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Session Surveys 

 

Help us help you!! 
• Oracle would like to invite you to take a moment to give us your session 

feedback. Your feedback will help us to improve your conference.  

• Please be sure to add your feedback for your attended sessions by using 
the Mobile Survey or in Schedule Builder. 
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Safe Harbor Statement 

The following is intended to outline our general product direction. It is intended for 
information purposes only, and may not be incorporated into any contract. It is not a 
commitment to deliver any material, code, or functionality, and should not be relied upon 
in making purchasing decisions. The development, release, and timing of any features or 
functionality described for Oracle’s products remains at the sole discretion of Oracle. 
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Program Agenda 

Introduction 

java.lang.invoke 

invokedynamic instruction 

Other stuff  
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Introduction 

8 



Copyright © 2015, Oracle and/or its affiliates. All rights reserved.  | 

Target Audience 

• Not compiler writers 

• Curious 
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Motivation 

• Understand javap output better 

• Understand the value JVM has as a multi-language JVM 
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Da Vinci Machine Project 

• The JVM is a great platform for running all sorts of languages 

 

– Great performance 

– Portability 

– Security (sandbox) 

– Pre-existing libraries and frameworks 
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• JVM-specific 

– Scala 

– Clojure 

– Groovy 

– Ceylon 

– Fortress 

– Gosu 

– Kotlin 

 

• Ported to JVM 

– JRuby 

– Jython 

– Smalltalk 

– Ada 

– Scheme 

– REXX 

– Prolog 

– Pascal 

– Common LISP 

 

(a small subset of) JVM languages  
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Java Code 
 
 
 

Language Runtime 
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non-Java language wish list 

 

• Continuations 

• Dynamic invocation 

• Tail recursion 

• Interface injection 

• Other stuff 
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What is dynamic typing? 
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What is dynamic typing? 

 

    def addtwo(a, b) 

           a + b; 

    end 
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What is dynamic typing? 

 

 

 

We do not know what the types are until runtime 
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statically-typed vs. dynamically-typed 

When do we type check / link? 

– Compilation time (javac) 

– Runtime 
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Compile-time checking / linking 

• Catch errors early 

• Limits the type of code we can write (false positives) 
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Run time checking / linking 

• Allow more freedom of programming (less false positives) 

• Less guarantees about runtime behavior 
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dynamic typing != type inference 

object InferenceTest1 extends App { 

  val x = 1 + 2 * 3         // the type of x is Int 

  val y = x.toString()      // the type of y is String 

  def succ(x: Int) = x + 1  // succ returns Int values 

} 

 

(Shamelessly copied from http://docs.scala-lang.org/tutorials/tour/local-
type-inference.html) 
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dynamic typing != week typing 

 

      a = "40" 

      b = a + 2 
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Dynamically-typed languages 

• Allow more programs, but have to do more runtime checking. 

• No perfect type information at compile time 
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Polymorphism != Dynamic typing (?!) 

  

    public String bar(Object o) { 

            return "You passed me " + o.toString(); 

     } 
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The original invocation lineup 

• invokestatic 

– Class method 

• invokevirtual 

– Instance method 

• invokeinterface 
– Interface method 

• Invokespecial 

• Everything else (private, super class, constructors) 

26 
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invokestatic 

public class InvokeStaticExample { 

    public static void main(String[] args) { 

        InvokeStaticExample.foo(); 

    } 

 

    public static void foo() { 

        System.out.println("I am foo!"); 

    } 

} 

28 
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The original invocation lineup 
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invokevirtual 
public class InvokeVirtualExample { 

    public static void main(String[] args) { 

        InvokeVirtualExample ive = new InvokeVirtualExample(); 

        ive.foo(); 

    } 

 

    public void foo() { 

        System.out.println("I am foo!"); 

    } 

} 
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The original invocation lineup 

• invokestatic 
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public class InvokeInterfaceExample 
implements MyInterface { 

    public static void main(String[] args) 
{ 

        MyInterface iie = new 
InvokeInterfaceExample(); 

        iie.foo(); 

    } 

 

    public void foo() { 

        System.out.println("I am foo!"); 

    } 

} 

 

interface MyInterface { 

    public void foo(); 

} 
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The original invocation lineup 

• invokestatic 

– Class method 

• invokevirtual 

– Instance method 

• invokeinterface 
– Interface method 

• Invokespecial 
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invokespecial 
public class InvokeSpecialExample { 

    public static void main(String[] args) { 

        InvokeSpecialExample ise = new InvokeSpecialExample(); 

        ise.foo(); 

    } 

 

    private void foo() { 

        System.out.println("I am foo!"); 

    } 

} 
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Poor dynamic languages on JVM? 

• invocation logic is not baked into the JVM like it is for Java 

• we need to fall back on reflection 
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Reflection is slow 

• security check on each invocation 

• all arguments are Objects (boxing) 

36 



Copyright © 2015, Oracle and/or its affiliates. All rights reserved.  | 

What the JVM doesn’t know can hurt it 

37 

Caller Reflection Magic! Callee 
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Reflection prevents inlining! 
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Caller Reflection Magic! Callee 
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No one writes code like this 

  

  if (false) { 

          // do some important stuff... 

          System.out.println("I'm important!"); 

     } 
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Or this… 

 

    boolean cond = true; 

    if (cond) { 

        // do some important stuff... 

        System.out.println("I'm important!"); 

      } 

40 
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public void methodB() { 

        // ... 

        methodA(false); 

        // ... 

} 

 public void methodA(boolean 
optionalStuff) { 

        // ... 

        if (optionalStuff) { 

            // do some optional, but 
important stuff... 

              
 System.out.println("I'm important 
sometimes!"); 

        } 

        // ... 

} 

41 

But we do write stuff like 
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JSR-292 

 

• java.lang.invoke API 

A “better reflection” 

 

• invokedynamic bytecode 

Allows us to dispatch to linkage logic defined by invoke API 
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invokedynamic 

 

• We call it “indy” 

• No clear way to express in Java language 

• Important milestone for JVM 

– First new instruction in decades 

– First new JVM feature to only (mainly) target non-java languages 
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java.lang.invoke API 

• MethodHandle 

• CallSite 

• Bootstrap Method (BSM) 
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MethodHandle 

45 

int foo() Method Handle 
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MethodHandle 

• Points to a method 

• Is a “function pointer” (am I allowed to say this?) 

• Polymorphic signature 
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MethodHandle Performance 
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MethodHandle Performance 

• Early performance was not ideal 
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MethodHandle Performance 

• Early performance was not ideal 

• Performance improved tremendously with lambda forms 
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MethodHandle Performance 

• Early performance was not ideal 

• Performance improved tremendously with lambda forms 

• Is now often significantly faster than reflection 
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MethodHandle Performance 

• Early performance was not ideal 

• Performance improved tremendously with lambda forms 

• Is now often significantly faster than reflection 

• Can be used independently of invokedynamic 

51 
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CallSite 
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 private void doStuff(); 
    descriptor: ()V 
    flags: ACC_PRIVATE 
    Code: 
      stack=2, locals=2, args_size=1 
         0: new           #7 
         3: dup 
         4: invokespecial #8  
         7: astore_1 
         8: aload_1 
         9: aload_0 
 
        10: invokedynamic #9,  0 
 
        15: invokevirtual #10   
        18: return 

CS Method Handle int foo() 
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CallSite 
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 private void doStuff(); 
    descriptor: ()V 
    flags: ACC_PRIVATE 
    Code: 
      stack=2, locals=2, args_size=1 
         0: new           #7 
         3: dup 
         4: invokespecial #8  
         7: astore_1 
         8: aload_1 
         9: aload_0 
 
        10: invokedynamic #9,  0 
 
        15: invokevirtual #10   
        18: return 

CS 

int bar() 

int foo() 
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CallSite 

• Reifies Indy invocation side 

• Has a MethodHandle 
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Bootstrapping Step 1 
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Bootstrapping Step 2 

56 

 private void doStuff(); 
    descriptor: ()V 
    flags: ACC_PRIVATE 
    Code: 
      stack=2, locals=2, args_size=1 
         0: new           #7 
         3: dup 
         4: invokespecial #8  
         7: astore_1 
         8: aload_1 
         9: aload_0 
 
        10: invokedynamic #9,  0 
 
        15: invokevirtual #10   
        18: return BootStrap Method 
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Bootstrapping Step 3 
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 private void doStuff(); 
    descriptor: ()V 
    flags: ACC_PRIVATE 
    Code: 
      stack=2, locals=2, args_size=1 
         0: new           #7 
         3: dup 
         4: invokespecial #8  
         7: astore_1 
         8: aload_1 
         9: aload_0 
 
        10: invokedynamic #9,  0 
 
        15: invokevirtual #10   
        18: return BootStrap Method 

int foo() 
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Bootstrapping Step 4 
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 private void doStuff(); 
    descriptor: ()V 
    flags: ACC_PRIVATE 
    Code: 
      stack=2, locals=2, args_size=1 
         0: new           #7 
         3: dup 
         4: invokespecial #8  
         7: astore_1 
         8: aload_1 
         9: aload_0 
 
        10: invokedynamic #9,  0 
 
        15: invokevirtual #10   
        18: return BootStrap Method 

int foo() 

CS 
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Bootstrapping Step 5 
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 private void doStuff(); 
    descriptor: ()V 
    flags: ACC_PRIVATE 
    Code: 
      stack=2, locals=2, args_size=1 
         0: new           #7 
         3: dup 
         4: invokespecial #8  
         7: astore_1 
         8: aload_1 
         9: aload_0 
 
        10: invokedynamic #9,  0 
 
        15: invokevirtual #10   
        18: return 

int foo() 

CS 
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Bootstrap Method 

• Only called on the first invocation of each indy bytecode 

• Returns a CallSite 

60 
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Indy lifecycle 

Initial Invocation 

1. A specific indy invocation is executed for the first time 

2. Bootstrap method is called and if finds (generates?!) a method to run 

3. Botstrap method returns a permanent CallSite object for this indy 
invocation 

4. We jump to the method pointed to by the CallSite 
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Indy Lifecycle 

All subsequent calls 

 

We jump to the method pointed to by the CallSite 

62 

Picture from 
National Archives and Records Administration 



Copyright © 2015, Oracle and/or its affiliates. All rights reserved.  | 

This performance tragedy becomes 
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Caller Reflection Magic! Callee 
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Caller Callee 
MethodHandle 
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Linkage != Invocation 
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Linkage != Invocation 

• Linkage (i.e. bootstrap) 

– Usually only needs to be done once 

– Is expensive 
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Linkage != Invocation 

• Linkage (i.e. bootstrap) 

– Usually only needs to be done once 

– Is expensive 

• Invocation 
– Done a lot 

– Only needs a jmp/call (and possibly a guard) 
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Linkage != Dispatch 

• Avoid the cost of linkage on almost every call 
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Takeaways 
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Takeaways 

• Invokedynamic lets us programmatically alter linkage 
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Takeaways 

• Invokedynamic lets us programmatically alter linkage 

• Then it gets out of the way! (linkage != invocation) 

• The Invoke API can often be used without indy 

• JVM is a great platform for just about any language! 
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Resources 

• JVM Language Summit 

  http://openjdk.java.net/projects/mlvm/jvmlangsummit/ 

• Linkers & Loaders book 

 http://linker.iecc.com/ 

• John Rose’s Blog 

 https://blogs.oracle.com/jrose/ 
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Thank You! 
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