
@JosePaumard

in Java &

Going reactive

@JosePaumard#J8RXS

Agenda

1) To present the concepts on which the Stream API has

been built

2) See the main patterns, what can be done with it

@JosePaumard#J8RXS

Agenda

1) To present the concepts on which the Stream API has

been built

2) See the main patterns, what can be done with it

3) What is missing to become reactive?

4) What is in the work for Java 9?

@JosePaumard#J8RXS

Questions?

#J8RXS

@JosePaumard

@JosePaumard

Data Processing

Java 8

Stream API

@JosePaumard#J8RXS

What is a Stream?

 A new concept in Java 8

 An interface (or several interfaces)

 Goals:

• To provide an implemenation of the map / filter / reduce

• Simple to use

• Efficient (memory, computation)

@JosePaumard#J8RXS

Definition of a Stream

Two things about streams:

1) A Stream does not hold any data

2) A Stream does not modify the data it gets from the source

@JosePaumard#J8RXS

Patterns to create a Stream

 There are many patterns to create a Stream

List<Person> people = Arrays.asList(p1, p2, p3);

@JosePaumard#J8RXS

Patterns to create a Stream

 There are many patterns to create a Stream

List<Person> people = Arrays.asList(p1, p2, p3);

Stream<Person> stream = people.stream();

@JosePaumard#J8RXS

Patterns to create a Stream

 There are many patterns to create a Stream

List<Person> people = Arrays.asList(p1, p2, p3);

Stream<Person> stream = people.stream();

Stream<Person> stream = Stream.of(p1, p2, p3);

@JosePaumard#J8RXS

Patterns to create a Stream

 There are many patterns to create a Stream

List<Person> people = Arrays.asList(p1, p2, p3);

Stream<Person> stream = people.stream();

Stream<Person> stream = Stream.of(p1, p2, p3);

Stream<String> words = Pattern.compile(" ").splitAsStream(book);

@JosePaumard#J8RXS

Patterns to create a Stream

 There are many patterns to create a Stream

List<Person> people = Arrays.asList(p1, p2, p3);

Stream<Person> stream = people.stream();

Stream<Person> stream = Stream.of(p1, p2, p3);

Stream<String> words = Pattern.compile(" ").splitAsStream(book);

Stream<String> lines = Files.lines(Paths.get("alice-in-wonderland.txt"));

@JosePaumard#J8RXS

Patterns to use a Stream

 Map filter reduce with the Stream API

 « a Stream does not hold any data »

List<Person> people = Arrays.asList(p1, p2, p3);

double average = people.stream()
.filter(person -> person.getCity().equals("San Francisco"))
.mapToInt(Person::getAge)
.filter(age -> age > 20)
.average().get();

@JosePaumard#J8RXS

Patterns to use a Stream

 Map filter reduce with the Stream API

 « a Stream does not hold any data »

List<Person> people = Arrays.asList(p1, p2, p3);

double average = people.stream() // Stream<Person>
.filter(person -> person.getCity().equals("San Francisco"))
.mapToInt(Person::getAge)
.filter(age -> age > 20)
.average().get();

@JosePaumard#J8RXS

Patterns to use a Stream

 Map filter reduce with the Stream API

 « a Stream does not hold any data »

List<Person> people = Arrays.asList(p1, p2, p3);

double average = people.stream() // Stream<Person>
.filter(person -> person.getCity().equals("San Francisco"))
.mapToInt(Person::getAge) // IntStream
.filter(age -> age > 20)
.average().get();

@JosePaumard#J8RXS

Patterns to use a Stream

 Map filter reduce with the Stream API

 « a Stream does not hold any data »

List<Person> people = Arrays.asList(p1, p2, p3);

double average = people.stream() // Stream<Person>
.filter(person -> person.getCity().equals("San Francisco"))
.mapToInt(Person::getAge) // IntStream
.filter(age -> age > 20) // IntStream
.average().get();

@JosePaumard#J8RXS

Patterns to use a Stream

 Map filter reduce with the Stream API

 « a Stream does not hold any data »

List<Person> people = Arrays.asList(p1, p2, p3);

double average = people.stream() // Stream<Person>
.filter(person -> person.getCity().equals("San Francisco"))
.mapToInt(Person::getAge) // IntStream
.filter(age -> age > 20) // IntStream
.average().get(); // double

@JosePaumard#J8RXS

Patterns to use a Stream

 Map filter reduce with the Stream API

 An operation that returns a Stream does not process any

data

List<Person> people = Arrays.asList(p1, p2, p3);

double average = people.stream() // Stream<Person>
.filter(person -> person.getCity().equals("San Francisco"))
.mapToInt(Person::getAge) // IntStream
.filter(age -> age > 20) // IntStream
.average().get(); // double

@JosePaumard#J8RXS

« a Stream does not hold any data »

« a Stream does not hold any data » is a very powerful

paradygm

 It brings the notion of lazyness

 And optimizations!

@JosePaumard#J8RXS

Back to our initial program

 Efficient (memory, computation)

 Two things about streams:

1) A Stream does not hold any data

2) A Stream does not modify its data

@JosePaumard#J8RXS

Back to our initial program

 Efficient (memory, computation)

 Two things about streams:

1) A Stream does not hold any data

2) A Stream does not modify its data

@JosePaumard#J8RXS

Back to our initial program

 Efficient (memory, computation)

 Two things about streams:

1) A Stream does not hold any data

2) A Stream does not modify its data

@JosePaumard#J8RXS

Back to our initial program

 Efficient (memory, computation)

 Two things about streams:

1) A Stream does not hold any data

2) A Stream does not modify its data Parallelism!

@JosePaumard#J8RXS

Going parallel

 Back to our previous example

List<Person> people = Arrays.asList(p1, p2, p3);

double average = people.stream().parallel()
.filter(person -> person.getCity().equals("San Francisco"))
.mapToInt(Person::getAge)
.filter(age -> age > 20)
.average().get();

@JosePaumard#J8RXS

What about non-standard sources?

A Stream is built on two things:

- A Spliterator (split – iterator)

@JosePaumard#J8RXS

What about non-standard sources?

A Stream is built on two things:

- A Spliterator (split – iterator)

- A ReferencePipeline (the implementation)

@JosePaumard#J8RXS

The Spliterator

 The Spliterator holds a special word: characteristics

@JosePaumard#J8RXS

The Spliterator

 The Spliterator holds a special word: characteristics

public interface Spliterator<T> {

public static final int ORDERED = 0x00000010;
public static final int DISTINCT = 0x00000001;
public static final int SORTED = 0x00000004;
public static final int SIZED = 0x00000040;
public static final int NONNULL = 0x00000100;
public static final int IMMUTABLE = 0x00000400;
public static final int CONCURRENT = 0x00001000;
public static final int SUBSIZED = 0x00004000;

}

@JosePaumard#J8RXS

The Spliterator

 The Spliterator holds a special word: characteristics

// ArrayListSpliterator
public int characteristics() {

return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
}

// HashMap.KeySpliterator
public int characteristics() {

return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
Spliterator.DISTINCT;

}

@JosePaumard#J8RXS

The Spliterator

 The Spliterator holds a special word: characteristics

 This word is used for optimization

people.stream()
.sorted() // quicksort?
.collect(Collectors.toList());

@JosePaumard#J8RXS

The Spliterator

 The Spliterator holds a special word: characteristics

 This word is used for optimization

people.stream()
.sorted() // quicksort? It depends on SORTED == 0
.collect(Collectors.toList());

@JosePaumard#J8RXS

The Spliterator

 The Spliterator holds a special word: characteristics

 This word is used for optimization

SortedSet<Person> people = ...;

people.stream()
.sorted() // SORTED == 1, no quicksort
.collect(Collectors.toList());

@JosePaumard#J8RXS

The Spliterator

 The Spliterator holds a special word: characteristics

 This word is used for optimization

ArrayList<Person> people = ...;

people.stream()
.sorted() // SORTED == 0, quicksort
.collect(Collectors.toList());

@JosePaumard#J8RXS

The characteristics can change

 Each Stream object in a pipeline has its own characteristics

@JosePaumard#J8RXS

The characteristics can change

 Each Stream object in a pipeline has its own characteristics

Method Set to 0 Set to 1

filter() SIZED -

map() DISTINCT, SORTED -

flatMap() DISTINCT, SORTED, SIZED -

sorted() - SORTED, ORDERED

distinct() - DISTINCT

limit() SIZED -

peek() - -

unordered() ORDERED -

@JosePaumard#J8RXS

The characteristics can change

 Each Stream object in a pipeline has its own characteristics

Method Set to 0 Set to 1

filter() SIZED -

map() DISTINCT, SORTED -

flatMap() DISTINCT, SORTED, SIZED -

sorted() - SORTED, ORDERED

distinct() - DISTINCT

limit() SIZED -

peek() - -

unordered() ORDERED -

@JosePaumard#J8RXS

The characteristics can change

 Each Stream object in a pipeline has its own characteristics

Method Set to 0 Set to 1

filter() SIZED -

map() DISTINCT, SORTED -

flatMap() DISTINCT, SORTED, SIZED -

sorted() - SORTED, ORDERED

distinct() - DISTINCT

limit() SIZED -

peek() - -

unordered() ORDERED -

@JosePaumard#J8RXS

What about non-standard sources?

 The Spliterator is meant to be overriden

public interface Spliterator<T> {

boolean tryAdvance(Consumer<? super T> action) ;

Spliterator<T> trySplit() ;

long estimateSize();

int characteristics();
}

@JosePaumard#J8RXS

What about non-standard sources?

 The Spliterator is meant to be overriden

public interface Spliterator<T> {

boolean tryAdvance(Consumer<? super T> action) ;

Spliterator<T> trySplit(); // not needed for non-parallel processings

long estimateSize(); // can return 0

int characteristics(); // returns a constant
}

@JosePaumard#J8RXS

Spliterators on spliterators

 Building a Spliterator on another Spliterator allows:

Grouping: [1, 2, 3, 4, 5, …] ->

[[1, 2, 3], [4, 5, 6], [7, 8, 9], …]

@JosePaumard#J8RXS

Spliterators on spliterators

 Building a Spliterator on another Spliterator allows:

Rolling: [1, 2, 3, 4, 5, …] ->

[[1, 2, 3], [2, 3, 4], [3, 4, 5], …]

@JosePaumard#J8RXS

Spliterators on spliterators

 Building a Spliterator on another Spliterator allows:

Zipping: [1, 2, 3, …], [a, b, c, …] ->

[F[1, a], F[2, b], F[3, c], …]

@JosePaumard#J8RXS

Spliterators on spliterators

 Building a Spliterator on another Spliterator allows:

Zipping [1, 2, 3, …], [a, b, c, …] ->

+ grouping: [[F[1, a], F[2, b], F[3, c]],

[F[4, d], F[5, e], F[6, f]], …]

@JosePaumard#J8RXS

Spliterators on spliterators

 Building a Spliterator on another Spliterator allows:

Zipping [1, 2, 3, …], [a, b, c, …] ->

+ rolling: [[F[1, a], F[2, b], F[3, c]],

[F[2, b], F[3, c], F[4, d]], …]

@JosePaumard#J8RXS

Java 8 Stream API

 Simple, readable patterns

 Fast and efficient (with more to come)

 A Stream looks like a Collection, but it is not

 The Spliterator can be implemented to connect a Stream to

« non-standard » sources of data

 Or to change the way the data is analyzed

Java 8

Stream API

and beyond

@JosePaumard#J8RXS

Java 8 Stream API

Back to the definitions:

1) A Stream does not hold any data

2) A Stream does not modify its data

@JosePaumard#J8RXS

Java 8 Stream API

Back to the definitions:

1) A Stream does not hold any data

2) A Stream does not modify its data

How does a Stream work?

1) It connects to a source of data: one source = one stream

2) It consumes the data from the source: « pull mode »

@JosePaumard#J8RXS

Java 8 Stream API

What about:

- Connecting several streams to a single source?

@JosePaumard#J8RXS

Java 8 Stream API

What about:

- Connecting several streams to a single source?

- Connecting several sources to a single stream?

@JosePaumard#J8RXS

Java 8 Stream API

What about:

- Connecting several streams to a single source?

- Connecting several sources to a single stream?

- Having a source that produces data whether or not a stream

is connected to it

@JosePaumard#J8RXS

Java 8 Stream API

What about:

- Connecting several streams to a single source?

- Connecting several sources to a single stream?

- Having a source that produces data whether or not a stream

is connected to it

Clearly, the Stream API has not been made to handle this

@JosePaumard#J8RXS

Reactive Stream API

 This leads to the « reactive stream » API

 3rd party API: Rx Java (and several other languages)

 Implementations available as a preview of JDK 9

Everything takes place in java.util.concurrent.Flow
Available on the JSR166 web site

@JosePaumard#J8RXS

Push mode stream

 Let us write a model for the source of data

public interface Publisher<T> {

public ... subscribe(Subscriber<T> subscriber);
}

@JosePaumard#J8RXS

Push mode stream

 Let us write a model for the source of data

 As a subscriber I will want to unsubscribe

 So I need an object from the publisher

on which I can call cancel()

public interface Publisher<T> {

public ... subscribe(Subscriber<T> subscriber);
}

@JosePaumard#J8RXS

Push mode stream

 Let us write a model for the source of data

 The first idea that could come to mind is to return a

Subscription object

public interface Publisher<T> {

public Subscription subscribe(Subscriber<T> subscriber);
}

@JosePaumard#J8RXS

Push mode stream

 Let us write a model for the source of data

 But it will be a callback, to stay in an asynchronous world

public interface Publisher<T> {

public void subscribe(Subscriber<T> subscriber);
}

@JosePaumard#J8RXS

Push mode stream

 Callback in the subscriber to get a subscription

public interface Subscriber<T> {

public void onSubscribe(Subscription subscription);
}

@JosePaumard#J8RXS

Push mode stream

 Callback in the subscriber to get a subscription

public interface Subscriber<T> {

public void onSubscribe(Subscription subscription);
}

public interface Subscription {

public void cancel();
}

@JosePaumard#J8RXS

Push mode stream

 The publisher might look like this

public class SimplePublisher<T> implements Publisher<T> {

private Set<Subscriber<T>> subscribers = ConcurrentHashMap.newKeySet();

public void subscribe(Subscriber<T> subscriber) {

if (subscribers.add(subscriber)) {
Subscription subscription = new SimpleSubscription();
subscriber.onSubscribe(subscription);

}
}

}

@JosePaumard#J8RXS

Push mode stream

 In the subscribing code

public class SimpleSubscriber<T> implements Subscriber<T> {

private Subscription subscription;

@Override
public void onSubscribe(Subscription subscription) {

this.subscription = subscription;
}

}

@JosePaumard#J8RXS

Push mode stream

 In the running code

Publisher<String> publisher = ...;
Subscriber<String> subscriber = ...;

publisher.subscribe(subscriber);

// some more code

subscriber.getSubscription().cancel();

@JosePaumard#J8RXS

Push mode stream

 Callback in the subscriber to get a subscription

 I also need callbacks to get the data itself

public interface Subscriber<T> {

public void onSubscribe(Subscription subscription);
}

@JosePaumard#J8RXS

Push mode stream

 Callback in the subscriber to get a subscription

public interface Subscriber<T> {

public void onSubscribe(Subscription subscription);

}

@JosePaumard#J8RXS

Push mode stream

 Callback in the subscriber to get a subscription

public interface Subscriber<T> {

public void onSubscribe(Subscription subscription);

public void onNext(T item);

}

@JosePaumard#J8RXS

Push mode stream

 Callback in the subscriber to get a subscription

public interface Subscriber<T> {

public void onSubscribe(Subscription subscription);

public void onNext(T item);

public void onComplete();

}

@JosePaumard#J8RXS

Push mode stream

 Callback in the subscriber to get a subscription

public interface Subscriber<T> {

public void onSubscribe(Subscription subscription);

public void onNext(T item);

public void onComplete();

public void onError(Throwable throwable);
}

@JosePaumard#J8RXS

Push mode stream

 Having a source that produces data independantly from its

consumers implies to work in an asynchronous mode

 The API is built on callbacks

@JosePaumard#J8RXS

Several streams per source

 In « pull mode », it would not work, or would require the

streams to be synchronized

map Filter 1 Filter 2 Average

map Filter 1 Histogram

Data

@JosePaumard#J8RXS

Several streams per source

 In « pull mode », it would not work, or would require the

streams to be synchronized

 In « push mode », it does not raise any problem

map Filter 1 Filter 2 Average

map Filter 1 Histogram

Data

@JosePaumard#J8RXS

Several sources for a stream

 In « pull mode », it requires a special Spliterator

map Filter 1 Filter 2 Average

Data 1

Data 2

@JosePaumard#J8RXS

Several sources for a stream

 In « pull mode », it requires a special Spliterator

 In « push mode », since both sources are not synchronized,

we may have problems

map Filter 1 Filter 2 Average

Data 1

Data 2

@JosePaumard#J8RXS

Push mode with several sources

 At some point in our data processing pipeline we want to

see both sources as one, ie merged in some way

@JosePaumard#J8RXS

Push mode with several sources

 At some point in our data processing pipeline we want to

see both sources as one, ie merged in some way

 How can we merge them if one source is faster than the

other?

@JosePaumard#J8RXS

Push mode with several sources

 At some point in our data processing pipeline we want to

see both sources as one, ie merged in some way

 How can we merge them if one source is faster than the

other?

 Several strategies are possible

@JosePaumard#J8RXS

Merging sources in push mode

1) Decide to follow one of the data publishers, the first one

@JosePaumard#J8RXS

Merging sources in push mode

1) Decide to follow one of the data publishers, the first one

Use case: identical requests on several DNS, or on several

Rest Services

The first to give the answer is the winner!

And makes the others useless

@JosePaumard#J8RXS

Merging sources in push mode

1) Decide to follow one of the streams, the first one

2) Combine the two last seen items,

everytime a new item is generated

@JosePaumard#J8RXS

Merging sources in push mode

1) Decide to follow one of the streams, the first one

2) Combine the two last seen items,

everytime a new item is generated

Source 1

Source 2

Merge

@JosePaumard#J8RXS

Merging sources in push mode

1) Decide to follow one of the streams, the first one

2) Combine the two last seen items,

or synchronized on the second source (for instance)

Source 1

Source 2

Merge

@JosePaumard#J8RXS

Merging sources in push mode

 This second approach brings the idea of synchronizing on a

source

 A source can play the role of a clock

@JosePaumard#J8RXS

Merging sources in push mode

 Let us build a sampler

Source

Clock

Merge

@JosePaumard#J8RXS

Merging sources in push mode

 Let us build a sampler with a function

Source

Clock

Merge

@JosePaumard#J8RXS

Merging sources in push mode

 Or a « debouncer »

Source

Clock

Merge

@JosePaumard#J8RXS

Merging sources in push mode

 There is no limit to what can be done with two independant

sources merged into one

 The synchronization-on-a-clock can be used to « slow

down » a source

@JosePaumard#J8RXS

A central question

 What will happen if a source is « too fast »?

 That is, a consumer cannot process data fast enough

 It leads to the question of « backpressure »

@JosePaumard#J8RXS

Backpressure

 Several strategies:

1) Create a buffer

@JosePaumard#J8RXS

Backpressure

 Several strategies:

1) Create a buffer

2) Synchronize on a clock, or a gate, that could be generated

by the slow observer and sample, or windows, or

debounce, or…

@JosePaumard#J8RXS

Backpressure

 Several strategies:

1) Create a buffer

2) Synchronize on a clock, or a gate, that could be generated

by the slow observer and sample, or windows, or

debounce, or…

3) Try to slow down the source (can be done if I have the

hand on both the producer and the consumer)

@JosePaumard#J8RXS

Backpressure

 There is code for that in the Subscription object

 The request() method is there to give information to the

producer

public interface Subscription {

public void cancel();

public void request(long n);
}

@JosePaumard#J8RXS

Backpressure

 There is code for that in the Subscription object

 The request() method is there to give information to the

producer

public void onNext(String element) {

// process the element

this.subscription.request(1L);
}

@JosePaumard#J8RXS

Backpressure

 Several strategies:

1) Create a buffer

2) Synchronize on a clock, or a gate, that could be generated

by the slow observer and sample, or windows, or

debounce, or…

3) Try to slow down the source (can be done if I have the

hand on both the producer and the consumer)

4) Have several observers in parallel and then merge the

results

@JosePaumard#J8RXS

Reactive Streams

 New concept (at least in the JDK)

 New complexity, several use cases are possible

 Still under work (in the JDK and in 3rd party)

@JosePaumard#J8RXS

Reactive Streams links

 Some references on the reactive streams:

• http://www.reactive-streams.org/

• http://reactivex.io/

• https://github.com/reactive-streams/

• http://openjdk.java.net/jeps/266

• http://gee.cs.oswego.edu/dl/jsr166/dist/docs/index.html (Class Flow)

@JosePaumard#J8RXS

Reactive Streams links

 In the classes currently available in the JSR 166 package:

- The class Flow has the Publisher, Subscriber and Subscription
interfaces, and the Processor interface

- The class SubmissionPublisher, that implements Publisher,

meant to be overriden or used as a component of a complete

implementation

@JosePaumard#J8RXS

Conclusion

 Java 8 Stream API: great API to process data in a « pull »

mode

 The introduction of a « push » mode allows for many

improvements (synchronization, backpressure)

 The backpressure question is relevant

 Loosing items ≠ loosing information!

@JosePaumard#J8RXS

Conclusion

 Streams & Reactive Streams are very active topics

 Java Stream has been released with Java 8, improvements

will be added in Java 9 and beyond

 Reactive Streams has several 3rd party implementations

(RxJava) in several languages

 Will be part of Java 9

Thank you

Q / A

