performance was not ideal

• Performance improved tremendously with lambda forms

49

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

MethodHandle Performance

• Early performance was not ideal

• Performance improved tremendously with lambda forms

• Is now often significantly faster than reflection

50

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

MethodHandle Performance

• Early performance was not ideal

• Performance improved tremendously with lambda forms

• Is now often significantly faster than reflection

• Can be used independently of invokedynamic

51

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

CallSite

52

 private void doStuff();
 descriptor: ()V
 flags: ACC_PRIVATE
 Code:
 stack=2, locals=2, args_size=1
 0: new #7
 3: dup
 4: invokespecial #8
 7: astore_1
 8: aload_1
 9: aload_0

 10: invokedynamic #9, 0

 15: invokevirtual #10
 18: return

CS Method Handle int foo()

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

CallSite

53

 private void doStuff();
 descriptor: ()V
 flags: ACC_PRIVATE
 Code:
 stack=2, locals=2, args_size=1
 0: new #7
 3: dup
 4: invokespecial #8
 7: astore_1
 8: aload_1
 9: aload_0

 10: invokedynamic #9, 0

 15: invokevirtual #10
 18: return

CS

int bar()

int foo()

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

CallSite

• Reifies Indy invocation side

• Has a MethodHandle

54

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Bootstrapping Step 1

55

 private void doStuff();
 descriptor: ()V
 flags: ACC_PRIVATE
 Code:
 stack=2, locals=2, args_size=1
 0: new #7
 3: dup
 4: invokespecial #8
 7: astore_1
 8: aload_1
 9: aload_0

 10: invokedynamic #9, 0

 15: invokevirtual #10
 18: return

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Bootstrapping Step 2

56

 private void doStuff();
 descriptor: ()V
 flags: ACC_PRIVATE
 Code:
 stack=2, locals=2, args_size=1
 0: new #7
 3: dup
 4: invokespecial #8
 7: astore_1
 8: aload_1
 9: aload_0

 10: invokedynamic #9, 0

 15: invokevirtual #10
 18: return BootStrap Method

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Bootstrapping Step 3

57

 private void doStuff();
 descriptor: ()V
 flags: ACC_PRIVATE
 Code:
 stack=2, locals=2, args_size=1
 0: new #7
 3: dup
 4: invokespecial #8
 7: astore_1
 8: aload_1
 9: aload_0

 10: invokedynamic #9, 0

 15: invokevirtual #10
 18: return BootStrap Method

int foo()

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Bootstrapping Step 4

58

 private void doStuff();
 descriptor: ()V
 flags: ACC_PRIVATE
 Code:
 stack=2, locals=2, args_size=1
 0: new #7
 3: dup
 4: invokespecial #8
 7: astore_1
 8: aload_1
 9: aload_0

 10: invokedynamic #9, 0

 15: invokevirtual #10
 18: return BootStrap Method

int foo()

CS

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Bootstrapping Step 5

59

 private void doStuff();
 descriptor: ()V
 flags: ACC_PRIVATE
 Code:
 stack=2, locals=2, args_size=1
 0: new #7
 3: dup
 4: invokespecial #8
 7: astore_1
 8: aload_1
 9: aload_0

 10: invokedynamic #9, 0

 15: invokevirtual #10
 18: return

int foo()

CS

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Bootstrap Method

• Only called on the first invocation of each indy bytecode

• Returns a CallSite

60

"Dr Martens, black, old" by Tarquin
 is licensed under CC BY-SA 3.0

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Indy lifecycle

Initial Invocation

1. A specific indy invocation is executed for the first time

2. Bootstrap method is called and if finds (generates?!) a method to run

3. Botstrap method returns a permanent CallSite object for this indy
invocation

4. We jump to the method pointed to by the CallSite

61

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Indy Lifecycle

All subsequent calls

We jump to the method pointed to by the CallSite

62

Picture from
National Archives and Records Administration

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

This performance tragedy becomes

63

Caller Reflection Magic! Callee

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | 64

Caller Callee
MethodHandle

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Linkage != Invocation

65

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Linkage != Invocation

• Linkage (i.e. bootstrap)

– Usually only needs to be done once

– Is expensive

66

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Linkage != Invocation

• Linkage (i.e. bootstrap)

– Usually only needs to be done once

– Is expensive

• Invocation
– Done a lot

– Only needs a jmp/call (and possibly a guard)

67

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Linkage != Dispatch

• Avoid the cost of linkage on almost every call

68

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Takeaways

69

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Takeaways

• Invokedynamic lets us programmatically alter linkage

70

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Takeaways

• Invokedynamic lets us programmatically alter linkage

• Then it gets out of the way! (linkage != invocation)

71

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Takeaways

• Invokedynamic lets us programmatically alter linkage

• Then it gets out of the way! (linkage != invocation)

• The Invoke API can often be used without indy

72

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Takeaways

• Invokedynamic lets us programmatically alter linkage

• Then it gets out of the way! (linkage != invocation)

• The Invoke API can often be used without indy

• JVM is a great platform for just about any language!

73

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Resources

• JVM Language Summit

 http://openjdk.java.net/projects/mlvm/jvmlangsummit/

• Linkers & Loaders book

 http://linker.iecc.com/

• John Rose’s Blog

 https://blogs.oracle.com/jrose/

74

http://openjdk.java.net/projects/mlvm/jvmlangsummit/
http://linker.iecc.com/

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Thank You!

75

